Integration and Usage of a ROS-based Whole
Body Control Software Framework

Chien-Liang Fok and Luis Sentis

University of Texas at Austin, Department of Mechanical Engineering,
liangfok@utexas.edu™”, lsentis@mail.utexas.edu
http://www.me.utexas.edu/~hcrl/

Abstract. Controllt! is a ROS-based high performance feedback con-
trol framework that enables Whole Body Control (WBC) algorithms to
be implemented, instantiated, and integrated into ROS applications. It
operates above individual joint controllers but below planners and takes
a holistic view of the robot to achieve multiple simultaneous objectives.
Such capabilities are particularly useful for highly redundant and multi-
branched robots like humanoids where the large number of degrees of
freedom (DOFs) and intrinsic multi-tasking like reaching for an object
while maintaining balance requires advanced feedback control strategies.
Controllt! provides two software abstractions, a compound task and a
constraint set, that enables users to configure, use, and integrate whole
body controllers. The compound task consists of prioritized tasks with
controllers that operate in a relatively low dimensional space compared
to the number of joints. The constraint set specifies physical limits of
the robot like points of contact with the environment and mechanical
couplings between joints. Controllt! comes with an implementation of
the Whole Body Operational Space control (WBOSC) algorithm, one of
the original WBC algorithms. Through prioritized null-space projection,
WBOSC achieves each tasks’ objectives subjected to limitations from
higher priority tasks and the constraint set. Using tasks and constraints,
users can make high-DOF multi-branched robots execute sophisticated
multi-objective and adaptive behaviors. This chapter presents Controllt!
and provides examples of advanced whole body behaviors it enables.

Keywords: Controllt! ROS Framework WBC WBOSC

1 Introduction

Whole Body Control (WBC) strategies are particularly useful for multi-branched
highly redundant robots like humanoids due to their ability to achieve multiple
control objectives and incorporate equality and inequality constraints into the
control problem. This allows control strategies to deal with expected changes in
interactions with the environment such as contact transitions [I]. Unlike tradi-
tional controllers that work at the single joint level or whole-body planners that

** Corresponding author

http://www.me.utexas.edu/~hcrl/

2 C.-L. Fok and L. Sentis

operate off-line or infrequently relative to the WBC servo frequency, which is cur-
rently around 0.5-2kHz, whole body controllers take a holistic view of the entire
robot and use every joint to achieve the user-specified objectives via a real-time
feedback control process. This real-time feedback control enables WBC-enabled
robots to be more adaptive and responsive to unexpected contextual changes
relative to systems that rely entirely on open-loop planners for coordinating
whole body behaviors. There are many forms of whole body controllers includ-
ing inverse dynamics controllers [2] and optimal controllers [3I4l5]. While these
types of Multi-Input-Multi-Output (MIMO) controllers may be supported by
Controllt! in the future, for now Controllt! comes with one type of whole body
controller based on the Whole Body Operational Space Control (WBOSC) al-
gorithm [6I7I89].

WBOSC is one of the first WBC algorithms developed. It enables unified
motion / force control of multiple prioritized operational space objectives. Ex-
ample objectives include end effector position and orientation, center of pressure
locations, and internal force distributions within the robot. The whole body con-
troller attempts to achieve these operational space objectives while deterministi-
cally handling joint redundancies through a lower priority posture specification
and adhering to physical constraints. Controllt! is a ROS-based framework that
provides a state-of-the-art open source implementation of WBOSC and is de-
signed to be extensible via plugins.

Controllt! was originally developed and tested on Valkyrie, NASA’s first hu-
manoid robot, as shown in Figure In the run-up to the DARPA Robotics
Challenge (DRC) Trials in December 2013, it was successfully used to accom-
plish several tasks mandated by the DRC including industrial valve turning,
door opening, and power tool manipulation [10]. After the DRC Trails, Con-
trollt! was integrated and tested on Dreamer, a humanoid upper body built by
Meka Robotics (now owned by Google) and shown in Figure Using Controllt!,
Dreamer was able to execute a product disassembly task [11] and various human-
robot interactions like waving, shaking hands, and making University of Texas’
“Hook-em Horns” gesture [I2]. While Controllt! is currently only tested with
two robots, its architecture is designed to be robot-independent. The process for
integrating Controllt! with a new robot consists of developing two plugins that
enable Controllt! to access to the robot hardware and real-time clock capabili-
ties, and specifying a whole body controller configuration similar to that shown
in Figure [2} More details will be described later in this chapter.

Controllt! currently works with ROS Hydro and ROS Indigo. Dependencies
include Eigen 3.0.5 [13] and Rigid Body Dynamics Library (RBDL) 2.3.2 [I4].
To enable testing in simulation, Controllt! includes a plugin for Gazebo [15], an
open source robot dynamics simulator, that enables whole body controllers to
control a simulated robot via a shared memory communication link [T6].

As the provider of a whole body controller, Controllt! is just one of many
software components within a ROS-based system. Its placement in the overall
software stack is shown in Figure Components that logically reside below
Controllt! include robot hardware (e.g., sensor and actuator) drivers, joint con-

Controllt! 3

(a) Valkyrie (b) Dreamer

Fig. 1: Controllt! was originally integrated and evaluated with NASA’s Valkyrie
and Meka’s Dreamer humanoid robots. Both robots have a large number of
DOFs, are multi-branched, and contain torque controlled series elastic actuators.

trollers, and joint controller managers like ros_control [I7]. Components that
logically reside above Controllt! include planners and trajectory generators like
Movelt! [18], behavior sequencers like SMACH [I9], cognitive processes, appli-
cation logic, and user interfaces. ROS provides an infrastructure that spans the
component hierarchy. Components further down the stack operate at higher up-
date frequencies enabling more responsive feedback control.

There is a strong synergistic relationship between Controllt! and ROS. Con-
trollt! makes use of ROS’ infrastructure for supporting software development,
process execution, code organization, parameter management, data logging, data
visualization, and component based software architecture. In return, Controllt!
enables other ROS nodes to make use of a whole body controller to achieve so-
phisticated multi-objective and multi-constrained behaviors in robots with joint
redundancies. Controllt! runs as a node within a ROS network that communi-
cates with other nodes via ROS topics [20] and ROS services [21]. Despite being
a single node, extensive use of ROS’ pluginlib infrastructure [22] enables a high
degree of extensibility. The configuration of Controllt! is initially done through
the ROS parameter server [23], but can be dynamically changed at run time via
ROS topics and services. Details will be described later in this chapter.

The remainder of this chapter is organized as follows. Section |2| provides
an overview of WBOSC’s mathematical foundations. Section [3| presents Con-

4 C.-L. Fok and L. Sentis

1 tasks:

2 - name: RightHandPosition

3 type: controlit/CartesianPositionTask

4 - name: LeftHandPosition

5 type: controlit/CartesianPositionTask

6 - name: RightHandOrientation

7 type: controlit/3DOrientionTask

8 - name: LeftHandOrientation

9 type: controlit/3DOrientionTask

10 - name: Posture

11 type: controlit/JointPositionTask

12 compound_task:

13 name: DreamerCompoundTask

14 task_list:

15 - {name: RightHandPosition, priority: 0}
16 - {name: LeftHandPosition, priority: 0}
17 - {name: RightHandOrientation, priority: 1}
18 - {name: LeftHandOrientation, priority: 1}
19 - {name: Posture, priority: 2}

20 constraints:

21 - name: ContactConstraint

22 type: controlit/FlatContactConstraint

23 - name: TorsoTransmission

24 type: controlit/TransmissionConstraint

25 ~constraint_set:

26 name: My Constraint Set

27 active_constraints:

28 - {name: ContactConstraint}

29 - {name: TorsoTransmission}

Fig.2: An example configuration file that specifies a whole body controller
for Dreamer. Control points include the Cartesian position and orientation of
Dreamer’s wrists and the overall posture. Task parameter details are omitted.

trollt!’s software architecture. Section [] describes the plugin libraries included
with Controllt!, which include the tasks and constraints that constitute the prim-
itives for configuring whole body controllers. Section [§] provides examples of how
Controllt! was used on actual robots for a variety of applications. Section [6] de-
scribes the installation process. Section [7] details how to run various demos in
simulation. The chapter ends with conclusions in Section

