
SYNTHESIS AND CONTROL OF WHOLE-BODY BEHAVIORS IN

HUMANOID SYSTEMS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Luis Sentis

July 2007

c© Copyright by Luis Sentis 2007

All Rights Reserved

ii

Abstract

A great challenge for robotic systems is their ability to carry on complex manipulation and

locomotion tasks while responding to the changing environment. To allow robots to oper-

ate in human environments there is a strong need to develop new control architectures that

can provide advanced task capabilities and interactive skills. These architectures must be

effective in coordinating whole-body behaviors for various control objectives while comply-

ing with balance stability, contact stance, and other dynamic constraints. In addition, to

facilitate the integration of robots in human environments, it is desirable for their motions

and task behaviors to be compatible with those of humans. In this thesis, we present a con-

trol methodology for the synthesis of realtime whole-body control behaviors in humanoid

systems. The work is presented in three parts.

First, we establish mathematical foundations that characterize the kinematic and dy-

namic behaviors of task and postural criteria under balance and contact stability constraints.

We identify the dynamic behavior of postural tasks operating in the null space of operational

tasks and we develop task-oriented controllers in postural space. These controllers are used

to accomplish secondary goals or to optimize postural criteria without affecting priority

tasks. Based on task and posture control decompositions we define recursive structures

with multiple priority levels. These structures allow us to create controllers for all aspects

of motion while ensuring that critical tasks are accomplished first. Exploiting prioritization,

we address the control of dynamic constraints as priority tasks and we project operational

tasks and postural criteria in the null space of all acting constraints. This strategy prevents

lower priority tasks from violating the acting constraints.

Second, we develop a variety of controllers to address the different aspects of the robot’s

motion. We propose position and force controllers to control the various task effectors

of the robot. We use potential fields to handle reactively dynamic constraints such as

balance stability, joint limits, obstacle avoidance, and self collisions. We develop posture

controllers to enhance overall performance in terms of available workspace, resemblance to

iv

human poses, and optimization of actuation effort. Third, we tackle the synthesis of com-

plex whole-body behaviors. To facilitate the creation of behaviors we develop control and

behavioral abstractions that encapsulate behavior representation and action mechanisms.

These abstractions are designed to be instantiated and coordinated by high level decision

and perceptual processes.

The methods proposed throughout this dissertation provide numerous control tools and

behavioral abstractions that will allow robots to deal effectively with the complexity and

dynamism of human environments.

v

Acknowledgements

I would like to first thank my adviser and friend Oussama Khatib. Not only I had excellent

tutoring from him but I enjoyed many interesting conversations over good sushi and espresso.

Thanks to Jean Claude Latombe who invited me to present my control system when I first

developed it and gave me the opportunity to discuss it. Thanks to Stephen Boyd whose

courses on convex optimization taught me how to formulate new ideas using mathematical

tools. Thanks to Scott Delp for introducing me to biomechanics and giving me feedback on

my research. Thanks to Claire Tomlin whose courses on control theory gave me a strong

research background. Thanks to Santiago Silvestre, my old time adviser at the Polytechnic

University of Catalonia for his support on entering the Ph.D. program. Thanks to David

Cheriton whose input allowed me to design software abstractions for our robotic simulator.

Thanks to our lab administrators Hoa Nguyen, Sarah Lee, and late Jutta McCormick.

Thanks to Peche Turner, CS department manager at Stanford, for her help on administrative

issues.

Thanks to my labmates Oliver Brock, Alan Bowling, Kyong Sok Chang, Francois Conti,

Emel Demircan, Vincent Desapio, Sam Hamner, Bob Holmberg, Jin-sung Kwon, Stan Ley,

Charity Lu, Jae-Heung Park, Irina Pashcenko, Anya Petrovskaya, Diego Ruspini, Dong-Jun

Shin, Constantinos Stratelos, Peter Thaulaud, Philip Tsai, Sriram Viji, James Warren, and

Mike Zinn, many of whom became good friends.

Thanks to Taizo Yoshikawa and Yuji Haikawa members of Honda Co. who gave me the

perspective for the application of our control system in the real humanoid robot. Thanks

to Shane Chang, Chief Scientist at Honda R&D in Mountain View for coordinating efforts

between our lab at Stanford and Honda labs in Japan. Thanks to Hector Gonzalez-Banos

for showing me the facilities at Honda R&D in Mountain View and for discussing research

issues.

Thanks to Javier Minguez, Pierre Olivier Latour, Federico Barbagli, Tine Lefebvre,

Vincent and Karine Padois, Nicolas Mansard, Irene Sardellitti, Steve Burion, Rui Cortesao,

Edwardo Fukushima, Xiowei Ma, Laurence Meylan, Herman Bruyninckx, Benoit Dagon,

vi

Nicolas Tournier, Clara Kim, Mai Nguyen, Elena Pacchierotti, Roland Philippsen, Kazuhito

Yokoi, and Nicolas Turro who came to visit our lab and spent time working with me and

discussing various research topics.

Thanks to Gordon Cheng, James Kuffner, Marko Popovic, Roy Featherstone, and Jorge

Moraleda for their insights and support on research issues.

An old professor of mine once told me ”finish any endeavor with a long list of friends”.

During these years at Stanford I have followed his advice. I would like to thanks Stefan

Harmeling, Dana Porrat, John Townend, Ulrich Barnhoefer, Ofer Levi, Onn Brandman,

Mattan Erez, Matteo Slanina, Vincent Vanhoucke, Drago Anguelov, Alessandra Lanzara,

Rachel Kolodny, Dominik Zumbuhl, Laurence Melloul, Esra Inan, Momo Waguri, Ana

Moral, Laila Mattos, Alicia Meuret, Deborah Berebichez, Minja Trklja, Greg Jefferis, Mor

Naaman, Sylvia Smulin, Cesar Sanchez, Atosa Ghadimi, Michael Lustig, Yuval Nov, Ofer

Levi (at Ginzton labs), Relly Brandman, Ana Pedros, Joyce Noah, Oren Shneorson, Pablo

Molinero, Roland Wolkovicz, Alex Smola, Sebastian Brion, and Nurit Jugent for their friend-

ship. Thanks also to Kerstin Johnsson, Persefoni Kyritsi, Victor Araman, and Angel Victor

de Miguel with whom I spent good times. Thanks to Radu and Tanya Auf Der Heyde, Ali

Tore, Michal and Doron Gal, Martin and Tanja Mai, Thomas and Myraida Finkbeiner for

their friendship. Thanks to Javier Cardona and Celine Monget, my lovely friends from

whom I have received much affection during these years. Thanks to John Smolowe for his

advice. Thanks to Priscila Spolyar for her friendship. Thanks to Daniel, Diana, and Dylan

Canyon Damer-Malinowski for their friendship during recent years.

I never forget Luis Vallescar, Anna Viladas, Toni Escude, Alex Herrera , Monica Aubert,

Rafa Prat, Sara Cabot, Theo de Andres, Teresa Bas, Lucas Carne, Susana Junyent, Tomas

Dualde, Jose Maria Llaurado, and Marcos Portabella.

During my Ph.D. years I have received much affection and support from my parents

Maria Angeles Alvarez and Luis Sentis, my sisters Eva and Ana Sentis, and my nieces

Paula and Arantxa Carasa. Thanks to Clara and Claudia Moller, Isabel Alvarez, Claudio

Moller, Maria Rosa Alvarez and Silvia Prim for their love and support. Thanks to Alberto

Aguirre and Maru Diamante for their love and support. Thanks to my parents in law Suzi

and Burhan Ben-Ezra Kosekaya for their love and example on family issues. Thanks to

Patricia and Bea Wolf, and Luis Alabart for their love.

At the beginning of my Ph.D., I had an eye on this pretty and interesting girl walking

on campus. She is now part of my family and a strong support on many aspects of my life

as well as in my career. This thesis is dedicated to my wife Adela Ben-Yakar-Sentis and our

wonderful son Dekel for bringing me a lot of happiness.

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Motivation and Background . 1

1.1.1 Control of Humanoid Systems . 2

1.1.2 Synthesis of Whole-Body Behaviors 4

1.2 Objectives and Approach . 4

1.3 Chapter Summary . 6

2 Basic Representations for Whole-Body Control 8

2.1 Representation of Multi-Legged Robots . 10

2.1.1 Kinematic and Dynamic Models . 10

2.1.2 Impact of Supporting Contacts . 16

2.2 Operational Space Control . 18

2.2.1 Task Kinematics Under Supporting Constraints 20

2.2.2 Task Dynamics and Control . 26

2.2.3 Characterization of the Residual Task Redundancy 31

2.3 Control of Internal Forces . 34

2.4 Examples . 35

2.4.1 Balance Stability . 35

2.4.2 COG Vertical Control . 37

3 Prioritized Multi-Task Control 39

3.1 Representation of Whole-Body Behaviors 41

3.1.1 Multi-Task Decomposition . 42

viii

3.1.2 Constrained Kinematics . 47

3.2 Control Structures . 48

3.2.1 Prioritization Versus Aggregation . 48

3.2.2 Prioritized Dynamics and Control 53

3.2.3 Recursive Redundancy . 56

3.2.4 Task Feasibility . 58

3.2.5 Overview of Control Strategies . 61

3.3 Examples . 63

3.3.1 Tracking the Contour of an Object 64

3.3.2 Walking with Posture Variations . 67

3.3.3 Dynamic Walking: First Step . 68

4 Posture Control 73

4.1 Posture Control Structure . 75

4.2 Task Based Postures . 76

4.2.1 Example: Posture Control to Avoid an Overhead Obstacle 80

4.3 Criteria Based Postures . 81

4.3.1 Imitation of Human Poses . 81

4.3.2 Example 1: Upright Posture Attractor 86

4.3.3 Example 2: Upright Posture Control with Contact Task 88

4.3.4 Example 3: Posture Behavior with Interactive Task 89

4.3.5 Example 4: Posture Switching To Optimize Reachable Workspace . 89

4.3.6 Effort Minimization . 92

4.3.7 Example 1: Effort Minimization while Standing Up 94

4.3.8 Example 2: Effort Minimization with Interactive Task 94

4.4 Posture Stiffness Control . 97

4.4.1 Examples: Response to Force Perturbations 98

5 Realtime Handling of Dynamic Constraints 101

5.1 Control Structure to Handle Constraints . 104

5.1.1 Constraint Prioritization . 104

5.1.2 Realtime Response to Dynamic Constraints 108

5.1.3 Constraint-Consistent Task Control 110

5.1.4 Task Feasibility Under Constraints 112

5.2 Types of Constraints and Control Approaches 114

5.2.1 Support Constraints . 115

ix

5.2.2 Balance Constraints . 117

5.2.3 Obstacle Avoidance . 117

5.2.4 Joint Limit Constraints . 120

5.2.5 Self Collision Avoidance . 122

6 Whole-Body Control of Movements in Midair 127

6.1 Basic Equations of Motion and Physics of Free Space 129

6.1.1 Joint Space Dynamics . 129

6.1.2 Analysis of the System’s Momentum 131

6.1.3 Constrained Kinematics . 133

6.2 Operational Space Control . 135

6.2.1 Task Dynamics and Control . 135

6.2.2 Task Feasibility . 137

6.3 Prioritized Multi-Task Control . 139

6.3.1 Representations and control structures 140

6.3.2 Task Feasibility . 145

6.3.3 Posture Dynamics and Control . 146

6.4 Examples . 150

6.4.1 Forward Jumping . 150

6.4.2 Kick in Mid Air . 153

6.4.3 Twist’N’Jump . 153

7 Realtime Synthesis of Whole-Body Behaviors 155

7.1 Composition and Instantiation of Low-Level Behaviors 157

7.1.1 Control Primitives . 158

7.1.2 Task Creation . 159

7.1.3 Task Execution . 164

7.2 Composition and Instantiation of Whole-Body Behaviors 164

7.2.1 Action Primitives . 166

7.2.2 Whole-Body Behaviors . 167

7.2.3 Behavior Feasibility . 168

8 Concluding Remarks 170

8.1 Summary of Results and Contributions . 170

8.1.1 Whole-Body Control Methods . 170

8.1.2 Reactive Handling of Dynamic Constraints 173

x

8.1.3 Synthesis of Whole-Body Behaviors 173

8.1.4 Implementation Details . 173

8.2 Discussion . 175

8.3 Summary of Publications . 175

8.4 Future Work . 176

A Mathematical Proofs 178

xi

List of Tables

3.1 Screwgun manipulation . 44

3.2 Task decomposition for walking behavior 46

3.3 Prioritized hierarchy . 50

6.1 Volleyball task decomposition . 140

6.2 Task hierarchy . 141

7.1 Library of control primitives . 160

xii

List of Figures

2.1 Multi-legged robots . 10

2.2 Kinematic representation of a legged robot 12

2.3 Non-fixed branching representation . 13

2.4 Reaction forces on the feet . 14

2.5 Whole-body walking behavior . 19

2.6 Dependency between base and joint displacements 22

2.7 Kinematic singularities due to support constraints 26

2.8 Contact forces during task interactions 27

2.9 Control of static balance . 36

2.10 Control of the COG’s height . 38

3.1 Manipulation behavior with screwgun 43

3.2 Simultaneous locomotion and manipulation behavior 45

3.3 Conflict between task goals . 52

3.4 Task feasibility under prioritization . 59

3.5 Condition number of prioritized inertias 60

3.6 Tracking the contour of an object . 65

3.7 Gaze control . 66

3.8 Posture attractors . 67

3.9 Walking behavior wit posture variations 68

3.10 Walking phases . 69

3.11 Torques during walking motion . 70

3.12 Dynamic walking (first step) . 72

4.1 Postural DOFs . 76

4.2 Goal-based posture control . 78

4.3 Posture control for avoiding overhead obstacle 80

xiii

4.4 Captured human poses . 82

4.5 Upright pose attractor . 87

4.6 Upright pose under contact . 88

4.7 Posture behavior with interactive task 90

4.8 Posture switching . 91

4.9 Human effort . 92

4.10 Effort minimization while standing up 95

4.11 Effort minimization under hand control 96

4.12 Saturated joint velocities during effort minimization 97

4.13 Posture stiffness control . 99

5.1 Joint limits control concept . 105

5.2 Handling of joint limits on a humanoid 106

5.3 Constraint handling potentials . 108

5.4 Example on task feasibility . 113

5.5 Constrained behavior with foot on pedestal 116

5.6 Obstacle avoidance concept . 118

5.7 Example on collision avoidance . 119

5.8 Task feasibility under collision avoidance 121

5.9 Example involving multiple joint limit constraints 123

5.10 Example involving head orientation under joint limits 124

5.11 Example on self collision avoidance . 126

6.1 Straddle jump . 128

6.2 Task feasibility in free space . 138

6.3 Multi task free space behavior . 139

6.4 Forward jumping behavior . 150

6.5 Torque values during jumping . 152

6.6 Jumping forward with kick . 153

6.7 Twist ’n’ jump behavior . 154

7.1 Connection between behavioral and execution layers 157

7.2 Execution layer . 158

7.3 Control primitives . 159

7.4 Task decomposition . 161

7.5 Robot model . 162

xiv

7.6 Relative importance of task categories 163

7.7 Operation of the movement layer . 165

7.8 Instantiation of movements . 167

7.9 Action sequencing . 168

7.10 Handling of infeasible tasks . 169

xv

Chapter 1

Introduction

A humanoid is a multipurpose robot designed to perform human-like manipulation and