2 Overview of Whole Body Operational Space Control

The mathematical foundations of WBOSC are detailed in previous publica-
tions [6U7I8[9] and those interested in the full details should refer to them. This
section only provide an overview of the mathematics that underpins WBOSC.
WBOSC provides a servo loop that operates as a kinematics and dynamics
calculation module. It cycles at a user-specified servo frequency, which is lim-

Controllt! 5

' .
o user interfaces,
3 application logic, v
g sensing logic, planners, s -
+ || trajectory generators, =39
C
© etc. o ©
k= £
& | Controllt! WBC) || 2 8
o o
x| o
[joint-level controllers] c
A

robot hardware }Y

N

Fig. 3: Controllt!’s relationship with ROS and other ROS nodes.

ited by the speed of the processor and is typically in the range of 0.5-2kHz.
During each cycle of the servo loop, WBOSC takes as input the robot’s current
state, tasks, and constraints, and outputs the desired joint torques that joint-
level controllers must achieve. Over time, assuming the robot is able to perform
WBOSC’s commands, the desired multi-objective whole body behavior emerges.
To enable support for mobile robots, the total state consists of both the
robot’s joint states and world state, as shown in Figure 4] The world state is
the robot’s position and orientation in the world, i.e. the robot’s global pose,
in addition to the reaction forces with respect to the environment. Let 7joints
be the number of actual DOFs in the robot. The robot’s joint positions are
represented by the vector guctuq as shown by the following equation.

Gactual =< q1 ... Anjoints > (1)

The robot’s global Cartesian position and orientation are represented by a 6-
dimensional floating virtual joint that connects the robot’s base link to the world,
i.e., three rotational and three prismatic virtual joints. It is denoted by vector
Ghase € RS. The two partial state vectors, queruar and gpase, are concatenated
into a single state vector qrui = Gactual U Qbase- This combination of real and
virtual joints into a single vector is called the generalized joint position vector.
Let ngofs be the number real and virtual DOFs in the model that is used by
WBOSC. Thus, qfull € RE+7s0ints = RMdoss

The underactuation matrix U € R™ieintsXMdofs defines the relationship be-
tween the actuated joint vector and the full joint state vector as shown by the
following equation.

Qactual = Uqfull (2)

The total state that is provided to the whole body controller consists of the
full joint position vector g,y and the full joint velocity vector ¢guu-

Let A be the robot’s generalized joint space inertia matrix, B be the gen-
eralized joint space Coriolis and centrifugal force vector, G be the generalized

6 C.-L. Fok and L. Sentis

Passive joints (virtual)

—-

Rotational DOFs 4

-
-

'R, Base Frame
y
T

Reaction Forces

Linear DOFs 4

Inertia Frame X, |<H
T

Fig. 4: Floating base dynamic model

joint space gravity force vector, J. be the contact Jacobian matrix that maps
from generalized joint velocity to the velocity of the constraint space dimensions,
Ae be the co-state of the constraint space reaction forces, and Teommand be the
desired force/torque joint command vector that is sent to the robot’s joint-level
controllers. The robot dynamics can be described by a single linear second order
differential equation shown by the following equation.

A<..(]base > +B+G+Jg>\c: < Opx1) (3)

Gactual Tcommand

Constraints are formulated as follows. Let p. be the velocity of the con-
strained dimensions, which we approximate as being completely rigid and there-
fore yielding zero velocity on the contact points, as shown by the following
equation.

pc _ JC(.Qbase) A 0 (4)

Gactual

Tasks are are formulated as follows. Let p; be the desired velocity of the task,
J: be the Jacobian matrix of task ¢ that maps from generalized joint velocity to
the velocity of the task space dimensions, and N, be the generalized null-space
of the constraint set. Furthermore, let J; be the contact consistent reduced
Jacobian matrix of task ¢, i.e., it is consistent with U and N.. The definition
of p; is given by the following equation where operator arg is the dynamically
consistent generalized inverse of arg [7].

Controllt! 7

Fig. 5: Internal tension model

Py = Ji < .qbase > = JtUNCQactual

Gactual

= :(jactual (5)

Let A} be the contact-consistent task-space inertia matrix for task ¢, fir ye¢ be
the reference, i.e., desired, task-space acceleration for task ¢, 5; be the contact-
consistent task-space Coriolis and centrifugal force vector for task ¢, and +; be
the contact-consistent task space gravity force vector for task ¢. The force/torque
command of task ¢, denoted F}, is given by the following equation.

Ft - A:Z.).t,ref + /B;sk + 7;((6)

To achieve multi-priority control, let J t*|p’r'ev be the Jacobian matrix of task
t that is consistent with U, N., and all higher priority tasks. The equation for
Teommand 18 the sum of all of the individual task commands multiplied by the

corresponding t*l prew matrix as shown by the following equation.

Tcommand = Z J;];fnreth (7)
t

Finally, when a robot has more than one point of contact with the envi-
ronment, there are internal tensions within the robot as shown in Figure [5| By
definition, these “internal forces” are orthogonal to joint accelerations, i.e., they

8 C.-L. Fok and L. Sentis

<<use>>

Hc intSet

] compoundTask ‘ =] RobotModel

] Task ! constraint Conﬁguration

)

<<use>> <<use>> <<use>>

=] coordinator

] whole Body Controller |

<<use>> <<use>>

Clock Robotinterf
= clodl =] Robotinterface HAL

Fig. 6: Controllt!’s software architecture.

WBC

result in no net movement of the robot. The control structures like the multicon-
tact/grasp matrix that are used to control these internal forces are documented
in previous publications [§]. Let L* be the nullspace of (UN,..) and T;nternal be the
reference (i.e., desired) internal forces vector. The contribution of the internal
forces can thus be added to equation [7] as shown by the following equation.

Tcommand = Z <Jt*|';reth> + L*TTinternal (8)
t

This concludes the overview of WBOSC’s mathematical foundation. WBOSC

is a WBC algorithm that supports constraints, prioritized tasks, and internal
tensions. Successive null-space projections are used to enforce priority semantics.
When multiple contact points with the environment exists, a separate structure
is used to control internal tensions. This is possible since internal tensions do not
result in joint accelerations and thus are orthogonal to the tasks and constraints.

3 Software Architecture

Controllt!’s software architecture is shown in Figure [6 It is divided into three
levels: configuration, WBC, and a Hardware Abstraction Layer (HAL). Configu-
ration classes parameterize the whole body controller and include the compound
task, constraint set, and robot model. The WBC layer consists of a coordinator
that implements the servo loop and the whole body controller that implements
the whole body control logic. The HAL consists of a robot interface and a clock.
The robot interface enables Controllt! to work with a wide variety of robots while
the clock implements the servo loop’s thread and enables support for different
real-time frameworks like RTAI [24] and RT-Preempt [25].

Controllt! is designed to be highly extensible via ROS plugins [22]. The ele-
ments that are extensible include tasks, constraints, the whole body controller,

Controllt! 9

=] RobotModel =] ConstraintSet

[£3, constraintSet : ConstraintSet [1] [E3, constraints : Vector [1]

[£2, model : RigidBodyDynamics::Model [1] [£2, jacobian : Matrix [1]

[£2, jointState : JointState [1] 48 addConstraint(constraint : Constraint)

[£2, inertiaMatrix : Matrix [1] @. isConstrained(jointName : String) : Boolean[1]

init() {3} getUnderactuationMatrix() : Matrix[1]

@. setJointState(jointState : JointState) @. update(model : RobotModel)

Q update() Q getJacobian() : Matrix[1]

G} getModel() : RigidBodyDynamics::Model[1] .ﬁ} getinverseJacobian() : Matrix[1]

@. getJointState() : JointState[1] Q getNullspace() : Matrix[1]

4 getinertiaMatrix() : Matrix[1] 43 getinverseNullspace() : Matrix[1]

@. getJointGravity() : Vector[1]

G} getConstraintSet() : ConstraintSet[1] Q CompoundTask

@ getFullJointOrder() : Vector[1]

& getvirualJointOrder() : Vector[1] [c2. tasks : Vector [1]

& getRealJointOrder() : Vector[1] {§ addTask(task : Task)

Q getActuatedJointOrder() : Vector[1] 'W' update(model : RobotModel)
4 getTaskJacobian(priority : Integer) : Matrix[1]
@. getTaskCommand(priority : Integer) : Vector{1]
(8} getNumPriorities() : Integer[1]

Fig. 7: UML diagrams of Controllt!’s configuration classes.

the clock, and the robot interface. They are shown in gray in Figure [6] In the
future, the robot model may also be a plugin.

The remainder of this section is structured as follows. Subsection B.1] dis-
cusses the architecture’s core classes. Subsection [3.2] discusses how parameters
are handled and bound to ROS topics. Finally, subsection |3.3| presents Con-
trollt!’s multi-threaded architecture.

3.1 Core Classes

Robot Model. WBOSC is a model-based controller meaning it relies on a
software model that specifies the kinematic and dynamic properties of the robot
being controlled. Figure [7] includes a UML diagram of Controllt!’s RobotModel
class. Internally, RobotModel uses the Model class that is provided by RBDL [14].
This library includes algorithms for computing forward and inverse kinematics,
forward and inverse dynamics, frame transformations, the inertia matrix, Coriolis
and centrifugal forces, and the gravity vector. In other words, the RBDL model is
used to derive the variables A, B, and G, and J. in Equation [3] Method init ()
initializes a RobotModel by instantiating a ROS node handle and getting the
relevant parameters off the ROS parameter server [23]. This includes a Universal
Robot Description Format (URDF) description of the robot that is used to
instantiate a RBDL model, and a YAML-specification of the constraint set that
is used to instantiate the constraint set. The robot model uses the constraint
set to determine which of the real joint are actuated. This is necessary because
some robots like Dreamer have co-actuated joints where one actuator controls
multiple joints. In Dreamer’s case, the two torso pitch joints are co-actuated
and thus always have the same state. Controllt! models this via a transmission
constraint that makes one joint a slave of the other joint, as will be discussed.

10 C.-L. Fok and L. Sentis

During each cycle of the servo loop, the real-time servo thread within the
coordinator obtains the latest joint state from the robot interface and passes
this state to RobotModel: :setJointState(), which saves the information in
member variable RobotModel: : jointState. Another thread that’s dedicated to
updating the model periodically calls RobotModel: :update(), which updates
RobotModel : :model and RobotModel: : inertiaMatrix, i.e., variable A in equa-
tion [3] By using a separate thread to update the model, we offload a significant
amount of computation from the real-time servo thread enabling it to achieve
higher servo frequencies, which is often needed for increasing closed loop stabil-
ityEI

Note that the robot model is usually incorrect necessitating the use of a
whole body feedback controller. Future work includes the integration of system
identification algorithms that adjust the model at run-time to reduce model
inaccuracies. This should enable increasingly higher feedback controller gains
and thus higher performance behaviors to be achieved over time.

£ Task E] constraint
[E;» name : String [1] [E; name : String [1]
g‘p type : String [1] g;t type : String [1]
Eg priority : Integer [1] =) isEnabled : Boolean [1]
Eg isEnabled : Boolean [1] @. getNumConstraintedDOFs() : Integer[1]
= inactiveState : TaskState [1] @. getJacobian() : Matrix[1]
[c;, activeState : TaskState [1]
@ getJacobian() : Matrix[1] f‘ ?
g 32;2?22:::2;0: é\;i:;;[;;el) =] contactcConstraint | ‘Q TransmissionConstraint
@. getNumDimensions() : Integer[1] (= link : String [1] ’ [=] masterJoint : String [1]
@ swapActiveState() [contactPoint : Vector [1] =) slaveJoints : Vector [1]

Fig.8: UML diagrams of Controllt!’s Task and Constraint classes.

Constraint Set. The constraint set contains constraints that specify the
natural physical limits of the robot. During initialization, the constraint set’s
configuration is determined by a YAML specification stored on the ROS pa-
rameter server under /[controller name]/config/constraint_set. Figure[7]
contains a UML diagram of class ConstraintSet. The constraint set computes
a Jacobian matrix that is the vertical concatenation of the J. matrices belonging
to the constraints as defined in equation It also computes U in equation UN,
in equation |5 and whether each joint is constrained. The coordinator passes this
information to the whole body controller, which uses it to ensure the commands
reside within the constraint set’s nullspace.

! Increasing feedback controller gains too much is not desirable since doing so may
lead to saturation of the robot’s actuators and instability. By using a multi-threaded
architecture, Controllt! simply provides the user with the option to increase the
servo frequency higher than otherwise possible.

Controllt! 11

Figure [§] contains a UML diagram of class Constraint. All constraints are
named, specify the number of constrained DOFs, and provide a Jacobian ma-
trix J.. There are two types of constraints: contact and transmission. Contact
constraints specify how a robot contacts its environment. It is parameterized by
the link and the point on the link where the contact is modeled to occur, e.g.,
it can be the mid-point, center of pressure, or zero moment point, of a contact
region. Transmission constraints specify dependences between joints due to co-
actuation. It is parameterized by a specification of which joint is the master and
which is the slave. The slave joint’s behavior is dependent on the master joint’s
behavior.

Compound Task. The compound task contains a set of prioritized tasks,
each of which specifies an operational or postural objective for the whole body
controller to achieve. During initialization, the configuration of the compound
task is determined by a YAML specification stored on the ROS parameter server
under / [controller name]/config/compound_task. The compound task is the
key software abstraction through which users can configure a whole body con-
troller. Figure [7] contains a UML diagram of class CompoundTask. For each pri-
ority level, the compound task vertically concatenates the Jacobians and com-
mands belonging to the tasks at the priority level. The coordinator takes this
information and passes it to the whole body controller. WBOSC uses these con-
catenated Jacobian matrices and command vectors to enforce task prioritization
and multiple tasks at the same priority level, while adhering to the constraint
set, as defined by equation [7]

Figure [§ contains a UML diagram of class Task. All tasks are named, have
a priority level, can be enabled and disabled, provide a task-space command
vector and a Jacobian matrix that converts the command to joint space, and
maintains two sets of states, active and inactive. The active state is used by the
real-time servo thread while the inactive state is updated by a separate thread.
Like the process of updating the robot model, the purpose of using a separate
thread to update the task states is to offload the amount of computations that
need to be performed by the real-time servo thread and thereby increase the
maximum achievable servo frequency. The real-time servo thread periodically
calls Task: :swapActiveState that checks if an update is available and, if so,
swaps the active and inactive states.

The Task and Constraint classes are abstract; concrete implementations
are included through plugins. Both have names and types for easy identification
and can be enabled or disabled based on context. In the future, support for
dynamically adding and removing tasks and constraints (not just enabling /
disabling) will be added. Currently-provided tasks and constraints are described
in Section @

Whole Body Controller. The whole body controller implements the actual
WBC algorithm. Figure[9]shows its UML diagram. Since Controllt! is designed to
be extensible, the whole body controller is actually an interface definition. Con-
crete implementations are provided via dynamically loadable plugins and will
be discussed in Section [i] The interface WholeBodyController defines a single

12 C.-L. Fok and L. Sentis

=] Coordinator WholeBodyController

[£2, robotinterface : Robotinterface [1] @ computeCommand(model : RobotModel, compoundTask : CompoundTask) : Command[1]
[£2, servoClock : ServoClock [1]
[E2, compoundTask : CompoundTask [1]
[robotModel : RobotModel [1]

[E2, wbc : WholeBodyController [1] g Command
@ init() position : Vector [1]
Q} servolnit() [velocity : Vector [1]

4 servoUpdate() (= effort : Vector [1]

positionKp : Vector [1]
(=3 positionKd : Vector [1]

Fig.9: UML diagrams of Controllt!’s WBC classes.

method named computeCommand(). Inputs to this method are a RobotModel
and a CompoundTask. Using these input parameters, the method performs the
WBC computations that generate a command for each joint under its control
and returns the commands within an object of type Command. Figure [J] contains
a UML diagram of Command. As shown in the figure, the command contains the
desired position, velocity, and effort (i.e., force or torque) values for each joint
in the robot, along with a couple parameters for the joint-level controllers. Note
that depending on the type of whole body controller and joint-level controllers
employed, not all of the variables within a Command object are used. For example,
Dreamer only uses the effort command because its joints are torque controlled
whereas Valkyrie used all of the parameters because its joints are position con-
trolled.