locomotion tasks aiming to assist the human. Let us control it! The goal of this dissertation

is to develop a methodology for the control of humanoid robots in dynamic environment.

1.1 Motivation and Background

Humanoids could one day become our personal helpers extending human capabilities in a

variety of fields. Anthropomorphism allows humanoids to share our same environments and

maybe soon do similar chores than we do. However, high mechanical complexity as well

as limitations on control and perceptual capabilities prevents their further application into

our environments.

In a near future, humanoids should be able to perform human-level tasks in dynamic

environments. They should be able to manipulate objects, move around, and respond to

the environment in similar ways than humans do or even better. Through cooperation, they

should be able to perform sophisticated tasks such as building large structures or operating

complex machinery.

The characterization and control of humanoid systems has an impact beyond robotics. It

can provide the support to understand biological functions of the human body (biomechan-

ics), tools to design machines and spaces where humans operate (ergonomics), simulation

environments to study the effects of musculoskeletal alterations (surgical simulation) and

to design and study rehabilitation systems, and support to synthesize realistic computer

animations.

This dissertation will explore control issues in humanoid systems and methods for the re-

altime synthesis of whole-body behaviors, aiming to extend the frontiers of robotics research

1

CHAPTER 1. INTRODUCTION 2

and related fields.

1.1.1 Control of Humanoid Systems

Techniques for the control of humanoid systems derive from methods originally developed

for industrial manipulators, mostly based on inverse kinematic techniques. However, inverse

kinematic techniques pose important limitations because they require the generation of joint

trajectories hindering contact interactions and complicating balance control among some

problems. In response to these limitations, we will develop here a whole-body control

framework implementing torque control strategies for advanced contact and non-contact

interactions.

We will also address the development of control strategies to respond to the changing

environment. Currently, this is an open research area where little progress has been done

when addressing humanoid systems. One of the reasons is because responding quickly to

dynamic events while maintaining balance and contact stability needs to be addressed in

the force domain instead of relying on trajectory generation. Realtime response to dynamic

constraints will occupy one chapter of this dissertation. In the 1980s dynamic control

strategies for the control of robotic manipulators were first developed (Khatib 1980; Khatib

1987). The control framework that we will develop throughout this dissertation will be

largely based on these techniques.

Handling physical constraints during movement execution has received much attention

over the past years, with most of the work focused on collision free movement for manip-

ulator control and mobile navigation. Although we will discuss in detail novel collision

avoidance techniques for humanoid systems we will also focus on new techniques to respond

in realtime to a variety of internal and external constraints.

Collision free movement has been addressed both in the context of reactive control

and in the context of motion planning (Pieper 1968; Nilsson 1969; Udupa 1977; Khatib

and Maitre 1978). In (Khatib 1986), a potential field approach was proposed. Potential

field techniques will be extensively used and extended throughout this dissertation to handle

motion constraints in humanoid systems. A short list of relevant work on reactive techniques

include (Liegois 1977; Maciejewski and Klein 1985; Khatib 1986; Brooks 1986; Siciliano and

Slotine 1991; Kwon et al. 1991; Espiau et al. 1992; Marchand and Hager 1998; Sentis and

Khatib 2006). Work on relaxation of precomputed paths, one of the possible applications

of reactive control, can be found in (Krogh 1984; Buckley 1986; Quinlan 1994; Brock et al.

2002). Motion planning for robot navigation, manipulation, and more recently whole-body

control has received much attention with some of the most important work found in (Nilsson

CHAPTER 1. INTRODUCTION 3

1969; Udupa 1977; Moravec 1980; Chatila 1981; Latombe 1991; Laumond and Jacobs 1994;

Lozano-Perez 1981; Kuffner et al. 2003; Minguez and Montano 2004; Hauser et al. 2006).

Humanoid systems differ from fixed-base or mobile manipulators in that they are sup-

ported by the ground and need to maintain balance stability. To characterize contact con-

straints we represent humanoids as free floating systems with six passive DOFs attached

to their base. The action of the gravity causes reaction forces to appear on the robot’s

feet or on the supporting structures. Once in contact, the robot’s motion is similar to that

of parallel structures (Stewart 1965) and multigrasp systems (Kerr and Roth 1986; Cole,

Hauser, and Sastry 1989). We will use some of the concepts developed for parallel systems

to control humanoids in contact with the ground. To study the response of humanoids

under supporting contacts we will characterize contact dynamics and establish dynamic

constraints at contact points. Much work has been focused on the control of underactu-

ated systems especially in the context of space robotics. Some of this work can be found in

(Arai and Tachi 1991; Umetami and Yoshida 1989; Dubowsky and Papadopoulos 1993; Jain

and Rodriguez 1993). We will combine concepts from contact dynamics and underactuated

systems to develop operational space control strategies for humanoids under contact and

balance constraints. Complementary control structures for movements in mid air will also

be developed.

Although balance control has been extensively studied in multilegged systems (Raibert

1986; Hirai et al. 1998; Harada et al. 2004), we will propose here controllers that provide

direct manipulation of COG accelerations, providing a flexible framework to implement

static and dynamic balancing strategies.

To create complex behaviors, humanoids need to simultaneously accomplish multiple

control objectives. For instance, locomotion, manipulation, balance, and posture stance,

will need to be simultaneously controlled. We will dedicate one chapter to the development

of a multi-task control framework. To decouple the control of high priority tasks from

the control of lower priority tasks and to avoid conflicts between tasks or with the acting

constraints we will develop a prioritized control approach that will ensure that high priority

tasks are first accomplished and will provide the support to measure task feasibility at

runtime. Prioritization was first proposed by (Hanafusa, Yoshikawa, and Nakamura 1981)

in the context of inverse kinematics control. In this dissertation we will extend prioritization

to operational space control. We will also characterize task feasibility under prioritized

control. Previous work on multi-task control include (Nakamura et al. 1987; Siciliano and

Slotine 1991). More recently, in (Baerlocher and Boulic 1998) a multitask control approach

was developed for inverse kinematic control of computer generated characters.

CHAPTER 1. INTRODUCTION 4

1.1.2 Synthesis of Whole-Body Behaviors

It is our objective to provide control methods and supporting entities for the synthesis of

autonomous behaviors in human environments. In this context, we have designed behavioral

entities that could serve as the main units of action connecting to high level controllers.

These entities encapsulate task decomposition and movement sequencing, abstracting the

desired actions. For instance, we have designed behavioral abstractions that can be used to

implement goal-oriented walking, manipulation, or jumping behaviors. Instead of relying on

preprogrammed motions, our behavioral entities are designed to execute goals at runtime

issued by perception systems (e.g. Petrovskaya, Park, and Khatib 2007) or teleoperation

devices (e.g. Conti and Khatib 2005). Moreover, our entities are designed to monitor and

respond to dynamic events such as contact interactions or moving obstacles.

Synthesizing whole-body behaviors in humanoid systems requires the coordination of

multiple low-level tasks. To support the instantiation and coordination of tasks our behav-

ioral abstractions encapsulate desired action mechanisms. These abstractions are designed

to connect with high level controllers and decision systems that feed task goals and trigger

the sequencing between movement states.

Related work on behavior synthesis include behavior-based control systems (Brooks

1986) and learning and imitation using movement primitives by (Arbib 1981; Billard 2000;

Mataric 2002; Schaal et al. 2003).

1.2 Objectives and Approach

The objective of this dissertation is to develop control and behavioral methods that will

serve as a platform to synthesize autonomous behaviors on humanoid systems for operations

in human environments.

To synthesize complex behaviors in dynamic environments, our approach will consist on

implementing multiple controllers to deal simultaneously with manipulation, locomotion,

postural, and constraint handling tasks. Our controllers will implement operational space

control strategies (Khatib 1987) unifying the control of motion and forces while accounting

for the physical dynamics of the robotic system.

To characterize the overall mobility of humanoids in space we will represent them as

branching structures with respect to a free floating base. The equations of motion of the

overall system will be expressed in terms of these representations allowing controllers to

coordinate whole-body motions to accomplish the desired task goals. Whole-body repre-

sentations and control of branching mechanisms were previously discussed in (Russakov

CHAPTER 1. INTRODUCTION 5

et al. 1995). We will develop similar representations for our robotic systems that will allow

controllers to simultaneous accomplish multiple task goals while characterizing the residual

movement redundancy.

To avoid the computation of trajectories, our methods will rely on the implementation

of potential fields. Potential fields can be mapped into control forces and subsequently into

control torques, which can be directly sent to the actuators. Throughout this dissertation

we will develop potential field techniques to control manipulation, locomotion, balance, and

postural behaviors.

To provide the support for operations in dynamic environments we will develop con-

trol strategies to handle internal and external constraints in realtime. Contact constraints

will be directly integrated within kinematic and dynamic representations, allowing all mo-

tions to be automatically compliant with supporting contacts. Balance, obstacle avoidance,

self-collision avoidance, and joint limits will be handled reactively using potential fields.

Reactive handling of constraints will allow humanoids to accomplish tasks in dynamically

changing environments. Although we will focus on reactive techniques, our methods could

be extended to path modification such as in elastic strips (Brock and Khatib 2002). To

deal with dynamic constraints such as contacts, joint limits, and moving obstacles, we will

develop prioritized control strategies (Nakamura, Hanafusa, and Yoshikawa 1987) that will

prevent operational tasks from violating the acting constraints. Our control framework will

be design to respond to dynamic constraints without interrupting the global task. How-

ever, when constraints become too severe, manipulation and locomotion tasks may not be

feasible. To deal with these situations we will design methods to measure task feasibility at

runtime and modified the robot’s behavior accordingly.

To control balance stability we will develop operational space methods to control COG

accelerations providing the support to implement static or dynamic balance strategies

(Vukobratovic and Borovac 2004; Harada et al. 2004).

Besides controlling operational tasks under contact and balance constraints, we will

develop control methods for the control of postural behavior. Postural behavior is especially

important in humanoids because they are highly mobile systems. We will characterize

postural motion by identifying the motion manifold that is compliant with operational

tasks and the acting constraints and we will use postures to optimize desired criteria or to

track whole-body poses. In particular, we will describe control methods for pose imitation

and effort minimization.

CHAPTER 1. INTRODUCTION 6

To support the creation of autonomous behaviors in complex environments we will de-

velop behavioral abstractions that will encapsulate task decomposition and movement se-

quencing. These entities will be designed to implement complex movements with a minimal

set of external parameters. In the future, these abstractions will be used in combination

with perception and decision processes. We will develop task primitives that will describe

task representations and control policies. Behavioral primitives will be created through the

aggregation and coordination of sets of tasks. Instead of relying on trajectory generation,

task primitives will be designed to accomplish arbitrary goals at runtime describing the

motion or contact forces of the different parts of the robot’s body.

The control framework we will describe throughout this dissertation is meant to control

real humanoid robots. Although, we have used simulated humanoid models to validate our

methods we are currently implementing our results into a real humanoid robot. We expect

to show results soon.

1.3 Chapter Summary

This dissertation is organized as follows. In Chapter 2 we will present fundamental concepts

for whole-body control of humanoid robots. We will first introduce a representation of

multilegged robots as free floating branching systems and will characterize the effect of

contact constraints. We will study the equations of motion of constrained systems and use

them to develop operational space control strategies (Khatib 1987) to control arbitrary task

objectives under supporting constraints.

In Chapter 3 we will develop control methods to simultaneous control multiple task

points under balance and support constraints using operational space control strategies. To

deal with conflicting scenarios between tasks, we will develop prioritized control techniques

where lower priority tasks will operate in the residual redundancy of higher priority tasks.

Task prioritization will prevent coupling of lower priority tasks into higher priority tasks

and will provide support to determine task feasibility under the acting constraints.

In Chapter 4 we will characterize postural behavior under multi-task control. The resid-

ual space of motion will be used to enhance overall performance and to imitate captured

human poses. Using postures we will be able to accomplish desired postural goals or opti-

mize desired criteria without interrupting the global task.

In Chapter 5 we will present reactive methods to handle internal and external con-

straints. We will first develop novel control structures where operational and postural tasks

will operate in the null space of all acting constraints. We will also develop constraint

CHAPTER 1. INTRODUCTION 7

handling tasks based on potential fields that will allow humanoids to respond in realtime

to dynamic constraints.

In Chapter 6 we will extend whole-body control for behaviors in free space. We will

characterize the equations of motion of free space focusing on the conservation of momenta.

Using these representations we will develop multi-task controllers similar to the controllers

develop from ground based behaviors. We will also analyze the feasibility of operational

tasks and the control of postural tasks during movements in free space.

In Chapter 7 we will develop abstractions to support the synthesis of whole-body be-

haviors. We will first develop control abstractions for the instantiation and aggregation of

operational tasks. Using these abstractions, we will develop behavioral entities that will

encapsulate task decomposition and movement sequencing. These abstractions will be de-

signed to connect to perception and decision processes with the aim to support the creation

of emergent behaviors.

Chapter 2

Basic Representations for

Whole-Body Control

In view of the structural differences between humanoid systems and fixed manipulators, the

goal of this chapter is to develop kinematic, dynamic, and control representations that will

serve as the basic elements for the development of a whole-body control framework. This

components will be presented as an extension of the operational space control formulation

(Khatib 1987) for humanoid systems. Operational space control will allow us to implement

a variety of control strategies for effective interactions with the physical environment and

for advanced control of balance stability.

One of the fundamental differences between humanoids and robotic manipulators is

their detachment from the ground. Gravity forces push the humanoid’s body against the

ground, providing a supporting platform to move in all directions. The robot’s movement

is therefore not only determined by joint positions but also by the position and orientation

of its body with respect to an inertial frame of reference. At the same time, reaction forces

created between contact points and the ground are used for balance and locomotion. One

of the goals of this chapter will be to characterize the mobility of humanoids in free space

and the impact of supporting contacts at all levels.

A unique characteristic of humanoids is their high mobility. Humanoids are equipped

with thirty or more moving joints allowing them to simultaneously coordinate manipula-

tion, locomotion, and postural tasks while responding to the changing environments. This

high mobility means that the mechanism is redundant with respect to operational tasks,

or equivalently that operational tasks can be accomplished with different postural arrange-

ments. To characterize the task’s redundancy we will identify here the residual space of

8

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 9

motion (i.e. the posture space) that simultaneously complies with the desired tasks and the

supporting contacts. In Chapter 4 we will use this characterization to enhance movement

performance in posture space while executing complex tasks.

To control humanoid systems we need to simultaneously coordinate multiple operational

tasks. There is a vast amount of work addressing the control of manipulation tasks on

industrial manipulators. To control the robot’s end effector, inverse kinematic solutions

have been extensively used (Pieper 1968; Roth, Rastegar, and Sheinmann 1973). However,

to engage in effective contact interactions dynamic control strategies were developed in the

early 80s. Dynamic control was first proposed by (Khatib 1980) and subsequently extended

into the operational space formulation (Khatib 1987). The main goal of this chapter will

be to extend the operational space formulation to control operational tasks in humanoid

systems.

An integral task during manipulation and locomotion behaviors is to maintain balance

stability. The framework we will develop in this chapter will ensure that stable balance is

being maintained and that internal forces between limbs in contact are properly controlled.

We will study the kinematics and dynamics of the robot under contact constraints and pro-

pose operational space controllers to control balance as well as arbitrary task points. We

will also discuss analogies between multi-legged systems, parallel systems, and underactu-

ated systems. As a result, we will develop constraint-consistent mappings that will be used

to project task space forces into actuator torques while complying with all acting contact

constraints. Related work on constraint kinematics and dynamics can be found in (Fichter

and McDowell 1980; Merlet 1996).

Task redundancy has been addressed since the early 1980s in the context of robotic

manipulators under inverse kinematic control (Hanafusa, Yoshikawa, and Nakamura 1981;

Nakamura, Hanafusa, and Yoshikawa 1987). For instance, a 7 DOF manipulator will be

redundant with respect to a 5-dimensional task (e.g. controlling the end-effector’s position

and two orientation coordinates). In the previous example the manipulator would have

2 DOFs of redundancy. In the case of a humanoid the redundant space is an order of

magnitude larger! A humanoid with 30 DOFs would have 25 DOFs of redundancy for the

previous task. One of our goals in this chapter will be to characterize the redundant space

with respect to operational tasks. This redundancy will be later exploited to simultaneously

control manipulation, locomotion, balance, and postural tasks.

This chapter is organized as follows. In Section 2.1 we will discuss the representation of

multi-legged robots at the kinematic and dynamic levels. In Section 2.2 we will develop an

operational space controller and characterize the residual task redundancy.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 10

2.1 Representation of Multi-Legged Robots

A fundamental characteristic of humanoid robots is their freedom to move anywhere in space

under the supporting ground. Legged locomotion (see Figure 2.1) allows robots to virtually

reach any place that humans can reach. In this section we will study the kinematics and

dynamics of multi-legged robots under ground supports.

Figure 2.1: Multi-legged robots: The humanoid robots on the left side are Asimo and
P3 by Honda Co. The robot on the right side is Titan IV developed by the Tokyo Institute
of Technology (Hirose’s lab).

2.1.1 Kinematic and Dynamic Models

To create kinematic and dynamic representations under supporting constraints we will rep-

resent here multi-legged robots as free floating systems in contact with the ground and

analyze the impact of the associated constraints and the resulting reaction forces.

Non-Fixed Branching Kinematic Model

To describe the movement of the robot in space we designate one of its body structures

as the root base which can be arbitrarily displaced with respect to an inertial frame of

reference. We describe the movement of the base according to its position and orientation in

cartesian space. The root base is used to describe robot kinematic and dynamic quantities

by exploiting the overall branching structure. In Figure 2.2 we show a depiction of a

kinematic representation of a humanoid. R0 represents an inertial frame or reference (the

global frame), and Rb represents the frame or reference at the root base, in our case the hip

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 11

structure. The position and orientation of the robot in space is measured as the relative

position and orientation of the root base with respect to the inertial frame, i.e.

xb =

xb,p

xb,r

. (2.1)

Here xb,p and xb,r represent respectively the position and orientation of the base with respect

to global coordinates. The position is normally represented in Cartesian coordinates, i.e.

xb,p =
(

x, y, z
) T

, while the orientation is normally represented using Euler quaternion

parameters, i.e. xb,r =
(

λ1, λ2, λ3, λ4

) T
, or Euler angles, i.e. xb,r =

(

ψ, θ, φ
) T

. The

main advantage of using Euler parameter representations is that they do not suffer from

representation singularities. For a discussion on coordinate representations see (Khatib

2004). The spatial velocity of the base can be expressed in terms of linear and angular

velocities, i.e.

ϑb =

vb

ωb

ǫR6, (2.2)

where vb and ωb correspond to linear and angular velocities respectively.

In (Chang and Khatib 2000) a representation of ground-fixed branching mechanisms

(i.e. robots with multiple limbs) and a collection of efficient algorithms for the computation

of kinematic and dynamic quantities were presented. As mentioned above, in humanoids

we need to use a non-fixed branching representation. However, the same fast algorithms

developed by Chang can be applied to non-fixed systems by creating branching represen-

tations that include additional passive spherical and linear DOFs attached to the robot’s

base representing the 6 DOFs of free motion in space (see Figure 2.3).

The humanoid system is therefore treated as a holonomic system with n actuated joints

and 6 passive DOFs describing the position and orientation of its base.

Definition 2.1.1 (Robot generalized coordinates). The robot position and orientation

in space and the position of its joints can be fully described by the set

{xb, q} = {xb,p, xb,r, q1, q2, . . . , qn}, (2.3)

where the vector xb represents the coordinates of the base link and the n×1 vector q represents

actuated joint positions.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 12

Figure 2.2: Kinematic representation of a legged robot: The free moving base is
represented as a virtual spherical joint in series with three prismatic virtual joints. Reaction
forces appear at the contact points due to gravity forces pushing the body against the
ground.

Dynamic Model

Reaction forces appear on the supporting surfaces due to gravity forces and center of gravity

(COG) accelerations. These reaction forces or contact constraints provide the means for

stability, locomotion, and postural stance.

Using Lagrangian formalism and expressing the system’s kinetic energy in terms of the

individual link kinetic and potential energies we can derive the following equation of motion

describing robot dynamics under supporting contacts

A

ϑ̇b

q̈

+ b+ g + J T
s Fr =

0

Γ

, (2.4)

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 13

Figure 2.3: Non-fixed branching representation: The white and red nodes represent
actuated links. The base node is unactuated with 6 passive DOFs describing its position
and orientation with respect to the inertial frame of reference.

where A is the (6 + n) × (6 + n) inertia matrix, b and g are (6 + n) × 1 vectors of Corio-

lis/centrifugal and gravity forces respectively, and Γ is the n×1 vector of actuation torques.

Notice that the actuation vector in the right hand side (RHS) of the previous equation has

six zeros corresponding to the six passive DOFs associated with the robot’s unactuated

base. Moreover, the term J T
s Fr corresponds to the projection of reaction forces acting on

the feet into forces acting in the passive and actuated DOFs and Js corresponds to the

Jacobian associated with all supporting links. The joint coordinate vector of all supporting

links is

xs ,

xs(rf)

xs(lf)

, xs(i) ,

xs(i),p

xs(i),r

, (2.5)

where the subscripts rf and lf stand for right and left foot respectively, xs(i) is the position

and orientation vector of the center at mass of the i-th supporting link, and xs(i),p and

xs(i),r are position and orientation representations of the i-th supporting link respectively.

The spatial velocity (Featherstone 1987) at the support points can therefore be expressed

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 14

as

ϑs ,

ϑs(rf)

ϑs(lf)

= Js

ϑb

q̇

, ϑs(i) ,

vs(i)

ωs(i)

ǫ R12, (2.6)

where ϑs(i) corresponds to the spatial velocity of the i-th supporting link, vs(i) and ωs(i)

are linear and angular velocities of the i-th supporting link respectively, and Js is the basic

Jacobian (Khatib 2004) associated with all supporting links.

Fr corresponds to the sum of reaction forces and moments projected into link center of

masses (see Figure 2.4), i.e.

Fr ,

Fr(rf)

Fr(lf)

ǫR12. (2.7)

We can further express the above reaction forces in terms of linear forces and moments as

Fr(i) ,

fr(i)

mr(i)

ǫR6, (2.8)

where fr(i) is the vector of linear forces and mr(i) is the vector of moments of the i-th

supporting link. Each of these components can be further expressed as

Figure 2.4: Reaction forces on the feet: Linear reaction forces have components due
to the action of the gravity field G and due to vertical COG accelerations, and tangential
components due to horizontal COG accelerations. These forces create reaction moments as
well between the gravity centers on the feet and the center of pressure points.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 15

fr(i) = ffriction(i) + fgravity(i), (2.9)

mr(i) = fr(i) ×
(

xs(i) − xcop(i)

)

. (2.10)

Here the vector of linear forces has been obtained by adding frictional and gravity terms

and the vector of moments has been obtained by calculating the cross product between

linear forces projected in the link’s COM and the distance between the link’s COM and its

center of pressure (COP).

Reaction forces on the feet translate into forces acting on the robot’s passive and actu-

ated DOFs and can be expressed according to the principle of virtual work as

Γs , J T
s Fr ǫR(6+n), (2.11)

where Γs is the vector of forces acting on both passive and actuated DOFs.

The following expression reveals the contribution from the passive chain (the virtual

joints describing the movement of the base) and the actuated joints on the legs (see Fig-

ure 2.6),

Js =

Vb,s(rf) Js(rl) 0 0(upper)

Vb,s(lf) 0 Js(ll) 0(upper)

ǫ R12×(6+n), (2.12)

where

Vb,s(i) ,

I p̂b,s(i)

0 I

(2.13)

is a transformation matrix which maps angular movement of the base to linear velocities

at the i-th support point (see discussion on macro/mini structures in Khatib 2004), pb,s(i)

corresponds to the distance vector between the i-th support link and the robot’s base, p̂b(s(i)

is the cross product operator associated with the position vector, Js(rl) and Js(ll) are block

matrices corresponding to displacements of joints on the right and left legs respectively

with respect to the robot’s base (see Figure 2.6), and the term 0(upper) represents the

null contribution of upper body motions to movement on supporting points. Therefore,

the above support Jacobian can be decomposed into passive and actuated components

corresponding to base and robot DOFs, i.e.

Js =

Jsb Jsr

 (2.14)

The generalized inertia matrix shown in (2.4) can also be expressed in terms of passive

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 16

and actuated components as follows

A =

Abb Abr

AT
br Arr

ǫR(6+n)×(6+n), (2.15)

where Abb corresponds to the inertia felt at the base, Arr corresponds to the joint space

inertia of the robot, and Abr corresponds to the inertial weight between accelerations of the

base and the resulting torques on the actuated joints. Notice that Abb is independent on

the position and orientation of the robot in space, as there is no physical linkage connecting

the robot’s base to the inertial frame of reference. In fact, the entire inertia matrix A is

independent of the global position and orientation of the robot in space.