Coordinator. As shown in Figure[6] the coordinator is a central component
in Controllt!’s architecture. It contains a whole body controller and uses the
configuration objects and the robot interface. It implements the servo loop that
is shown in Figure which is periodically executed by the servo clock. The
coordinator is implemented by class Coordinator whose UML class diagram is
given in Figure[J] As shown in the figure, Coordinator contains a robot inter-
face, clock, compound task, robot model, and whole body controller as member
variables. These variables are instantiated when the init() method is called.
The coordinator also implements methods servoInit() and servoUpdate().
Method servoInit() initializes the robot model by reading the latest robot
joint state from the robot interface and passing this information to the robot
model. This is necessary because some robot interfaces contain data structures
that are only accessible to the real-time thread that’s provided by the clock.
Once initialized, the clock periodically calls method servoUpdate (), which im-
plements the servo loop.

RobotInterface. The robot interface decouples the rest of Controllt! from
robot-specific software. This enables Controllt! to support different robots with-
out major software changes. Figure [I0] contains a UML class diagram of the
robot interface. Recall that RobotInterface is an abstract class. Concrete im-
plementations are introduced via plugins that will be described in Section[d The
robot interface provides two methods: read(), which obtains the latest robot
joint state, and write(), which sends a command to the robot. For diagnos-

Controllt! 13

=] RobotlInterface] controlitClock

[£2, commandPublisher : RealTimeROSTopicPublisher [1] [£5; frequency : Float [1]

[c, statePublisher : RealTimeROSTopicPublisher [1] [E5; callServolnit : Boolean [1]

Q read(block : Boolean) : RobotState[1] [£5; continueRunning : Boolean [1]

4% write(command : Command) [£3 coordinator : Coordinator [1]
4 init(coordinator : Coordinator)

Q RobotState Q} start(frequency : Float)

4 stop()

[=3 jointPosition : Vector [1] {?r updateLoop()

(=] jointVelocity : Vector [1]

[jointAcceleration : Vector [1]

(= jointEffort : Vector [1]

(= virtualJointPosition : Vector [1]

[virtualJointVelocity : Vector [1]

Fig.10: UML diagrams of Controllt!’s HAL classes.

tic purposes, it has two real-time ROS topic publishers for revealing the states
and commands. RealtimeROSTopicPublisher uses a thread-pool to offload the
publishing process from the servo thread.

Clock. The clock instantiates the real-time servo thread and contains a ref-
erence to Coordinator. It calls Coordinator: :servoInit () once upon startup
and then Coordinator: :servoUpdate () periodically. It is also an abstract class
with concrete implementations made available via plugins.

3.2 Parameter Binding

ROS provides a component-based architecture consisting of multiple communi-
cating software processes called nodes one of which is Controllt!. A parameter
binding mechanism is provided to integrate Controllt! with other nodes. Fig-
ure[T1] contains UML diagrams of the relevant classes. Parameter stores informa-
tion about a parameter like its name, value, and bindings. It also provides method
set (), which updates the value and the bindings. ParameterReflection is the
parent-class of all classes that contain parameters. It allows child classes to de-
clare and access parameters and emit events. Event contains a logical expression
over the parameters within a ParameterReflection object. When this logical
expression turns true, a message containing the event’s name is published onto
ROS topic /[controller name]/events. This enables event-triggered behav-
iors. Events are continuously evaluated by the servo loop as indicated in Fig-
ure Binding contains a BindingConfig and a Parameter. BindingConfig
stores details about a binding like which transport protocol to use, in which
direction, and transport protocol-specific parameters. BindingManager creates
and stores the bindings. To support extensibility in terms of transport proto-
cols, Binding is an abstract class. Concrete transport layer-specific instances are
provided via plugins.

14 C.-L. Fok and L. Sentis

E] parameter £ ParameterReflection
[hame : String [1] [parameterList : Vector [1]
(=) parameter : Pointer [1] [eventList : Vector [1]
[bindings : Vector [1] ?;:r declareParameter(name : String, parameter : Pointer)
.@ set(value : ParameterType) .ﬁ. lookupParameter(name : String) : Parameter[1]

@ emitEvents()

] Binding] BindingManager
(= config : BindingConfig [1] [bindingFactories : Vector [1]
(=) parameter : Parameter [1] Q bindParameters(parameters : ParameterReflection)
g BindingConfig Q Event
[direction : String [1] [hame : String [1]
[transportType : String [1] (=3 condition : mu::Parser [1]
(3] topic : String [1] [enabled : Boolean [1]
[properties : Table [1]
@ addProperty(name : String, value : String)

Fig.11: UML class diagrams related to parameters and parameter bindings.

3.3 Multi-Threaded Architecture

To increase the servo frequency, Controllt! uses a multi-threaded architecture
where computationally-intensive updates that do not need to occur every cycle
of the servo loop are done by child threads. This is possible since some state
like the robot model and task Jacobian matrices typically do not significantly
change from one cycle of the servo loop to the next. Figure [12| shows the finite
state machines of the threads used in Controllt!. As shown in the figure, there
are three threads: (1) a real-time servo thread, (2) a task updater thread, and
(3) a model update thread. To prevent race conditions between the threads,
two robot models are maintained: an active one that is used by the real-time
servo thread, and an inactive one that is updated by the model update thread.
Likewise, tasks maintain active and inactive states where the active ones are
used by the servo thread and inactive one is used by the task update thread.
Since the servo thread is real-time, it should never be blocked by either the
task updater thread or model updater thread. This is done by having the servo
thread swap the inactive and active states at certain points in the servo loop.
Using this multi-threaded architecture, the controller’s execution frequency is
stable as shown by Figure

Controllt! 15

Call read() on - ‘ ‘

Robotinterface (a) Coordinator i :
[Servo Thread] : :

: CheckForUpdates :

: Is yes '

| Check for Call checkUpdate()|

Call tryLock() on ' |
Modrelepda(t)er \ Tasljlélzriater updated tasks on ModelUpdater | |

Locked
Inactive

1 yes
Yes _|Save latest joint state ; .4— Cz! #ggﬁjezaai?r()
in inactive model ! T p

Call unlockAndUpdate()

on ModelUpdater updated joint updated robot updated robot updated task
states model model states
Call computeCommand() A ¢
on WBC \ \
(b) ModelUpdater (c) TaskUpdater
[Child Thread 1] [Child Thread 2]
Call write() on
(] (e |
¢ checkUpdate() unlockAndUpdate()
tasks updateTasks()
Call emitEvents() on updated P

CompoundTask and
ConstraintSet

k done updating

inactive model

Fig. 12: Finite state machines of the real-time servo thread, the model updater
thread, and the task updater thread.

Servo Frequency Histogram

80

60

40

Percent Occurance

20

8.7 0.8 0.9 1.0 1.1 1.2 13
Frequency (kHz)

Fig. 13: A histogram of Controllt!’s servo frequency when running on Dreamer
hardware for 70 seconds. The desired frequency was 1kHz.

4 Plugin Libraries
As a framework, Controllt! is designed to work with a wide variety of robots

and applications. This is achieved by enabling key aspects of Controllt! to be
extended via dynamically loadable plugins based on ROS pluginlib [22]. To

16 C.-L. Fok and L. Sentis

provide a robust base set of functionalities, Controllt! comes with numerous
plugins that are organized into libraries. Specifically, Controllt! comes with a task
library, constraint library, whole body controller library, clock library, and robot
interface library. Each of these libraries contain plugins that can be added to
Controllt!. New plugins can be developed for general use or specific applications,
and for hardware platforms that are not covered by existing plugins. We now
describe each of these libraries.

Task Library. The plugins in the task library are shown in Table [T} There
are currently seven tasks in the library. JointPositionTask controls the position
and velocity of every joint in the robot. It is typically the lowest priority task in a
compound task, specifies the robot’s overall posture, and is needed to handle re-
dundant joints in high DOF robots. CartesianPositionTask controls the world
position of a point on the robot. 2DOrientationTask and 3DOrientationTask
control a robot link’s two or three orientation dimensions. 2D orientation is
useful when one dimension is constrained like in a mobile wheeled platform.
COMTask controls the robot’s Center Of Mass (COM). COPTask controls the lo-
cation of a robot link’s Center Of Pressure (COP) when it is in contact with the
environment. Finally, InternalForcesTask specifies the desired internal forces
within the robot. The current task implementations use PID controllers. In the
future, the controllers within tasks may be plugins enabling other Single-Input-
Single-Output (SISO) and Multi-Input-Multi-Output (MIMO) controllers to be
used.