2.1.2 Impact of Supporting Contacts

Supporting contacts at the feet, and in general in any other place in the robot’s body provide

the support to realize advanced behaviors. Therefore, they affect the robot’s motion at the

kinematic, dynamic, and control levels. Supporting contacts should be distinguished from

manipulation interactions because their role is indirect, i.e. to provide stability above the

ground.

As shown in Equation (2.4), reaction forces against the ground translate into forces

acting on passive and actuated DOFs. With the premise that stable balance is maintained

and that internal forces are controlled to keep the feet flat against the ground, no relative

movement occurs between contact points and the supporting ground. Therefore, relative

velocities and accelerations at the contact points are equal to zero. The following set of

non-holonomic constraints express this condition (Yamane and Nakamura 2003)

ϑs =

ϑs(rf)

ϑs(rf)

= 0, ϑ̇s =

ϑ̇s(rf)

ϑ̇s(lf)

= 0. (2.16)

We first analyze the impact of the above constraints on the robot’s equation of motion.

Let us first derive the equation of motion at the supporting links. By right-multiplying

(2.4) by the term JsA
−1 and considering the equality

ϑ̇s = Js

ϑ̇b

q̈

+ J̇s

ϑb

q̇

, (2.17)

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 17

we obtain the following equation of motion for the supporting links,

ϑ̇s − J̇s

ϑb

q̇

+ JsA
−1(b+ g) + JsA

−1J T
s Fr = JsA

−1S T Γ. (2.18)

Definition 2.1.2 (Actuation matrix). The matrix

S ,

0n×6 In×n

 (2.19)

is an actuation matrix selecting actuated DOFs and is used to express the RHS of (2.4) in

a compact form, i.e.

06×1

Γ

= S T Γ. (2.20)

Solving (2.18) for the constraint ϑ̇s = 0 we obtain an estimate of the reaction forces in

terms of the actuation torques, i.e.

Fr = J
T

s S
T Γ − J

T

s (b+ g) + ΛsJ̇s

ϑb

q̇

. (2.21)

where

Λs , (JsA
−1J T

s)−1 (2.22)

is the apparent inertia at the supporting links, and

Js , A−1J T
s Λs (2.23)

is the dynamically consistent generalized inverse of Js. Using the above equation in (2.4)

we obtain the following constrained equation of motion

A

ϑ̇b

q̈

+N T
s (b+ g) + J T

s ΛsJ̇s

ϑb

q̇

= N T
s S

T Γ. (2.24)

Definition 2.1.3 (Dynamically consistent null space of supporting contacts). The

matrix

Ns , I − JsJs, (2.25)

is referred to as the dynamically consistent null-space matrix (Khatib 1987) of Js and defines

a generalized space of motion with no acceleration or force coupling effects on the supporting

links.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 18

Let us consider the following properties of Ns:

Property 2.1.1 (Idempotence of Ns). The following equality holds

(

Ns

)2
= Ns. (2.26)

Proof. The above equality can be proven by using (2.25) and the general property of gen-

eralized inverses JsJsJs = Js.

Property 2.1.2 (Commutation of Ns with respect to A−1). The following equalities

hold

NsA
−1 = A−1N T

s = NsA
−1N T

s . (2.27)

Proof. It is easy to prove thatNsA
−1 = A−1N T

s by using (2.25) and (2.23). Then the follow-

ing equality holds, NsA
−1N T

s =
(

Ns

)2
A−1 which using (2.26) becomes equal to NsA

−1.

2.2 Operational Space Control

To realize complex behaviors, a humanoid needs to simultaneously control multiple task

points. For example to create the walking behavior shown in Figure 2.5 the robot needs to

control the position or acceleration of the COG, the position and orientation of the swinging

foot (in the case of single support stance), and the orientation of the head. Other tasks

such as hand manipulation could also be simultaneously controlled. The residual DOFs are

used to control the robot’s posture with the methods we will describe in Chapter 4.

To characterize the overall behavior, we consider the vector of task points (see Figure 2.5)

x =

x1

x2

...

xN

, (2.28)

where each xi describes the position and orientation of the i-th task point and N is the

number of task points.

To execute a desired movement, each task point is controlled to accomplish a specific

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 19

Figure 2.5: Whole-body walking behavior: Figure (b) depicts a walking sequence from
an actual experiment. Figure (a) shows the task points, xi, that need to be actively con-
trolled to achieve the desired behavior. This includes COG control (shown with a black and
white symbol), position and orientation of the swinging foot (shown with a blue cross), and
orientation of the head (also shown with a blue cross). The stable foot acts as a support
constraint. Posture DOFs are shown with green lines and arrows.

goal gi. The aggregation of goals can be characterized by the following vector

g =

g1

g2

· · ·
gN

. (2.29)

These goals correspond to desired position, force, or acceleration vectors, i.e.

gi =

xdes(i), if position task

fdes(i), if force task
(

xdes(i), fdes(i)

)

, if hybrid task

ades(i), if acceleration task

(2.30)

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 20

In this chapter, we will consider first the control of simple behaviors, such as maintain-

ing balance stability. Static or dynamic balance can be achieved by controlling the robot’s

horizontal COG components. On a humanoid equipped with 30 DOFs, the control of the

horizontal COG will leave 28 degrees of additional movement redundancy. This redundancy

will be mathematically characterized here and later exploited to control the robot’s pos-

ture. In the next chapter we will consider the control of complex behaviors involving the

simultaneous coordination of multiple low-level tasks.

2.2.1 Task Kinematics Under Supporting Constraints

When a single or multiple feet or hands are in contact with supporting surfaces, the robot’s

motion is constrained by the acting reaction forces. In the previous section we charac-

terized whole-body kinematic and dynamic representations under supporting constraints.

Based on these representations, it is the objective of this section to characterize and control

operational tasks under supporting constraints.

An arbitrary task point can be represented by its position and orientation with respect

to the global frame of reference, i.e.

x =

xp

xr

, (2.31)

where xp is a position representation and xr is an orientation representation. Position and

orientation representations can vary depending on the type of task to be implemented as

explained in (Khatib 2004). Moreover, a subset of these coordinates can be considered for

tasks involving fewer than 6 DOFs such as in reaching or looking tasks.

Task velocities can be expressed using arbitrary representations by considering linear

and angular velocities of the task point and transforming them to the desired representation,

i.e.

ẋ = E(x)

v

ω

, (2.32)

where E(x) is a representation transformation matrix and is described in (Khatib 2004) and

v and ω are linear and angular velocities of the task point respectively. The instantaneous

kinematics of arbitrary task points is expressed in terms of base and joint velocities as

ẋ = J

ϑb

q̇

, J = E(x)J0, (2.33)

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 21

where J is the task Jacobian in task coordinates and can be derived from the basic task

Jacobian J0 as explained in (Khatib 2004). When multiple task points are aggregated, i.e.

x =

x1

x2

...

xN

, xi =

xi,p

xi,r

, (2.34)

where xi,p and xi,r correspond to the position and orientation of task points (or a subset of

these coordinates), the combined Jacobian matrix is equal to

J =

J1

J2

...

JN

. (2.35)

Constrained Kinematics

Because the robot is constrained by the supporting ground, the position of its base can be

derived from the position of actuated joints alone. In turn, the position of arbitrary task

points can be obtained from joint positions only. Let us study this dependency more closely.

The velocity constraint on the supporting feet, i.e. ϑs = 0 (2.16), means that base and joint

velocities are not arbitrary. They are quantities that lie in the null space of the support

Jacobian, leading to the following expression

ϑ∗b
q̇∗

, Ns

ϑb

q̇

, (2.36)

where ϑb and q̇ are arbitrary vectors of base and joint velocities, ϑ∗b and q̇∗ are the corre-

sponding constrained quantities, and Ns is the dynamically consistent null-space (Khatib

1987) of Js as shown in (2.25). Moreover, constrained joint velocities alone can be obtained

by multiplying the above equation by the actuation matrix S, i.e.

q̇∗ = SNs

ϑb

q̇

. (2.37)

When the robot is in single support stance, the matrix SNs is full rank and therefore q̇∗

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 22

can take arbitrary values. However, when the robot is in double support stance or multi-

limb stance SNs is not full rank and as a result q̇∗ cannot take arbitrary values. This is due

to the presence of close loops imposed by the limbs in contact. Solving the above equation,

any vector of base and joint velocities can be decomposed into a component that depends

on joint velocities only and a component that lies in the residual null space of motion, i.e.

ϑb

q̇

= SNsq̇
∗ +

(

I − SNsSNs

)

ϑb,0

q̇0

, (2.38)

where SNs is a support consistent generalized inverse of SNs that will be derived in a few

lines, I −SNsSNs is a null space basis associated with the matrix SNs, and ϑb,0 and q̇0 are

arbitrary vectors of base and joint velocities operating in the null space of SNs.

Figure 2.6: Dependency between base and joint displacements: The Jacobian Js(b)

— normally equal to the identity matrix — corresponds to displacements of the robot’s base,
while Js(rl) and Js(ll) correspond to displacements of the right and left legs respectively.
Because of support constraint on the feet, base displacements can be represented as a
function of joint displacements on the right or left legs.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 23

Using (2.38) in (2.36) leads to the equality

ϑ∗b
q̇∗

= SNsq̇
∗, (2.39)

where we have used the equalities NsSNs = SNs that will be shown in (2.43) and Ns(I −
SNsSNs) = 0 which can be derived using (2.43) and (2.44). In Figure 2.6 we depict

a constrained scenario illustrating the dependency between base displacements and joint

displacements justifying the above expression.

Lemma 2.2.1 (Support consistent generalized inverse of SNs). A generalized in-

verse of SNs that fulfills the velocity constraint ϑs = 0 is the dynamically weighted general-

ized inverse of SNs with weight equal to A−1, i.e.

SNs , A−1
(

SNs

)T(

SNsA
−1(SNs)

T
)+
. (2.40)

(Remark: In single support phase, SNs is full rank and therefore the above pseudo-inverse

becomes an inverse.)

Proof. To show that the above expression is consistent with supporting constraints we use

it in (2.39) and apply the resulting expression in (2.6), yielding the desired cancelation of

terms, i.e.

ϑs = Js

ϑ∗b
q̇∗

= JsA
−1N T

s S
T
(

SNsA
−1(SNs)

T
)+
q̇∗ = 0, (2.41)

where we have used the equality JsA
−1N T

s = 0. This last equality can be demonstrated

using the expression of Ns given in (2.25).

Definition 2.2.1 (Constrained projection of A−1). The following expression appearing

in (2.40) is a constrained projection of the robot’s inverse inertia matrix

Φ∗ , SNsA
−1(SNs)

T . (2.42)

The term SNs will reappear when formulating operational space controllers. Two in-

teresting properties are associated with this term.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 24

Property 2.2.1 (Invariance of SNs with respect to Ns). The following equality holds

Ns (SNs) = SNs. (2.43)

Proof. This equality can be demonstrated by using the expression of Ns given in (2.25) and

the expression of SNs given in (2.40).

Property 2.2.2 (Correspondence between SNs and Ns). The following equality holds

SNs SNs = Ns. (2.44)

Proof. This equality can be demonstrated by using (2.37) in (2.39), which leads to the

equality

ϑ∗b
q̇∗

= SNs SNs

ϑb

q̇

, (2.45)

where ϑb and q̇ are arbitrary velocities. Comparing the above expression with (2.36) leads

to the desired equality.

When using (2.39), task velocities can be expressed in terms of joint velocities alone, i.e.

ẋ = J

ϑ∗b
q̇∗

= J SNs q̇
∗. (2.46)

Definition 2.2.2 (Support consistent reduced Jacobian). The term JSNs in the

above equation, acts as a constrained Jacobian mapping joint velocities into task velocities

and we will refer to it using the symbol

J∗ , JSNs. (2.47)

This expression is motivated by the dependency of base velocities on joint velocities, as

shown in Figure 2.6.

Definition 2.2.3 (Support consistent full Jacobian). The following constrained ex-

pression determines the mapping between arbitrary base and joint velocities to task velocities

Jt|s , JNs. (2.48)

Here we use the subscript t|s to indicate that the task Jacobian is projected in the space

consistent with supporting constraints. The above Jacobian appears when we apply the

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 25

constrained velocity vector (2.36) into (2.33), yielding the equality

ẋ = J

ϑ∗b
q̇∗

= JNs

ϑb

q̇

, (2.49)

indicating that Jt|s projects arbitrary base and joint velocities into quantities that are con-

sistent with supporting constraints.

Property 2.2.3 (Correspondence between Jt|s and J∗). The following equalities hold,

Jt|s = J∗(SNs), (2.50)

J∗ = Jt|s(SNs). (2.51)

Proof. The above equalities can be demonstrated using (2.43) and (2.44).

Kinematic Singularities

Using (2.47) we can study the kinematic singularities of a given task representation under

supporting constraints. In fact, the constrained Jacobian J∗ reflects both structural and

contact singularities whereas the full Jacobian J reflects only structural singularities.