Name Key Parameters
JointPositionTask desired joint position
CartesianPositionTask|control frame, control point
desired Cartesian position,

2D0rientationTask control frame, control vector,
desired frame, desired vector
3D0rientationTask control frame, desired Quaternion
COMTask control frame, control point,
desired COM location
COPTask control frame, desired COP location
InternalForcesTask desired internal forces

Table 1: The task library

The task library represents “WBC primitives.” Combinations of these prim-
itives can be configured for a wide range of applications and robots. Their ca-
pabilities directly impact the whole body behaviors that can be achieved. The
integration of Controllt! into ROS applications is done by binding the task pa-
rameters to ROS Topics and other transport protocols.

Constraint Library. The plugins in the constraint library are shown in Ta-
ble[2] There are currently four constraints in the library. FlatContactConstraint
is used when a link is unable to translate or rotate due to contact with the envi-

Controllt! 17

ronment. PointContactConstraint is used when a link can rotate but not trans-
late. OmniWheelConstraint restricts one rotational DOF and one translational
DOF based on the current orientation of the wheel. CoactuationConstraint
enables Controllt! to handle robots with co-actuated joints, like Dreamer’s torso
pitch joints. The transmission ratio specifies how much the slave joint moves
relative to the master joint.

Name ‘Key Parameters

FlatContactConstraint |constrained link, contact normal, contact point
PointContactConstraint|constrained link, contact point

OmniWheelConstraint constrained link, wheel axis, contact point, normal axis
CoactuationConstraint |master joint, slave joint, transmission ratio

Table 2: The constraint library

Multiple instances of the same constraint may exist in the constraint set if
they are for different parts of the robot. For example, a biped robot like Valkyrie
would have a FlatContactConstraint for each foot. Additional contact con-
straints can be added if, for example, the robot’s arms contact the environment.

WBC Library. The WBC library currently includes two implementations of
WBOSC as shown in Table [3| The first implementation, available via the WBOSC
plugin, implements the WBC algorithm described in Section [2} It takes the
constraint set, compound task, and robot model, and outputs an effort command
vector that minimizes the tasks errors subjected to constraint and task priority
specifications. The output of WBOSC is then sent to an effort-controlled robot
like Dreamer.

Name ‘ Application
WBOSC effort-controlled robots
WBOSC_Position|position-controlled robots

Table 3: The WBC library

The WBOSC_Position plugin works with position-controlled robots, which
require commands containing the desired positions, velocities, and optionally
gravity compensation torques. The main benefit is higher impedance due to the
ability to place the damping portion of the feedback controller closer to the
control plant, which results in lower communication latencies [26]. The imple-
mentation of WBOSC_Position actually extends WBOSC with an internal model
that uses the effort command generated by WBOSC to derive the expected joint
positions and velocities.

Robot Interface Library. The plugins in the robot interface library are
shown in Table @] The robot interfaces differ in the type of transport protocol

18 C.-L. Fok and L. Sentis

supported, which vary in their latency, bandwidth, reliability, level of abstrac-
tion, and whether they enable a distributed architecture where Controllt! runs on
a different machine than the robot hardware drivers. Shared memory [16] has the
lowest latency and highest bandwidth but does not support distributed opera-
tion, which all others support. The difference between RobotInterfaceR0STopic
and RobotInterfaceTCP is the level of software abstraction since ROS Topics
by default use TCP. Whereas TCP packets are defined using raw bytes, ROS
topic messages are defined by ROS’ message description language, which includes
higher level data types [27]. We provide RobotInterface plugins that are not
based on ROS topics for robots that cannot run ROS. In addition to the above,
specialized robot interfaces for Dreamer and Valkyrie exist but are not part of
the library since they are robot specific.

Name ‘Transport Protocol
RobotInterfaceR0STopic ROS topics
RobotInterfaceSharedMemory|shared memory
RobotInterfaceUDP UuDP
RobotInterfaceTCP TCP

Table 4: The robot interface library

To support simulation testing, Controllt! includes a corresponding Gazebo [15]
plugin for each of the robot interfaces in the library. This enables developers to
quickly switch between evaluating an application based on Controllt! in simula-
tion and on real hardware.

Clock Library. The plugins in the clock library are shown in Table
They support clocks based on RT- Preempt [25], ROS time [28], and C++’s
std: : chrono library [29]. In addition, a separate CLockRTAI is included in a sep-
arate package that enables use of the Real-Time Application Interface (RTAI) for
real-time operation [24]. In the future, this RTAI-based clock may be included
with the Controlit! Clock Library by using conditional compilation and RTATI’s
LXRT mode, which will enable the library to be compilable even on non-RTAI
platforms.

Name ‘Clock Type
ClockRTPreempt|RT-Preempt
ClockROS ROS Time

ClockChrono C++’s std: :chrono library
Table 5: The clock library

Parameter Binding Library. The plugins in the parameter binding library
are shown in Table[6] As shown in the table, Controllt! currently provides bind-

Controllt! 19

ings for ROS topics and shared memory transport layers. Two types of bindings
are provided for each transport layer, one input and one output. Input bindings
enable other nodes to change the values of parameters within Controllt!. Qutput
bindings enable other nodes to monitor the values of Controllt! parameters.

Name ‘Transport Protocol
InputBindingR0S |ROS Topic
OutputBindingROS|ROS Topic
InputBindingSM |Shared Memory
OutputBindingSM |Shared Memory

Table 6: The parameter binding library

5 Example Whole Body Control Configurations

The software architecture presented in Section [3| and the plugin libraries de-
scribed in Section [] provide sufficient flexibility and expressiveness to control
numerous multi-branched mobile robots with a large number of joints, like
humanoids, and make them do general tasks. This section describes several
whole body controller configurations used on actual robot hardware, specifically
Valkyrie and Dreamer.

Towards the end of September 2013, Valkyrie hardware and embedded sys-
tem development reached a point where a whole body controller could be tested
on the full robot. Till now, Controllt! was only tested with Valkyrie in sim-
ulation. For this test, a total of 29 joints were controlled by the whole body
controller. They include two six-DOF legs, a 3-DOF waist, and two 7-DOF
arms. The neck and finger joints were controlled by separate ROS nodes. To
reduce complexity and increase the probability of success, a relatively simple
whole body controller was used. Specifically, the constraint set consisted of two
FlatContactConstraint constraints, one for each foot, and the compound task
consisted of an InternalForcesTask and a JointPositionTask. Using this con-
figuration, Controllt! was able to make the robot stand, as shown in Figure
It was even able to withstand some light disturbances like gently pushing it from
behind or the side. At this time, the joint-level controllers implemented torque
controllers, so WBOSC was used as the whole body controller.

At the time, Valkyrie’s immediate objective was to compete in the DARPA
Robotics Challenge Trials in December 2013, which required that Valkyrie per-
form various locomotion and manipulation tasks. Given the tight deadline and
to enable problems with the lower body to be resolved in parallel with upper
body development (e.g., the ankle and knee joints tended to overheat), Controllt!
was configured to work with Valkyrie’s 14-DOF upper body to practice some of
the manipulation tasks. Figure shows Controllt! controlling Valkyrie’s up-
per body to turn an industrial valve, manipulate a fire hose, and pick up debris.

20 C.-L. Fok and L. Sentis

Fig.14: Two whole body controller configurations used on NASA’s Valkyrie
robot. (a) Controllt! is applied to Valkyrie’s full body and is configured
with a FlatContactConstraint for each foot, an InternalForcesTask, and
a JointPositionTask to make the robot stand. (b) Controllt! is applied to
Valkyrie’s upperbody and is configured with a FlatContactConstraint at the
hip, high priority CartesianPositionTask and 3DOrientationTask for each
wrist, and a low priority JointPositionTask to make the robot turn an indus-
trial valve, grab a fire hose, and lift debris.

Since the upper body was mounted on a fixed platform for these tests, the con-
straint set consisted of a single flat contact constraint assigned to the robot’s
hip. To facilitate manipulation capabilities, a more sophisticated compound task
was used. It consisted of two priority levels. The high priority level contained
four tasks: a CartesianPositionTask and a 3DOrientationTask for each of
the two wrists. The lower priority level contained a JointPositionTask that
defined the robot’s overall posture and prevented nondeterministic behavior due
to joint redundancy. For these tests, the joint-level controllers were modified to
be position controllers, meaning WBOSC_Position was used as the whole body
controller.