In Figure 2.7 we study an example on kinematic singularities. A task associated with

the COG’s cartesian position is controlled using operational space methods that will be

described later in this chapter. We assume balance is properly maintained and the robot’s

feet are stable against the ground. The COG’s position and its Jacobian can be expressed

as

x =
1

M

n
∑

i=1

mixcog(i) ǫR3, J =
1

M

n
∑

i=1

miJcog(i) ǫR3×(6+n), (2.52)

where M is the robot’s total mass, mi and xcog(i) are the mass and COG position of i-th

link, and Jcog(i) is the Jacobian of the same link. To study task singularities we consider

the condition number of the constrained Jacobian (2.47) of the COG

κ(J∗
cog) ,

σ1(J
∗
cog)

σ3(J∗
cog)

, J∗
cog , JcogSNs, (2.53)

where σi(J
∗
cog) is the i-th singular value of the constrained Jacobian, as well as the condition

number of the full Jacobian κ(Jcog). Data on both quantities is shown in Figure 2.7. When

the legs reach full stretch, the COG’s vertical position cannot move further upwards. As

a result, the task’s constrained Jacobian becomes singular and its condition number grows

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 26

Figure 2.7: Kinematic singularities under support constraints: This image corre-
spond to an example where the robot’s COG is controlled to move from position (a) to
position (b). When moving towards position (b) the robot’s legs reach maximum stretch.
As a result the COG’s constrained Jacobian becomes singular. In contrast, the condition
number of the COG’s full Jacobian stays invariant because it does not account for contact
constraints.

towards infinity. In contrast, the full Jacobian does not loose rank because it does not

reflect the singularities due to contact constraints on the feet.

2.2.2 Task Dynamics and Control

We consider here the control of a single task point. For instance, in Figure 2.8 we depict a

robot performing a contact task involving inserting screws in a wooden structure. Reaction

forces on the robot’s feet and on the tip of the screwgun appear due to gravity effects,

COG accelerations, and task contacts. While feet reaction forces are used for support and

balance, task forces are carefully controlled to insert screws.

The robot’s dynamic equation now includes an additional term involving reaction forces

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 27

Figure 2.8: Contact forces during task interactions: This image depicts reaction forces
appearing at the bottom of the robot’s feet and on the tip of the screwgun during a contact
task. While tool forces are carefully controlled to insert screws, feet reaction forces are used
for support and balance.

at the tip of the tool, i.e.

A

ϑ̇b

q̈

+ b+ g + J TFc + J T
s Fr = S T Γ, (2.54)

where J is the Jacobian at the task point (in this case the tip of the screwgun), Fc is a

6 × 1 vector of reaction forces acting on the task point, Js is the joint Jacobian associated

with the supporting links, and Fr is the sum of reaction forces on these links. Similarly to

(2.21), we solve the above equation of motion for Fr using the support constraint ϑ̇s = 0,

yielding the equality

Fr = J
T
s S

T Γ − J
T
s J

TFc − J
T
s (b+ g) + ΛsJ̇s

ϑb

q̇

. (2.55)

Notice that the reaction forces on the feet depend not only on control torques but also on

contact forces acting at the tip of the tool.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 28

Using the above equality in (2.54) yields the equation

A

ϑ̇b

q̈

+N T
s (b+ g) + J T

t|sFc − J T
s ΛsJ̇s

ϑb

q̇

= (SNs)
T Γ, (2.56)

where we Jt|s is the constrained Jacobian presented in (2.48). Notice that in the above

equation the reaction forces on the tool’s tip are projected by the constrained Jacobian Jt|s,

due to feet stability constraints.

Definition 2.2.4 (Dynamically consistent generalized inverse of Jt|s). The following

expression is referred to as the dynamically consistent generalized inverse of Jt|s

J t|s , A−1J T
t|sΛt|s, (2.57)

where

Λt|s , (Jt|sA
−1J T

t|s)
−1, (2.58)

is the task space inertia matrix under supporting constraints. Because J t|s is used to obtain

the equation of motion in task space as we will show in (2.59) and defines the dynami-

cally consistent null space of motion shown in (2.77) we will refer to it as the dynamically

consistent generalized inverse (Khatib 1987) of Jt|s.

The tasks’ equation of motion can be obtained by left multiplying (2.56) by the transpose

of the dynamically consistent generalized inverse of the constrained Jacobian, J
T
t|s yielding

the following task space equation of motion

Λt|sẍ+ µt|s + pt|s + Fc = J
T
t|s (SNs)

T Γ, (2.59)

where µt|s and pt|s are Coriolis/centrifugal and gravity terms with the following expressions

µt|s , J
T

t|sb−
(

Λt|sJ̇t|s + J
T

t|sJ
T
s ΛsJ̇s

)

ϑb

q̇

, (2.60)

pt|s , J
T
t|sg, (2.61)

where we have used (2.49) and its derivative. Moreover, to obtain (2.59) we have used the

following property:

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 29

Property 2.2.4 (Invariance of J t|s with respect to Ns). The following equality holds

NsJ t|s = J t|s. (2.62)

Proof. This equality can be demonstrated by using the expression of J t|s given in (2.57),

the equality NsA
−1 = A−1N T

s shown in (2.27), and the property (Ns)
2 = Ns shown in

(2.26).

Theorem 2.2.1 (Operational space control). The following torque vector yields linear

control of task forces and accelerations

Γ = (SNs)
T J T

t|s F, (2.63)

or equivalently

Γ = J ∗TF, (2.64)

where we have used the equality J∗ = Jt|s(SNs) shown in (2.51).

Proof. In the above equations, F is a vector of control forces in task space. Applying either

of the above expressions to (2.59) and using the equality SNsSNs = Ns shown in (2.44)

and the equality NsJ t|s = J t|s shown in (2.62) leads to the following task space equation of

motion

Λt|sẍ+ µt|s + pt|s + Fc = F, (2.65)

which defines a linear relationship between control forces, contact forces, and task acceler-

ations.

Choosing F appropriately we can implement a variety of control strategies such as hybrid

position/force control or acceleration control.

Corollary 2.2.1 (Motion control). In the absence of contact interactions (i.e. Fc = 0),

the following control vector will yield linear control of task accelerations

F = Λt|sa
ref + µt|s + pt|s, (2.66)

where aref is a reference acceleration vector.

Proof. It is straightforward to verify that applying the above control force to (2.65) will

yield the linear behavior

ẍ = aref . (2.67)

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 30

Choosing appropriately aref we can implement a variety of motion control strategies.

Alternatively, we can implement hybrid position force control strategies by choosing the

control force

F = Λt|sΩma
ref + ΩfF

ref + µt|s + pt|s (2.68)

where the projection matrices Ωm and Ωf are used to split the force vector into motion and

force components (i.e. tangential or normal to the contacting surface), and aref and F ref

are control policies in acceleration and force space respectively. For more details on hybrid

position/force control see (Khatib 1987) and (Featherstone, Thiebaut, and Khatib 1999).

Multi-Task Control

When multiple tasks are simultaneously controlled as part of a complex behavior, the joint

tasks’ equation of motion is equivalent to (2.59), however the quantities correspond to

multiple task points as shown in (2.34) and (2.35). Therefore, the overall constrained

Jacobian corresponds to the aggregation of individual constrained terms, i.e.

Jt|s ,

J1|s

J2|s
...

JN |s

, Ji|s , JiNs, (2.69)

where Ji are Jacobians of individual task points (see Figure 2.5).

Moreover, the joint task inertia matrix can be expressed in terms of blocks corresponding

to the different task points, i.e.

Λt|s = (Jt|sA
−1J T

t|s)
−1 =

Λ11|s Λ12|s · · · Λ1N |s

Λ21|s Λ22|s · · · Λ2N |s
...

...
...

ΛN1|s ΛN2|s · · · ΛNN |s

, (2.70)

where the diagonal terms Λii|s correspond to the inertia felt at the i-th task point when a

force is applied to the same point and the off diagonal terms Λij|s correspond to the inertia

felt at the j-th task point when a force is applied to the i-th task point.

The control vector is equivalent to Equations (2.63) and (2.66), however the reference

acceleration and force vectors now include control policies for all operational points.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 31

Corollary 2.2.2 (Multi-task motion control). The following torque vector yields si-

multaneous linear control of multiple task accelerations

Γ = (SNs)
T J T

t|s

(

Λt|sa
ref + µt|s + pt|s

)

, (2.71)

or equivalently

Γ = J ∗T
(

Λt|sa
ref + µt|s + pt|s

)

, (2.72)

where we have used the equality J∗ = Jt|sSNs shown in (2.51) and aref is equal to

aref ,

aref
1

aref
2

...

aref
N

. (2.73)

Here the terms aref
i correspond to individual control policies.

Proof. Once more, it is straightforward to verify that using the previous torque vector in

(2.65) — now corresponding to the equation of motion of all tasks — yields the following

set of linear equalities

∀i, ẍi = aref
i . (2.74)

Although aggregating tasks into a macro vector is an attractive solution for whole-body

control it entails several problems. First, in the presence of modeling errors, there will be a

coupling effect between task motions. Second, during conflicting scenarios — for instance,

when joint limits are reached — there could be potential constraint violations. These

problems will be overcome in the next chapter when we will describe prioritized multi-task

control.

2.2.3 Characterization of the Residual Task Redundancy

To complete the proposed operational space formulation for multi-legged robots we will

characterize here the residual task redundancy. This redundancy will be used to control

additional operational tasks as well as the robot’s postural stance. We characterize redun-

dant torques by adding an additional term to (2.63) with null contribution to tasks motion

and forces.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 32

Theorem 2.2.2 (Whole-body control structure). The following control structure pro-

vides linear control of task forces and accelerations and defines the task’s residual movement

redundancy

Γ = (SNs)
TJ T

t|s F +N ∗T Γ0. (2.75)

Here N∗ is the null space matrix of Jt|s(SNs) and will be shown in (2.77) and Γ0 is an

arbitrary torque vector. Equivalently, the above whole-body control torque can be written as

Γ = J ∗TF +N ∗T Γ0, (2.76)

where we have used the correspondence between Jt|s and J∗ shown in (2.51). Notice that

N∗ is also the null space associated with J∗ as will be shown in (2.78).

Proof. While the term J ∗TF provides linear control of task forces and accelerations as

discussed in Theorem 2.2.1, the above null space term provides no coupling effects between

null space torques and task space forces or accelerations. In turn, the vector Γ0 can be used

to control the robot’s postural motion or additional operational tasks without interfering

with the primary task.

Corollary 2.2.3 (Dynamically consistent null space matrix). The following null

space matrix projects secondary control torques Γ0 into null task forces and accelerations

N∗ , I − (SNs)J t|sJt|s(SNs). (2.77)

An equivalent expression is

N∗ , I − J
∗
J∗, (2.78)

where J∗ = Jt|s(SNs) as shown in (2.51) and J
∗

is the dynamically consistent generalized

inverse of J∗ as shown in (2.81) and can be shown to be equal to (SNs)J t|s.

Proof.

1. To verify that the expression (2.77) is valid we first plug it into (2.75) and the resulting

term is plugged into (2.59). We then need to demonstrate that the resulting null space

term vanishes away. This can be demonstrated by using the equality SNsSNs = Ns

(2.44) and the property NsJ t|s = J t|s (2.62).

2. We also need to show that J
∗

= (SNs)J t|s. To do that we first consider the expression

of J
∗

given in (2.81). The following equalities can be derived using the expression of

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 33

Φ∗ (2.42) and the correspondence between J∗ and Jt|s shown in (2.51)

Φ∗J ∗T = SNsA
−1J T

t|s, (2.79)
(

J∗Φ∗J ∗T
)−1

= Λt|s, (2.80)

where Λt|s is the support consistent task inertia shown in (2.58). Using the above

expressions in the expression of J
∗

shown in (2.81) we obtain the desired equality. �

Corollary 2.2.4 (Dynamically consistent generalized inverse of J∗). The following

expression is a dynamically consistent generalized inverse of J∗

J
∗

, Φ∗J ∗T
(

J∗Φ∗J ∗T
)−1

, (2.81)

where Φ∗ is the constrained projection of A−1 as shown in (2.42).

Proof. The task space equation of motion given in (2.59) gives us the relationship between

task space forces and joint torques, i.e.

J
T
t|s(SNs)

T Γ = F. (2.82)

Using the expression of J t|s given in (2.57), the correspondence between Jt|s and J∗ shown

in (2.50), and the equality Λt|s =
(

J∗Φ∗J ∗T
)−1

shown in (2.80) the above expression can

be written as

J
∗T

Γ = F. (2.83)

Considering the whole-body torque vector given in (2.76) and the null expression of Equa-

tion (2.78) we can rewrite Γ as

Γ = J ∗TF +
(

I − J ∗TJ
∗T
)

Γ0. (2.84)

Because J
∗

is a generalized inverse of J∗ that cancels the effect of null space torques into

task forces and that provides dynamic mapping between joint torques and task forces as

shown in (2.83), we will refer to it as the dynamically consistent generalized inverse of

J∗.

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 34

2.3 Control of Internal Forces

When the robot is in double support stance (see Figure 2.6) or when multiple limbs are

used for support (e.g. limb contacts during a crawling motion), the close loops formed by

the limbs in contact are susceptible to internal forces. Adequate control of the robot’s COG

or ZMP are necessary but not sufficient conditions to ensure stability of the system over the

supporting surfaces. To ensure full stability, the internal forces between supporting limbs

need to be controlled as well. For instance, during double support stance there are six

internal forces that need to be dealt with. These forces correspond to differential forces and

moments on both feet caused by the robot actuation torques. On the other hand, during

single support stance, no closed loops are formed and therefore no internal forces appear.

During double support stance, the matrix SNs ǫ Rn×(n+6) is rank deficient, meaning

that there are internal displacements —infinitesimally small— that do not contribute to

net movement, i.e. internal forces. In fact, the rank of SNs is n− 6 where n is the number

of actuated joints, corresponding to the six internal forces that can take place between the

supporting feet.

Given the robot’s equation of motion shown in (2.24), the torque components associated

with internal forces are those that do not contribute to net movement, i.e. components that

are filtered with the null space of (SNs)
T , i.e.