Controllt! has also been integrated with Dreamer, a 16-DOF humanoid up-
per body with series elastic joints (two 7 DOF arms and a 2-DOF torso). The
torso yaw joint was broken at the time of testing and thus disabled. The joints in
the right fingers, left gripper, and head were controlled by separate controllers in
different ROS nodes that use ROS topics to access the robot hardware via Con-

Controllt! 21

Fig.15: Controllt! is used on Dreamer. The constraint set consisted of a
FlatContactConstraint on the torso’s base and a CoactuationConstraint
on the two torso pitch joints, which are physically linked together in a 1:1 ratio.
The compound task consisted of a high priority CartesianPositionTask and
3D0rientationTask for each wrist, and a low priority JointPositionTask to
make the robot disassemble a product, perform a University of Texas Hook’em
Horns gesture, shake hands, wave, and store an object in a container.

trollt!’s Dreamer-specific RobotInterface. As shown in Figure Controllt!
was able to make Dreamer perform a variety of operations including a complex
product disassembly task that requires coordination of both end effectors, a Uni-
versity of Texas hook’em horns gesture, shake hands, wave, and place a product
in a container. All of these behaviors were accomplished using the Controllt!
configuration shown in Figure [2| Specifically, the constraint set consists of a
FlatContactConstraint on the torso’s base and a TransmissionConstraint
on the two torso pitch joints, which are physically linked together in a 1:1 ra-
tio. The compound task consists of a high priority CartesianPositionTask and
3D0rientationTask for each wrist, and a low priority JointPositionTask.

User »>{Application| o Pla.nner / > Controllt!
Interface | | Logic > Trajectory <2 :
Generator

{ 1 ! !

Fig. 16: The overall architecture used to implement the manipulation behaviors
on Valkyrie and Dreamer using Controllt!.

> Robot

22 C.-L. Fok and L. Sentis

The system architecture used to achieve the manipulation behaviors on Valkyrie
and Dreamer is shown in Figure From highest to lowest levels, the compo-
nents consist of a user interface, application logic, planners and trajectory gener-
ators, Controllt!, and finally the robot itself. The user interface is the component
that the user directly interacts with. For Valkyrie, the user interface consisted
of RViz [30] and Robot Task Commander [31]. For Dreamer, the user interface
consisted of RViz and a command line terminal. The application logic deter-
mines which behavior to perform. It does this by providing coarse-granularity
task-space (e.g., Cartesian space) waypoints. Planners and trajectory generators
take these coarse waypoints and generate fine-grained task-space waypoints. For
Valkyrie, the Reflexxes [32033] motion library was used. For Dreamer, cubic-
spline was used. The fine-grained trajectories are then passed to Controllt!,
which issues the appropriate joint-level commands to the robot to achieve the
desired behavior. State feedback from the robot is used by the other components
to detect and adjust for anomalies. Controllt! can handle small disturbances by
adjusting the joint effort commands. Larger disturbances can be handled through
replanning. Extreme disturbances can be handled by the application logic or user
intervention through the user interface.

6 Installation

Controllt! is open sourced under a LPGLv2.1 license. Currently it must be
downloaded as source code and manually compiled. By providing the source
code and compilation instructions, users have the flexibility to modify Con-
trollt! to work in other Linux distributions and versions of library dependencies.
For those who do not need to modify Controllt! and can work with Ubuntu
and ROS, work is underway to enable automated installation via Debian pack-
ages. For the latest installation instructions, consult Controllt!’s website, http:
//robotcontrolit.com [34]. The following instructions are for the source-based
installation.

The package management and build system used by Controllt! is catkin [35].
Installing and compiling Controllt! consists of setting up a ROS workspace,
adding the relevant git repositories, updating the workspace (this automatically
downloads the source code), installing RBDL, and then compiling the source
code.

Before proceeding, ensure the following dependencies are met. First, the tar-
get computer needs to run Ubuntu 12.04 or 14.04 and have ROS Hydro or Indigo.
If simulation testing is desired, Gazebo [I5] should be installed. Finally, Ubuntu
14.04 systems need to install yaml-cpp 0.3.0 [36] since its API is incompatible
with the default yaml-cpp 0.5.0.

Once the above-mentioned dependencies are met, Controllt! can be installed
and compiled. Follow the installation instructions on Controllt’s website at
http://robotcontrolit.com/installation. After installing Controllt!, com-
pile it by executing the following commands:

$ roscd; cd ..

http://robotcontrolit.com
http://robotcontrolit.com
http://robotcontrolit.com/installation

Controllt! 23

$ rm -rf build devel
$ cakin_make

Many of Controllt!’s demos use shared memory to communicate with the
simulation. To prevent needing to allocate this shared memory each time you
restart your computer (and having to type your sudo password), permanently
allocate sufficient shared memory by executing the command below.

$ rosrun shared_memory_interface \
set_shared_memory_size_persistent 536870912

This concludes the installation of Controllt!. Instruction on how to use Con-
trollt! is covered in the next section.

7 Usage

To demonstrate how to use Controllt! and integrate it into ROS applications,
several robot models and sets of configuration files are available. This section
describes how to run some examples using these files.

When testing a new WBC algorithm, configuration, or behavior, it is often
necessary to start simple and then gradually increase complexity. For example,
Controllt! was made to work with Dreamer by adding one joint at a time. Each
time a new joint was added, Controllt! was thoroughly re-tested and the feed-
back control gains were hand-tuned to ensure continuation of desired controller
behavior. Note that, in the future, automatic gain tuning tools can be developed
and used. For instance, gain tuning rules were recently developed for series elastic
actuators [37], which could be generalized for multi-input multi-output systems.
When integrating Controllt! with Valkyrie, each limb was physically detached
from the rest of the robot and tested separately before combining them into a

full humanoid.
(a) (b) (c) (d) (e)

Fig. 17: Primitive shape-based robot models used to test Controllt! that span
a wide range of complexity. (a) A 3-DOF lower leg, (b) a 6-DOF leg, (c) a
12-DOF biped, (d) a 10-DOF upper body, and (e) a 32-DOF full humanoid.
Incrementally increasing complexity is useful when testing new WBC algorithms,
configurations, and behaviors.

To support incremental testing, controlit_robot_models comes with a set
of primitive shape-based models that span a wide range of complexity from the

24 C.-L. Fok and L. Sentis

lower half of one leg to a full bipedal humanoid as shown in Figure Primitive
shapes are simpler than mesh-based models and thus help maintain reasonably
fast simulation times, which is helpful when debugging a new whole body control
algorithm or configuration.

The simplest model is shown in Figure[I7a]and is called stickbot_lowerleg_3dof.
To use Controllt! with this robot model in simulation, execute the following
commands:

$ roscd stickbot_lowerleg_3dof_controlit/models
$./generate_stickbot_lowerleg_3dof_controlit_urdfs.sh
$ roslaunch stickbot_lowerleg_3dof_controlit simulate_jpos.launch

The first command changes the current working directory. The second command
generates the Universal Robot Description Format (URDF) [38] file, i.e., robot
model, used by Gazebo. The models used by Controllt! and RViz [30] are gen-
erated automatically when executing the third command. After executing the
third command, Gazebo’s GUI appears with the robot loaded but in a paused
state, and another visualization of the robot in RViz also appears. Click on
the start button within Gazebo to start the simulation, and observe the robot
go into the configuration shown in Figure [I7a] The whole body controller has a
FlatContactConstraint assigned to the robot’s foot and a JointPositionTask
with target joint angles that enable the robot to remain upright. This constitutes
the simplest example of how to use Controllt!. Similar commands exist for the
more sophisticated robot models shown in Figure Full details are available
on Controllt!’s website [34].

Controllt!’s website also contains examples of how to use Controllt! to achieve
advanced whole body behaviors. One particularly useful example is the integra-
tion of Movelt! [I8] with Controllt!. Movelt! provides many useful functions
including planners based on the Open Motion Planning Library (OMPL) [39/40]
and a GUI for enabling users to specify goals using 6-DOF interactive mark-
ers [41]. Figure shows how Movelt! can be used to control the joint posi-
tions of stickbot_lowerleg 3dof and the Cartesian wrist positions of the 32-
DOF humanoid shown in Figure [17¢], which is called stickbot_humanoid_32dof.
As shown in Figure the integration is done by introducing an adapter
node called TrajectoryFollower that provides a ROS action server of type
control msgs::FollowJointTrajectoryAction and communicates with Con-
trollt! via ROS topics. It accepts action requests from Movelt!, generates a
trajectory from the robot’s current state to the requested state using a spline
algorithm, and transmits the points along this trajectory to Controllt!. It mon-
itors Controllt!’s progress via ROS topics and updates Movelt! using the ROS
actionlib communication interface [42].