(

I − (SNs)
T (SNs)

T
)

Γi, (2.85)

where Γi is a vector of control torques affecting only internal forces. It is straightforward

to check that the above term vanishes away when plugged into (2.24).

When combined with the operational space controller presented in (2.76), the complete

torque actuation vector including the above torque term takes the form

Γ = J ∗TF +N ∗T Γ0 +
(

I − (SNs)
T (SNs)

T
)

Γi. (2.86)

Notice that the above term involving internal force control will not produce motion or force

coupling at the task point. This can be verified by plugging the term (2.85) into the task’s

equation of motion (2.59) and verifying that it vanishes away.

Although still under research, using Γi we will be able to control the internal forces

and moments between supporting limbs. In fact, these forces and moments correspond to

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 35

a subset of the reaction forces shown in (2.21), i.e.

{Fi ǫ R6} ⊂ {Fr ǫ R12}, (2.87)

where Fi is the vector of internal forces and moments.

In our current implementation we do not yet control internal forces in this fashion.

Instead we eliminate torque components that produce internal forces after computing the

torque control vector. We are currently in the process of implementing the proposed internal

force controller.

Throughout this dissertation we will assume that internal forces are properly controlled

and we will focus on the control of operational and postural tasks. Therefore, in general we

will use the control structure given in (2.76).

2.4 Examples

Let us study a few examples involving a simulated humanoid model called Stanbot (see

Figure 2.9). Stanbot is a robot model with an approximate height of 1.70m and a weight of

66 kg. Its body is similar in proportions to the body of an average human. Its articulated

body consists of 29 joints, with 6 joints for each leg, 7 for each arm (3 shoulder, 1 elbow, 3

wrist), 1 for the chest yaw movement, and 2 for the head pitch and yaw movements. The

masses and inertias of each link have been designed to approximate human equivalent parts.

The purpose of these experiments is to demonstrate how to control the robot’s COG. In

particular we will demonstrate how to control static balance using the horizontal components

of the COG and how to control the posture stance using the vertical component of the COG.

2.4.1 Balance Stability

In Figure 2.9 an experiment involving the control of body balance is shown. Balance is

achieved by direct control of the horizontal projection of the COG, characterized by the

following coordinate vector and Jacobian matrix,

x =
1

M

∑

i

mixcogh
i
ǫR2, J =

1

M

∑

i

miJcogh
i
ǫR2×(6+n), (2.88)

where xcogh
i
is the 2× 1 COG horizontal vector of the i-th link, and Jcogh

i
is the associated

Jacobian.

The goal here is to track the trajectory shown in the data graphs of Figure 2.9. We use

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 36

Figure 2.9: Control of static balance: In this experiment COG movement was achieved
by controlling the horizontal movement of the COG as shown in (a). The COG horizontal
position is commanded to follow the trajectory shown in the data graph. Two snapshots
of the robot’s movement are shown on (b). Using operational space control we can directly
control the COG’s movement. Because of dynamic compensation, the resulting trajectory
follows very closely the desired reference trajectory. The balance stability polygon (i.e. the
area defined by supporting feet) is shown in (b) and projected in the data graph.

the following simple PD tracking law

aref = −kp

(

x− xdes(t)
)

− kvẋ, (2.89)

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 37

where xdes(t) is a desired trajectory within the stability polygon that was designed to not

violate ZMP conditions. When applying this control law to the control structure proposed

in Equations (2.63) and (2.66), and using the associated linear relationship

ẍ = aref , (2.90)

we obtain the following linear behavior of the COG horizontal projection

ẍ+ kvẋ+ kp

(

x− xdes(t)
)

= 0. (2.91)

Here we have not addressed the control of the residual redundancy. In fact, for this exper-

iment residual DOFs are used to maintain an upright posture using the methods we will

describe in Chapter 4.

2.4.2 COG Vertical Control

A second experiment is shown in Figure 2.10, where both horizontal and vertical components

of the COG are controlled. While the horizontal components of the COG are used to keep

static balance as shown in the previous example, the vertical component is used to control

posture stance.

This time the control coordinates are

x =

xcogh

xcogv

, (2.92)

where xcogh corresponds to the 2×1 horizontal component of the COG and xcogv corresponds

to the 1 × 1 vertical component. The acceleration level control vector can be broken into

vertical and horizontal components, i.e.

aref =

aref
cogh

aref
cogv

. (2.93)

The control law for the horizontal component is the same as in (2.89), whereas the control

law for the vertical component is

aref
cogv = −kp

(

xcogv − xdes(t)
)

− kvẋcogv. (2.94)

However, this time the reference trajectory for balancing is fixed at a point within

CHAPTER 2. BASIC REPRESENTATIONS FOR WHOLE-BODY CONTROL 38

Figure 2.10: Control of the COG’s height: This experiment demonstrates the control
of the COG’s height while maintaining balance. The COG’s vertical position is controlled
to track a sinusoidal trajectory spanning positions (a) and (b).

the feet stability polygon while the reference trajectory for the vertical component is the

sinusoidal trajectory shown in Figure 2.10.

The proportional gain kp used for the experiment is equal to 400N/m and the velocity

gain is chosen to provide critical damping, i.e. kv = 2
√
kp. The results shown in the data

graph of Figure 2.10 proof a good tracking response.

Chapter 3

Prioritized Multi-Task Control

In this chapter we will develop control structures for the simultaneous execution of multiple

operational tasks using prioritized controls strategies. These structures will allow us to

create complex whole-body behaviors while ensuring that critical tasks are accomplished

first.

Current approaches for the control of humanoid systems address the control of manip-

ulation and locomotion behaviors as separate entities, disregarding their combined inter-

actions. While these approaches are practical they do not exploit the redundancy of the

system to simultaneously accomplish all required objectives. A few projects have addressed

whole-body control, most notably the work by the National Institute of Advanced Industrial

Science and Technology in Japan (see Neo et al. 2005). The main objective of this chapter

is to design methods to control collections of multiple low-level tasks towards individual

goals using whole-body movements and while ensuring that critical tasks are accomplished

first. For instance, for locomotion behaviors separate goals are chosen for feet and COG

or ZMP placement while a whole-body controller automatically assigns torque resources to

accomplish all goals. These goals can be fed at runtime by a sensory layer without pre-

computation of feet or COG trajectories. To ensure stability, critical tasks need to be first

controlled. For instance in the previous example, COG control and feet placement control

operate as priority tasks, while other less critical tasks operate in the residual movement

redundancy.

Task prioritization was first addressed by (Hanafusa, Yoshikawa, and Nakamura 1981)

and will be extensively addressed here. Multi-task control in the context of manipulation

was first addressed by (Siciliano and Slotine 1991). Similar control structures were later

developed for graphical models of humanoid systems by (Boulic and Mas 1996) and later

by (Baerlocher and Boulic 1998). All of these preliminary research was developed in the

39

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 40

context of inverse kinematic control.

Instead of relying on inverse kinematic representations, we will develop here operational

space control representations. Operational space control will allow us to integrate force,

position, and impedance control policies into a unified formulation. Additionally, we will

integrate task prioritization to decouple task movement and to solve conflicting scenarios

as a central part of our operational space control framework. Two indexes will be proposed

to measure task feasibility, the condition number of constrained task Jacobians and the

condition number of constrained task inertias. We will use task feasibility measurements to

modify or replan robot behavior at runtime.

A problem associated with most humanoid control platforms is their limited ability

to engage in advanced contact interactions. Some progress has been done in this area

with a handful of applications available and customized for very specific scenarios (see

Yokoyama et al. 2003 and Harada et al. 2004). However, more progress in this area is

needed addressing multi-contact and human-like interactions. Past approaches on contact

control rely on local inverse kinematic representations which map desired forces into joint

trajectories. However, little consideration has been given to the impact of contacts on the

overall robot behavior. In the previous chapter we presented methods to integrate whole-

body torque control with contact constraints and we studied the control of multiple non-

prioritized tasks within the constrained space. In this chapter we will extend this approach

to the control of multiple prioritized tasks involving manipulation and locomotion behaviors.

Each task will be controlled within the residual redundancy of supporting constraints and

higher priority tasks as part of a prioritized control strategy, providing decoupling effects and

a platform to resolve conflicting scenarios. At the same time, supporting constraints will be

automatically accounted for. Additionally, we will design operational space controllers for

each individual task, allowing the user to implement a variety of advanced control strategies

for manipulation, locomotion, and postural behaviors. In our approach contact tasks will

not be limited to end effector control. Arbitrary parts on the robot’s body will be able

to act as support or contact points. For instance, for sitting tasks, the points below the

hips will be used for support. In essence the approaches we will present here will allow

humanoids to simultaneously accomplished multiple prioritized goals without relying on

trajectory generation.

To cope with the uncertainty associated with realtime interactions, the whole-body con-

trol framework we will develop throughout this chapter will be based on task hierarchies. In

these hierarchies, the control of lower priority tasks will be conditional to the accomplish-

ment of higher priority tasks. This organization will provide decoupling effects between

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 41

tasks and will allow controllers to determine the feasibility of the overall behavior at run-

time. For instance, balance control will determine the feasibility of lower priority tasks such

as manipulation and locomotion.

This chapter is organized as follows. In Section 3.1 we will study the composition of

whole-body behaviors as aggregations of multiple goals. We will discuss prioritization to en-

sure that critical tasks are accomplished first and we will develop kinematic representations

based on such hierarchies. In Section 3.2 we will develop operational space control repre-

sentations to simultaneously control multiple task points. We will develop mathematics for

identifying the residual movement redundancy for each priority level and we will discuss

control policies to implement a variety of low-level behaviors. Finally, in Section 3.3 we will

present several examples involving interactive manipulation and locomotion behaviors.

3.1 Representation of Whole-Body Behaviors

Although the goal of humanoid systems is to execute advanced locomotion and manipu-

lation tasks, other low-level tasks need to be simultaneously accomplished to support and

enhance the overall behavior. To create complex behaviors we must first understand the

contribution of different body parts to the overall movement. In this section we will analyze

the composition of complex whole-body behaviors and their representation at the kinematic

level.

As discussed in the previous chapter, balance and internal forces between supporting

limbs are first controlled to provide overall stability. Manipulation and locomotion tasks

need to be integrated without interfering with these and other more critical tasks. Control

prioritization will allow us to create this control separation. Once more our approach will

be to create methods for the realtime control of goal-based behaviors instead of relying on

pre-programmed trajectory-based control methods. For instance, for manipulation tasks we

will consider torque controllers to accomplish desired hand position and orientation goals

while for locomotion tasks we will consider torque controllers to accomplish desired feet

position and orientation as well as desired COG and ZMP positions or trajectories. In

turn, to create simultaneous locomotion and manipulation behaviors, only a few control

points will need to be actively controlled while the rest of the robot’s movement will be

automatically generated to comply with contact constraints and postural criteria.

By controlling individual task points we will be able to create complex manipulation

and locomotion behaviors in realtime. For each task point, we will associate an operational

space controller implementing a specific control policy. Desired position or force goals will

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 42

be either fed by the sensory layer at runtime or pre-programmed to fulfill predetermined

rules or trajectories. For instance for manipulation tasks, the goal position and orientation

of the robot’s hands could be fed at runtime by the robot’s vision system. At the same

time, balance stability and postural behaviors will be simultaneously controlled according

to rules or trajectories. The whole-body torque controller we will describe here will be able

to simultaneously accomplish all desired goals while ensuring that critical tasks are accom-

plished first. By exploiting the redundancy within our hierarchical model our controller will

automatically derive appropriate torque solutions while providing movement stability at all

times.

3.1.1 Multi-Task Decomposition

Multi-task control is our approach to simplify the synthesis of whole-body behaviors. When

a behavior is sought, the individual actions that need to take place are first determined. For

example for a walking behavior, each phase involving a different supporting leg is defined as

a separate movement. The desired behavior emerges by sequencing the movements. In this

context individual movements are units of action where each action corresponds to a fixed

set of tasks simultaneously operated towards individual goals. For instance for a movement

designed to step forward, the operational points that need to be controlled are the position

and orientation of the swinging leg, the global COG, and the head orientation. When the

swinging leg makes contact with the ground, the tasks involved in the previous stepping

motion are discarded and a new set of tasks is used to implement the next phase. Our focus

here is on the individual movements, or equivalently on the set of tasks needed to achieve

the desired behaviors.

To study the synthesis of complex behaviors through multi-task decomposition let us

consider the interactive behavior shown in Figure 3.1. Here the objective is to place screws

at desired locations in the wooden beams, simulating insertion with a screwgun. This

behavior can be synthesized in realtime by controlling four separate operational tasks and

one postural task, each controlling a different aspect of the robot’s movement as shown

in Table 3.1. Moreover the two feet in contact with the ground provide the support for

balance stability. To guarantee feet stability, internal forces between legs are controlled to

vanish or to maintain the feet flat against the ground. For balance stability, the robot’s COG

horizontal position is controlled to stay above the feet stability polygon. Hand teleoperation

is achieved by controlling the 6-D spatial position of the hand. The teleoperated reference

point is shown as a small red sphere located at the center of the right hand in Figure 3.1.

Head orientation is achieved by controlling the two orientation coordinates associated with

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 43

Figure 3.1: Manipulation behavior with screwgun: This sequence of images corre-
spond to an interactive manipulation behavior. A screwgun is teleoperated to insert screws
into the wooden beams. All other aspects of the motion are automatically handled. In
particular, the robot’s posture is based on two distinct snapshots of human poses that will
be later discussed and a switching policy between postures is implemented.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 44

the robot’s gaze (i.e. the ray emerging forward from the head on the direction of the eyes).