Another example of using Controllt! is shown in Figure This figure shows
how the integration of a phase-space locomotion planner [43] with Controllt!
enables an early model of Valkyrie to walk up a flight of stairs in simulation. The
phase-space locomotion planner uses an inverted pendulum model to generate a
rough estimate of the robot’s dynamics when it swings its Center Of Mass (COM)

Controllt! 25

Follow)ointTrajectory Action

Trajectory <—> Controllt! —> Robot

Follower

¢ ¢ JointState Message %
(c)

Fig. 18: Movelt!’s GUI can be used to plan and issue motion trajectories for
Controllt! to follow. (a) Joint position control of stickbot_lowerleg 3dof. (b)
Cartesian position control of stickbot_humanoid_32dof. (c) The architecture
for integrating Controllt! and Movelt!.

Movelt! <>

sideways as it takes a step. As shown in the figure, the planner implements a
finite state machine consisting of eleven states. The first five states swings the
COM and moves one foot forward. The second six states swing the COM in
the opposite direction and moves the other foot to be alongside the first foot.
Controllt! is configured with a flat contact constraint on each foot that can be
enabled and disabled based on whether that foot is in contact with the ground.
The compound task consists of a high priority COMTask and a lower priority
JointPositionTask. The locomotion planner communicates with Controllt! via
ROS topics.

Controllt!’s website contains many additional examples of how Controllt! can
be used to enable ROS applications to achieve advanced whole body behaviors
on high-DOF multi-branched robots. Figure [20] shows some of these examples.
Due to space constraints, full details are omitted but are available on-line. As
shown in the figure, Controllt! works with numerous robot models including var-
ious versions of Dreamer, Valkyrie, and Atlas. Atlas is a hydraulically-actuated
humanoid made by Boston Dynamics (now owned by Google) and was provided
by the US government for the DARPA Robotics Challenge. In preparation for

26 C.-L. Fok and L. Sentis

Shift COM Center

(Initial)

Put Foot Down

COM Velocity
1004 QAN

Move Foot

s s
T

COM Position

L L n
[T R T

Put Foot Down

COM Swing Shift COM Center
Fig.19: An example of using a phase-space locomotion planner in conjunction
with Controllt! to make a bipedal robot walk up a flight of stairs in simulation.
Due to space constraints, only the feet of the bipedal robot are shown.

this challenge, Controllt! was used to make these robot models perform useful
tasks like stand, locomote, vehicle ingress, pick up debris, open a door, manipu-
late tabletop items, climb a ladder, hook up a hose, and use a hand drill. These
are only a subset of the behaviors enabled by Controllt!.

8 Conclusions

Controllt! is a high performance and highly flexible ROS-based framework that
enables whole body controllers and specifically those based on the Whole Body
Operational Space Control (WBSOC) formulation to be integrated into a ROS
application. It defines a software architecture and set of software abstractions
for instantiating and configuring whole body controllers, and integrating them
into a wide range of robots and applications. High performance with controller
execution cycles in the range of 0.5-2kHz is achieved by using multiple threads to
offload the amount of computations within the servo loop. This high frequency
feedback control enables real-time adaptation to unmodeled disturbances that
cannot be achieved by whole body planners. Software flexibility is achieved by
extensive use of dynamically loadable plugins. These plugins enable new whole
body control programming primitives like tasks and constraints to be introduced

Controllt! 27

Fig. 20: Additional examples of advanced WBC behaviors enabled by Controllt!
on a variety of robot models including various versions of Dreamer, Valkyrie, and
Atlas. Most were obtained in preparation for the DARPA Robotics Challenge
Trials. All images were taken from the Gazebo dynamics simulator.

into the system. Combinations of these primitives are structured into compound
tasks and constraint sets, resulting in levels of expressiveness that are sufficient to
achieve a wide range of whole body robot behaviors. The whole body controller
itself is a plugin, and to date, two forms of WBOSC are provided, one for torque-
controlled robots like Dreamer and another for position-controlled robots like
Valkyrie. Platform independence is achieved through robot interface and servo
clock plugins, which enables Controllt! to work with a variety of robot hardware
platforms and real-time frameworks like RTAI and RT-Preempt, respectively. To
date, Controllt! was tested on two hardware platforms, Valkyrie and Dreamer.
It was successfully used in combination with various planners and user interfaces
to perform numerous manipulation tasks. In simulation, Controllt! was demon-
strated to perform even more advanced behaviors like locomotion on numerous
additional robot models. In the future, we will work on further improving Con-
trollt! and integrating it with exterioceptive sensing capabilities that will enable,
for example, visual servoing [44]. We will also integrate Controllt! with software
processes that enable both greater autonomy (i.e., via human behavior modeling
and decision-making processes [45]), and ease of programming (e.g., via demon-
stration and reinforcement-based learning [46/47]).

Acknowledgments. We thank Gwendolyn Johnson and John D. Yamokoski for
helping with Controllt!’s initial implementation and the creation the example

28

C.-L. Fok and L. Sentis

robot models. We thank Polam Liu and Joshua James for integrating Movelt!
with Controllt!. We thank the entire NASA JSC DARPA Robotics Challenge
team for their help on integrating and using Controllt! with Valkyrie. Finally,
we would like to thank Advanced Automation Accumulator Limited, the US
National Robotics Initiative, and the Texas ETF for sponsoring our research.

References

10.

11.

12.

13.

IEEE Robotics and Automation Society. (2015) Whole body control technical
committee. [Online; accessed 13-February-2015]. [Online]. Available: http:
//www.ieee-ras.org/whole-body-control

. M. Mistry, J. Buchli, and S. Schaal, “Inverse dynamics control of floating base

systems using orthogonal decomposition,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on, May 2010, pp. 3406-3412.

W. Hyun, I.-H. Suh, and J. Lim, “Resolved motion control of redundant robot
manipulators by neural optimization networks,” in Intelligent Robots and Systems
’90. ‘Towards a New Frontier of Applications’, Proceedings. IROS ’90. IEEFE In-
ternational Workshop on, Jul 1990, pp. 627-634 vol.2.

A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal, “Momentum-
based balance control for torque-controlled humanoids,” CoRR, vol. abs/1305.2042,
2013. [Online]. Available: http://arxiv.org/abs/1305.2042

A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic program-
ming: Fast online humanoid-robot motion generation,” The International Journal
of Robotics Research, vol. 33, no. 7, pp. 1006-1028, 2014.

L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through hierarchical
control of behavioral primitives,” International Journal of Humanoid Robotics, pp.
505-518, 2005.

L. Sentis, “Synthesis and control of whole-body behaviors in humanoid systems,”
Ph.D. dissertation, Stanford University, 2007, supervised by Oussama Khatib.

L. Sentis, J. Park, and O. Khatib, “Compliant control of multicontact and center-
of-mass behaviors in humanoid robots,” IEEE Transactions on Robotics, vol. 26,
no. 4, pp. 483-501, 6 2010.

L. Sentis, J. Peterson, and R. Philippsen, “Implementation and stability analysis
of prioritized whole-body compliant controllers on a wheeled humanoid robot in
uneven terrains,” Autonomous Robots, vol. 35, no. 4, pp. 301-319, 2013.

N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K. Verdeyen, S. Don-
nan, J. Holley, J. Sanchez, V. Nguyen, L. Bridgwater, R. Berka, R. Ambrose,
C. McQuin, J. D. Yamokoski, S. Hart, R. Guo, A. Parsons, B. Wightman, P. Dinh,
B. Ames, C. Blakely, C. Edmonson, B. Sommers, R. Rea, C. Tobler, H. Bibby,
B. Howard, L. Nui, A. Lee, M. Conover, L. Truong, D. Chesney, R. P. Jr., G. John-
son, C.-L. Fok, N. Paine, L. Sentis, E. Cousineau, R. Sinnet, J. Lack, M. Powell,
B. Morris, and A. Ames, “Valkyrie: NASA’s first bipedal humanoid robot,” Journal
of Field Robotics, 10 2014.