In our example the desired orientation corresponds to aligning the robot’s gaze with the

teleoperated point. Notice that both the robot’s right hand and its head are commanded

to track in realtime the teleoperated point. Although the function of the tasks discussed

for the above example is straightforward, the posture behavior involves perhaps the most

complex control. We control it to mimic human poses. Posture control will be discussed in

great detail in Chapter 4.

Task Decomposition (Screwgun Manipulation)

Task Primitive Coordinates DOFs Control Policy

Balance COG horizontal position 2 (x− y plane) position

Manipulation right hand pos/ori 6 hybrid

Gaze head orientation 2 (⊥ plane) position

Posture whole-body joints n = NumJoints optimal criterion

Table 3.1: Task decomposition for the manipulation behavior of Figure 3.1.

In this chapter we will develop operational space control methods for controlling multiple

task points based on a prioritized control strategy between tasks. Operational space control

provides direct control of task forces and accelerations, facilitating the implementation of a

variety of control strategies including force, position, acceleration, and impedance control.

In the last column of Table 3.1 we indicate the control policy that we have implemented

for each task primitive of the previous example. For instance, balance control is achieved

through PD control of the COG’s position, right hand control is achieved through hybrid

position and force control of the tool tip, head orientation control is based on PD control

of the head’s orientation, and posture control is achieved through gradient projection of

optimal criteria. These control strategies will be discussed in more detail at the end of this

chapter.

Our approach for task control is based on the realtime command of desired goals with-

out relying on trajectory computation. Goals are directly mapped into task forces or accel-

erations and further converted into actuation torques using operational space controllers.

These goals are issued from a variety of sources, such as from predefined rules, teleoperation

devices, or sensors. For instance, in the above example balance is achieved by controlling

the COG’s position towards the center of the robot’s feet, hand and head movements are

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 45

Figure 3.2: Simultaneous locomotion and manipulation behavior: In this example,
the goal is to walk forward while tracking a teleoperated point. The sequence of images
above correspond to an actual simulation where the walking pattern is pre-programmed and
the hand is teleoperated. The red sphere corresponds to the desired teleoperated positions.
(I), (II), and (III) are snapshots taken during movement execution.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 46

Task Decomposition (Stepping Forward with Hand Teleoperation)

Task Primitive Coordinates DOFs Control Policy

Balance COG horizontal position 2 (x− y plane) position

R Foot placement foot pos/ori 6 position

Gaze orientation head orientation 2 (⊥ plane) position

Hip height hip vertical position 1 (z-axis) position

Hip posture hip orientation 3 position

Chest posture chest yaw orientation 1 (z-axis) position

R hand Manipulation right hand pos/ori 6 position

R shoulder roll posture right shoulder roll 1 position

L arm posture left arm joints 7 position

Table 3.2: Task decomposition for the walking example shown in Figure 3.2.

commanded to track the teleoperated point, and posture motion is commanded to mini-

mize the joint space error with respect to captured human poses. While some aspects of

the motion, such as balance, internal forces, and posture stance are automatically handled

by pre-defined rules, others such as manipulation and locomotion are interactively handled.

Minimizing the amount of points interactively controlled simplifies the creation of complex

behaviors. For instance, in the previous example only one external command is needed

to create the desired tool movement, corresponding to the position and orientation of the

teleoperated point, while all other aspects of the motion are automatically handled.

We consider a second more complex behavior involving simultaneous locomotion and

manipulation behaviors as shown in Figure 3.2. This example corresponds to an actual

simulation of walking while the robot’s right hand is teleoperated by a user. Walking is

created by sequencing four movements: (1) shifting the robot’s weight to the right foot, (2)

swinging the right foot forward, (3) shifting the weight back to the left foot, and (4) swinging

the left foot forward. Additionally, the head orientation and the right hand position are

controlled to track a teleoperated point (shown as a red sphere). For a more in-depth

study on sequencing whole-body movements refer to Chapter 7. Table 3.2 depicts the task

decomposition we used for the walking phase involving swinging the right foot forward.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 47

3.1.2 Constrained Kinematics

Task kinematics under supporting constraints were analyzed in the previous chapter in

the context of non-prioritized control. The associated constrained Jacobian allowed us

to characterize task feasibility under multi-leg support and to derive operational space

controllers in a compact form.

When multiple operational points are simultaneously controlled as part of a whole-

body behavior, each point can be kinematically characterized through unique constrained

Jacobians. For a given behavior (e.g. the behaviors of Figures 3.1 or 3.2), the full kinematic

representation of an arbitrary task point k (see Tables 3.1 and 3.2 for a list of tasks) is

xk =

xk,p

xk,r

, (3.1)

where xk,p is a position representation of the task point and xk,r is an orientation repre-

sentation. Position and orientation representations can vary depending on the type of task

being implemented as discussed in (Khatib 2004). Moreover, a subset of these coordinates

can be considered for tasks involving fewer than 6 DOFs.

Task velocities can be expressed using arbitrary representations by considering linear

and angular velocities of the task point and transforming them to the desired representation,

i.e.

ẋk = E(xk)

vk

ωk

, (3.2)

where E(xk) is a representation transformation matrix and is described in (Khatib 2004)

and vk and ωk are linear and angular velocities of the k-th task point respectively. The

instantaneous kinematics of arbitrary task points is expressed in terms of base and joint

velocities as

ẋk = Jk

ϑb

q̇

, Jk = E(xk)Jk,0 , (3.3)

where Jk is the task Jacobian in task coordinates and can be derived from the basic task

Jacobian Jk,0 as explained in (Khatib 2004) and ϑb and q̇ are base and joint velocities

respectively.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 48

Definition 3.1.1 (Support consistent Jacobian of arbitrary points). The following

kinematic representation is a generalization of the constrained terms (2.46) and (2.47)

ẋk = J∗
k q̇

∗, (3.4)

where

J∗
k , JkSNs (3.5)

is the constrained Jacobian matrix of an arbitrary task point k and q̇∗ is the vector of

constrained joint velocities shown in (2.37).

As discussed in the previous chapter, the constrained Jacobian J∗
k characterizes the

kinematic behavior of task points under structural constraints and supporting contacts.

For instance, if legs, upper body, and arms are fully stretched, the constrained Jacobian

associated with hand operational points will become singular due to supporting constraints

acting on the underactuated system.

More complete kinematic representations should also integrate constraints imposed by

task hierarchies. In the next section we will introduce the concept of prioritization to inte-

grate additional constraints at the kinematic and dynamic levels, allowing us to determine

if lower priority tasks can be accomplished in the null space of higher priority tasks.

3.2 Control Structures

When controlling multiple task points towards arbitrary goals, coupling effects between

tasks can arise due to modeling errors and conflicts between task goals. Though these

problems could be solved through motion planning techniques, we consider here alternative

reactive methods. Our approach consists on establishing a hierarchy between tasks where

lower priority tasks are projected in the null space of higher priority tasks. These projections

not only provide the desired decoupling effects but also ensure that higher priority tasks

are first accomplished.

3.2.1 Prioritization Versus Aggregation

Let us consider an arbitrary behavior (e.g. the screwgun behavior of Table 3.1). Each k-th

operational point can be represented by the coordinate vector

xk ǫRdim(k), (3.6)

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 49

where xk is normally a subset of the 6D cartesian position and orientation of the k-th

task point as shown in (3.1) — although for some tasks xk could be a subset of the joint

coordinates of the robot (e.g. for tasks involving stretching the knees) — and dim(k) is the

dimension of the task.

In the previous chapter, we suggested that we could simultaneously control all tasks by

considering a non-prioritized macro task characterized by the following multi-point coordi-

nate vector and Jacobian matrix

x =

x1

x2

...

xN

, J =

J1

J2

...

JN

, (3.7)

where xi and Ji correspond to the coordinates and full Jacobian of the i-th task point

respectively. The associated control vector had the form shown in (2.64), i.e.

Γ = J ∗T F, (3.8)

where J∗ = JSNs is the constrained Jacobian matrix shown in (2.47) and F is a force-level

control vector determining control policies for all task points.

Although aggregating non-prioritized tasks into a single macro structure is an attractive

solution it entails coupling problems between tasks as mentioned earlier. For instance, in

the behavior shown in Figure 3.2, motion of the right hand will normally result in coupling

effects on locomotion tasks due to modeling errors. In particular, these coupling effects will

affect the trajectories established for the robot’s COG and the swinging foot. However,

COG stability and feet motion are critical to the overall stability of the robot. Therefore

coupling effects on these tasks should be removed.

Our solution to the above coupling problem is to establish a task hierarchy by exploiting

the prioritized structure presented in Equation (2.76) of the previous chapter, which can

filter out coupling components introduced by lower priority tasks. For instance, for a two-

level prioritized structure — e.g. the simultaneous control of COG and hand positions

where the COG is considered as a high priority task — we associate the following control

structure

Γ = J ∗T
1 F1 +N ∗T

1 Γ2, (3.9)

where J∗
1 = J1SNs is the constrained Jacobian of the priority task (e.g. the COG’s position)

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 50

as shown in (2.47), F1 is the associated vector of control forces,

N∗
1 , I − J̄∗

1J
∗
1 (3.10)

is the associated constrained null space matrix and is equivalent to (2.78), and Γ2 is a vector

of torques associated with the control of the secondary task (e.g. the control of the hand)

within the residual redundancy.

For more complex behaviors, multiple priority levels can be established. For instance,

the behavior shown in Figure 3.4 could be created using the prioritized hierarchy shown in

Table 3.3. This hierarchy is established according to the relative importance of each task.

Hierarchy (Locomotion and Hand Control)

Task Primitive Priority Level

Balance 1

R foot placement 2

Gaze orientation 3

Hip height 4

Hip posture 5

Chest posture 6

R hand Manipulation 7

R shoulder roll posture 8

L arm posture 9

Table 3.3: Prioritized hierarchy for the behavior shown in Figure 3.4

Notice that right hand control is considered a lower priority task than postural tasks. This

ordering reflects the importance of postural motion on the overall stability of the walk. Also

notice that feet placement control has been assigned the second highest priority level after

COG control. Once more, this assignment reflects the relative importance of feet placement

towards the overall stability of the walk. In the previous example, the proposed hierarchy

has been empirically established.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 51

In general for N arbitrary prioritized tasks we propose the following recursive whole-

body torque control structure

Γ = Γ1 + Γ2|prec(2) + · · · + ΓN |prec(N) =

N
∑

k=1

Γk|prec(k), (3.11)

where the subscript k|prec(k) is used to indicate that the k-th task operates in the null

space of all higher priority tasks.

Definition 3.2.1 (Prioritized torques). The following expression determines the pro-

jection of lower priority tasks into the null space of higher priority tasks

Γk|prec(k) , NT
prec(k)Γk, (3.12)

where Nprec(k) is the combined null space of all higher priority tasks (i.e. all preceding tasks)

to the k-th level and will be characterized in a few lines.

Based on the previous hierarchical torque control structure (3.11), we will be able to

formulate a general operational space control structure that will take the form

Γ =
(

J ∗T
1 F1

)

+
(

J ∗T
2|1 F2|1

)

+ · · · +
(

J ∗T
N |prec(N)FN |prec(N)

)

, (3.13)

where the matrices J∗
k|prec(k) correspond to prioritized task Jacobians as defined in (3.14),

and the vectors Fk|prec(k) correspond to control forces to control the k-th priority task.

These recursive structures will be demonstrated in the next section.

Definition 3.2.2 (Prioritized Jacobian). The following prioritized Jacobian is associ-

ated with the k-th priority task

J∗
k|prec(k) , J∗

kN
∗
prec(k), (3.14)

where J∗
k is the constrained Jacobian associated with the k-th task as shown in (3.5) and

N∗
prec(k) is the prioritizing null space of all preceding tasks and will be characterized in (3.40).

The second objective of projecting lower priority tasks in the null space of higher pri-

ority tasks is to solve conflicting scenarios when multiple goals cannot be simultaneously

accomplished. For instance, let us consider the interactive behavior shown in Figure 3.3.

Here, the robot’s hand is commanded to move towards unreachable goals. When the

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 52

Figure 3.3: Conflict between task goals: These snapshots corresponding to a teleop-
erated reaching behavior illustrates potential conflicts between task goals. The right hand
is commanded to reach the red sphere which is intentionally placed beyond the reachable
workspace at different locations. In (I) and (III), the red sphere cannot be reached without
compromising balance stability. In (II) the sphere cannot be reached without jumping.

hand approaches these goals, balance stability is compromised. If COG control is given

higher priority than hand control, we will not only prevent coupling effects between COG

and hand control, but we will ensure that balance goals are first accomplished while hand

goals are accomplished only if there is enough available residual redundancy. In general,

the hierarchy established in Table 3.3 will determine whether lower priority tasks can be

executed without compromising higher priority tasks.

In fact, the prioritized Jacobian of Equation (3.14) will reveal not only singularities due

to supporting constraints but also due to constraints imposed by the task hierarchy. If

no movement redundancy is available to execute the k-th priority task within the residual

redundancy, the associated prioritized Jacobian will become singular. In contrast, the non-

prioritized Jacobian J∗
k will not reflect prioritization singularities. We will exploit this

behavior to measure task feasibility at runtime and to modify robot behavior if needed.