C.-L. Fok. (2015) Dreamer product disassembly using Controllt! [Online; accessed
27-March-2015]. [Online]. Available: |https://youtu.be/I30CZW7lpGU

——. (2015) Human robot interactions using Controllt! [Online; accessed
27-March-2015]. [Online]. Available: https://youtu.be/uagk5brDXWw

B. Jacob and G. Guennebaud. (2015) The eigen project. [Online; accessed
13-February-2015]. [Online]. Available: http://eigen.tuxfamily.org/

http://www.ieee-ras.org/whole-body-control
http://www.ieee-ras.org/whole-body-control
http://arxiv.org/abs/1305.2042
https://youtu.be/I3OCZW7lpGU
https://youtu.be/uagk5brDXWw
http://eigen.tuxfamily.org/

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Controllt! 29

Martin Felis. (2015) Rigid body dynamics library. [Online; accessed 13-February-
2015]. [Online]. Available: http://rbdl.bitbucket.org/

Open Source Robotics Foundation. (2015) Gazebo simulator website. [Online;
accessed 13-February-2015]. [Online]. Available: http://gazebosim.org/

Robot Operating System. (2015) ROS shared memory interface. [Online;
accessed 13-February-2015]. [Online]. Available: |https://bitbucket.org/jraipxg/
ros_shared_memory_interface

——. (2015) ROS control. [Online; accessed 13-February-2015]. [Online]. Available:
http://wiki.ros.org/ros_control

Toan A. Sucan and Sachin Chitta. (2015) Movelt! [Online; accessed 13-February-
2015]. [Online]. Available: http://moveit.ros.org/

Robot Operating System. (2015) ROS SMACH task-level architecture. [Online;
accessed 26-March-2015]. [Online]. Available: http://wiki.ros.org/smach

——. (2015) ROS topic. [Online; accessed 27-March-2015]. [Online]. Available:
http://wiki.ros.org/Topics

——. (2015) ROS topic. [Online; accessed 27-March-2015]. [Online]. Available:
http://wiki.ros.org/Services

——. (2015) ROS pluginlib. [Online; accessed 13-February-2015]. [Online].
Available: http://wiki.ros.org/pluginlib

——. (2015) ROSParam. [Online; accessed 13-February-2015]. [Online]. Available:
http://wiki.ros.org/rosparam

Dipartimento Di Scienze e Tecnologie Aerospaziali del Politecnico di Milano.
(2015) Real-time application interface. [Online; accessed 13-February-2015].
[Online]. Available: https://www.rtai.org/

L. Fu and R. Schwebel. (2015) Rt-preempt. [Online; accessed 29-March-
2015]. [Online]. Available: https://rt.wiki.kernel.org/index.php/RT_PREEMPT_
HOWTO

Y. Zhao, N. Paine, K. Kim, and L. Sentis, “Stability and performance limits
of latency-prone distributed feedback controllers,” Industrial Electronics, IEEE
Transactions on, vol. PP, no. 99, pp. 1-1, 2015.

Robot Operating System. (2014) ROS msg. [Online; accessed 29-June-2015].
[Online]. Available: http://wiki.ros.org/msg

——. (2015) ROS Time. [Online; accessed 02-April-2015]. [Online]. Available:
http://wiki.ros.org/roscpp/Overview/Time

CPP Reference. (2015) Date and time utilities. [Online; accessed 2-April-2015].
[Online]. Available: http://en.cppreference.com/w/cpp/chrono

Robot Operating System. (2015) ROS RViz. [Online; accessed 3-April-2015].
[Online]. Available: http://wiki.ros.org/rviz

S. Hart, P. Dinh, J. Yamokoski, B. Wightman, and N. Radford, “Robot task com-
mander: A framework and ide for robot application development,” in Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on,
Sept 2014, pp. 1547-1554.

T. Kroger, On-Line Trajectory Generation in Robotic Systems, ser. Springer Tracts
in Advanced Robotics. Berlin, Heidelberg, Germany: Springer, jan 2010, vol. 58.
T. Kroeger. (2015) Rigid body dynamics library. [Online; accessed 03-April-2015].
[Online]. Available: http://www.reflexxes.com/

C.-L. Fok. (2015) Controlit! website. [Online; accessed 13-February-2015]. [Online].
Available: https://robotcontrolit.com/

Robot Operating System. (2015) Catkin. [Online; accessed 2-April-2015]. [Online].
Available: http://wiki.ros.org/rosbuild

http://rbdl.bitbucket.org/
http://gazebosim.org/
https://bitbucket.org/jraipxg/ros_shared_memory_interface
https://bitbucket.org/jraipxg/ros_shared_memory_interface
http://wiki.ros.org/ros_control
http://moveit.ros.org/
http://wiki.ros.org/smach
http://wiki.ros.org/Topics
http://wiki.ros.org/Services
http://wiki.ros.org/pluginlib
http://wiki.ros.org/rosparam
https://www.rtai.org/
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
http://wiki.ros.org/msg
http://wiki.ros.org/roscpp/Overview/Time
http://en.cppreference.com/w/cpp/chrono
http://wiki.ros.org/rviz
http://www.reflexxes.com/
https://robotcontrolit.com/
http://wiki.ros.org/rosbuild

30

36

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

C.-L. Fok and L. Sentis

J. Beder. (2015) yaml-cpp. [Online; accessed 2-April-2015]. [Ounline]. Available:
https://github.com/jbeder/yaml-cpp

Y. Zhao, N. Paine, and L. Sentis, “Feedback parameter selection for impedance
control of series elastic actuators,” in Humanoid Robots (Humanoids), 2014 14th
IEEE-RAS International Conference on, Nov 2014, pp. 999-1006.

Robot Operating System. (2014) Urdf. [Online; accessed 14-February-2015].
[Online]. Available: http://wiki.ros.org/urdf

Kavraki Laboratory. (2015) Open motion planning library. [Online; accessed
4-April-2015]. [Online]. Available: http://ompl.kavrakilab.org/

I. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning Library,”
IEEE Robotics € Automation Magazine, vol. 19, no. 4, pp. 72-82, December 2012,
http://ompl.kavrakilab.org.

Robot Operating System. (2015) ROS interactive markers. [Online; accessed
3-April-2015]. [Online]. Available: http://wiki.ros.org/rviz/Tutorials/Interactive%
20Markers%3A %20Getting%20Started

——. (2015) ROS actionlib. [Online; accessed 4-April-2015]. [Online]. Available:
http://wiki.ros.org/actionlib

D. Kim, Y. Zhao, G. Thomas, and L. Sentis, “Accessing whole-body
operational space control in a point-foot series elastic biped: Balance on split
terrain and undirected walking,” ArXiv preprint, 2015. [Online]. Available:
http://arxiv.org/abs/1501.02855

S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo control,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 5, pp. 651-670, Oct
1996.

J. G. Trafton, L. M. Hiatt, A. M. Harrison, F. Tamborello, S. S. Khemlani, and
A. C. Schultz, “ACT-R/E: An embodied cognitive architecture for human robot
interaction,” Journal of Human-Robot Interaction, vol. 2, pp. 30-55, 01/2013 2013.
M. Cakmak and A. L. Thomaz, “Eliciting good teaching from humans for machine
learners,” Artificial Intelligence, vol. 217, no. 0, pp. 198 — 215, 2014.

B. Akgun, M. Cakmak, K. Jiang, and A. Thomaz, “Keyframe-based learning from
demonstration,” International Journal of Social Robotics, vol. 4, no. 4, pp. 343-355,
2012.

https://github.com/jbeder/yaml-cpp
http://wiki.ros.org/urdf
http://ompl.kavrakilab.org/
http://ompl.kavrakilab.org
http://wiki.ros.org/rviz/Tutorials/Interactive%20Markers%3A%20Getting%20Started
http://wiki.ros.org/rviz/Tutorials/Interactive%20Markers%3A%20Getting%20Started
http://wiki.ros.org/actionlib
http://arxiv.org/abs/1501.02855

	ControlIt! - A ROS-Based Whole Body Control Middleware
	Introduction
	Overview of Whole Body Operational Space Control
	Software Architecture
	Core Classes
	Parameter Binding
	Multi-Threaded Architecture

	Plugin Libraries
	Example Whole Body Control Configurations
	Installation
	Usage
	Conclusions