In general a combination of prioritized (2.34) and non-prioritized (3.13) control strategies

will be simultaneously implemented. For instance, for a dual hand manipulation task, the

right and left hand tasks could be combined into a single non-prioritized macro task and

then prioritized with respect to a balance task.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 53

Although prioritization has many advantages, the implementation of force and position

control policies in the null space of priority tasks is a difficult problem that will be solved

in this chapter.

3.2.2 Prioritized Dynamics and Control

Given a multi-task control scenario, we will derive here control structures to simultaneously

accomplish all goals. For instance, for the manipulation behavior shown in Figure 3.1 we

choose the following task hierarchy,

Task Decomposition (Screwgun Teleoperation)

Task Primitive Priority level

Balance 1

Gaze orientation 2

Right hand control 3

Whole-body posture 4

The main goal of this hierarchy is to decouple balance control from hand control and to

prevent conflicts between these two tasks.

In general, there will be N arbitrary task points to be controlled (for the previous

behavior N = 3) as well as additional postural tasks. The objective of our controller is to

provide linear control of task forces and accelerations while operating in the null space of

higher priority tasks.

We consider implementing the prioritized control strategy shown in (3.11) and (3.12)

to handle an arbitrary number of tasks. We must first understand the dynamic behavior

of each task under the proposed prioritized control structure. In (2.24) we had derived the

following equation of motion under supporting constraints,

A

ϑ̇b

q̈

+N T
s (b+ g) + J T

s ΛsJ̇s

ḃ

q̇

= (SNs)
T

N
∑

i=1

Γi|prec(i), (3.15)

where Ns is the dynamically consistent null-space matrix of the Jacobian at the support

points (2.25), and S =
(

0n×6 In×n

)

is the actuation matrix discussed in (2.19). Notice

that in the above equation we have directly used the prioritized torque control structure

proposed in (3.11).

We can derived task dynamics by left-multiplying (3.15) by the term JkA
−1, where Jk

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 54

is the full Jacobian of the k-th operational task yielding the following equation of motion

ẍk − J̇k

ϑb

q̇

+ JkA
−1N T

s (b+ g) + JkA
−1J T

s ΛsJ̇s

ϑb

q̇

=

JkA
−1(SNs)

T

(

Γk|prec(k) +

N
∑

(i>0)∧(i6=k)

Γi|prec(i)

)

. (3.16)

Here we have used the equality

ẍk = Jk

ϑb

q̇

+ J̇k

ϑ̇b

q̈

(3.17)

and we have decomposed the actuation torques into torques allocated to control the k-th

operational task and torques allocated to control all other operational tasks, i.e.

N
∑

i=1

Γi|prec(i) =

(

Γk|prec(k) +
N
∑

(i>0)∧(i6=k)

Γi|prec(i)

)

. (3.18)

Definition 3.2.3 (Prioritized inertia). The following term is referred to as the priori-

tized inertia of the k-th priority task

Λ∗
k|prec(k) ,

(

J∗
k|prec(k)Φ

∗J ∗T
k|prec(k)

)−1
. (3.19)

Theorem 3.2.1 (Prioritized operational space control). The following control vector

yields linear control of forces and accelerations for the k-th prioritized task

Γk|prec(k) = J ∗T
k|prec(k)Fk|prec(k), (3.20)

where Γk|prec(k) is the k-th component of the prioritized torque control structure shown in

(3.11), J∗
k|prec(k) is the prioritized Jacobian for the k-th task point discussed in (3.14), and

Fk|prec(k) is a vector of control forces that will be discussed in a few lines.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 55

Proof. Based on the above control term, (3.16) becomes

ẍk − J̇k

ϑb

q̇

+ JkA
−1N T

s (b+ g) + JkA
−1J T

s ΛsJ̇s

ϑb

q̇

=
(

Λ∗
k|prec(k)

)−1
Fk|prec(k)+

JkA
−1(SNs)

T
N
∑

(i>0)∧(i6=k)

Γi|prec(i), (3.21)

where the term Λ∗
k|prec(k) is the inertial term defined in (3.19) whose inverse maps prioritized

forces into task accelerations and fulfill the following equality as demonstrated in Property

3.2.1
(

Λ∗
k|prec(k)

)−1
= JkA

−1(SNs)
TJ ∗T

k|prec(k). (3.22)

Under normal conditions Λ∗
k|prec(k) is full rank, and therefore the vector Fk|prec(k) yields

linear control of task accelerations and forces.

Property 3.2.1 (Alternative expression of Λ∗
k|prec(k)). The prioritized inertia defined

in (3.19) has the alternative expression given in (3.22).

Proof. Using the expression of J∗
k|prec(k) given in (3.14), the propertyN∗

prec(k)Φ
∗ = Φ∗N ∗T

prec(k)

shown in (A.15), and the property (N∗
prec(k))

2 = N∗
prec(k) shown in (A.10) the following

equality holds

J∗
k|prec(k)Φ

∗J ∗T
k|prec(k) = J∗

kΦ∗J ∗T
k|prec(k). (3.23)

Using the expression of J∗
k given in (3.5) and the expression of Φ∗ given in (2.42) the above

expression becomes

JkSNsSNsA
−1(SNs)

TJ ∗T
k|prec(k). (3.24)

Using the equality SNsSNs = Ns given in (2.44), the equality NsA
−1 = A−1N T

s given in

(2.27), and the property (Ns)
2 = Ns given in (2.26) the above expression becomes

JkA
−1(SNs)

TJ ∗T
k|prec(k) (3.25)

which is equal to (3.19).

Using the control expression (3.20) we can easily implement linear control strategies.

For instance, to control task accelerations we consider the following force control vector:

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 56

Corollary 3.2.1 (Prioritized motion control). In the absence of contact interactions,

the following control vector yields linear control of task accelerations

Fk|prec(k) = Λ∗
k|prec(k)a

ref
k +µ∗k|prec(k)+p

∗
k|prec(k)−Λ∗

k|prec(k)JkA
−1(SNs)

T
k−1
∑

i=1

Γi|prec(i). (3.26)

Here Fk|prec(k) is the control force shown in (3.20), aref
k is an acceleration-level control policy

for the k-th priority task, and the remaining dynamic quantities for the above equation have

the following expressions,

µ∗k|prec(k) , Λ∗
k|prec(k)JkA

−1N T
s b− Λ∗

k|prec(k)J̇k

ϑb

q̇

+ (3.27)

Λ∗
k|prec(k)JkA

−1J T
s ΛsJ̇s

ϑb

q̇

,

p∗k|prec(k) , Λ∗
k|prec(k)JkA

−1N T
s g. (3.28)

Proof. It is straightforward to verify that using the above expressions in (3.21) will yield

the linear behavior

ẍk = aref
k . (3.29)

Notice that the last term on the RHS of (3.26) disregards lower priority torques. The reason

is that prioritized null space matrices are designed to cancel components from lower priority

tasks as we will see when demonstrating (3.40).

Corollary 3.2.2 (Prioritized multi-task control structure). The following control

structure yields linear control of forces and accelerations of a set of N prioritized tasks

Γ =
(

J ∗T
1 F1

)

+
(

J ∗T
2|1 F2|1

)

+ · · · +
(

J ∗T
N |prec(N)FN |prec(N)

)

=
N
∑

k=1

J ∗T
k|prec(k)Fk|prec(k). (3.30)

Proof. Using (3.20) we can further express (3.11) as the above aggregation of prioritized

operational space control structures.

3.2.3 Recursive Redundancy

In (3.12), prioritization was established by projecting lower priority tasks within the resid-

ual redundancy (i.e. the null-space) of higher priority tasks. In this context, null space

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 57

projections impose that lower priority tasks do not introduce acceleration and force com-

ponents in higher priority tasks. Given Equation (3.16) this is equivalent to the following

condition

∀i ǫ prec(k) JiA
−1(SNs)

TN ∗T
prec(k) = 0. (3.31)

Corollary 3.2.3 (Dynamically consistent prioritized null space matrix). The fol-

lowing matrix fulfills the above set of dynamic constraints

N ∗T
prec(k) =

k−1
∏

i=1

N ∗T
i|prec(i), (3.32)

with

N∗
i|prec(i) , I − J

∗
i|prec(i)J

∗
i|prec(i), (3.33)

where J
∗
i|prec(i) is the dynamically consistent generalized inverse of J∗

i|prev(i) shown in (3.36).

Moreover, we use the conventions N∗
prec(1) , I and N∗

1|prec(1) , N∗
1 = I − J

∗
1J

∗
1 as shown in

(3.10).

Proof. To proof that (3.32) fulfills (3.31) we first rewrite (3.32) as

JiA
−1(SNs)

TN ∗T
i|prec(i)

N
∏

(k>0)∧(k 6=i)

N ∗T
k|prec(k), (3.34)

which can been done reorganizing null space terms according to the commutation property

shown in (A.1). The first part of the above equation is equal to

JiA
−1(SNs)

TN ∗T
i|prec(i) = J∗

i|prec(i)Φ
∗N ∗T

i|prec(i) = 0. (3.35)

Here we have used the equality A−1N T
s = NsA

−1N T
s shown in (2.27), the equality Ns =

SNsSNs shown in (2.44), the equality Φ∗N ∗T
i|prec(i) = N∗

i|prec(i)Φ
∗ demonstrated in (A.15),

the property
(

N∗
i|prec(i)

)2
= N∗

i|prec(i) demonstrated in (A.9), and the expression of J∗
i|prec(i)

given in (3.14). Using the expression of N∗
i|prec(i) given in (3.33) and the expression of

J
∗
i|prec(i) given in (3.36), it is easy to demonstrate that the above term cancels out.

Corollary 3.2.4 (Dynamically consistent generalized inverse of J∗
k|prec(k)). The

following expression is a dynamically consistent generalized inverse of J∗
k|prec(k)

J
∗
k|prec(k) , Φ∗J ∗T

k|prec(k)

(

J∗
k|prec(k)Φ

∗J ∗T
k|prec(k)

)−1
. (3.36)

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 58

Proof. According to the dynamic projection shown in (3.16), the prioritized control struc-

ture shown in (3.20), and the prioritized inertia shown in (3.19) the following equality holds

JkA
−1(SNs)

T Γk|prec(k) =
(

Λk|prec(k)

)−1
Fk|prec(k), (3.37)

where Γk|prec(k) is a vector of prioritized torques and Fk|prec(k) is a vector of prioritized control

forces. Using (2.27) and (2.44), the expression of J∗
k shown in (3.5), and the property shown

in (A.15) we can rewrite the above equation as

Λ∗
k|prec(k)J

∗
kΦ∗Γk|prec(k) = Fk|prec(k). (3.38)

Using the expression of Γk|prec(k) given in (3.12), the property shown in (A.9), the expression

of J∗
i|prec(i) given in (3.14), and the expression of J

∗
k|prec(k) given in (3.36), the above equation

becomes

J
∗T
k|prec(k)Γk|prec(k) = Fk|prec(k). (3.39)

Null space torque components that integrate the term I − J
∗
k|prec(k)J

∗
k|prec(k) will map to

zero control forces in the above equation. Because J
∗
k|prec(k) is a generalized inverse of

J∗
k|prec(k) that cancels the effect of null space torques into task level forces and that provides

the dynamic mapping shown in (3.39), we will refer to it as the dynamically consistent

generalized inverse of J∗
k|prec(k).

Corollary 3.2.5 (Compact expression of N∗
prec(k)). The null space matrix given in

(3.32) can be expressed using the following compact expression

N∗
prec(k) = I −

k−1
∑

i=1

J
∗
i|prec(i)J

∗
i|prec(i), (3.40)

Proof. See Property A.0.4 in Appendix A.

3.2.4 Task Feasibility

Our motivation for task prioritization has been to filter out undesired effects on higher

priority tasks due to lower priority tasks and to solve conflicting scenarios between task

goals. In particular, to measure the feasibility of an arbitrary priority task k provided that

all higher priority tasks are first accomplished, we propose to study the prioritized quantities

J∗
k|prec(k) given in (3.14) and Λ∗

k|prec(k) given in (3.22). For instance, let us consider the

stepping example shown in Figure 3.4. This joint locomotion and manipulation behavior

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 59

Figure 3.4: Task feasibility under prioritization: This snapshots from an actual ex-
periment depict a joint manipulation and locomotion behavior generated using the task
decomposition shown in Table 3.2. While the hand is teleoperated to a desired goal, the
foot is commanded to step beyond its reachable workspace. To measure task feasibility, we
monitor the condition numbers of the foot and hand task points under the task hierarchy
sown in Table 3.3. While the condition number of the hand remains within normal values,
the condition number of the foot grows towards infinity. This information allows us to
change the behavior of the foot at runtime. In our example, when the condition number of
the foot grows beyond normal values we command the foot to step back within the reach-
able workspace to gain stability. The symbols J∗

hand|P and J∗
foot|P indicate that the hand

and foot tasks are subject to prioritized control.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 60

has been created using the task decomposition shown in Table 3.2 with the task hierarchy

shown in Table 3.3. This time the COG is commanded to remain on top of the left foot

and the right hand is operated to remain at the initial location. The focus is on the right

foot which is commanded to step forward beyond its reachable workspace. In practice such

scenario could be the result of walking in rough terrain based on sensor information.

The data graphs accompanying Figure 3.4 depict the evolution of the prioritized Jaco-

bians associated with the right foot and the right hand during movement execution. When

the foot approaches the limit of the workspace, the condition number of the prioritized

foot Jacobian grows beyond normal values. In contrast, the condition number associated

with the prioritized hand Jacobian remains within normal values, indicating that there is

enough movement redundancy to accomplish the desired hand behavior. Monitoring foot

placement feasibility allows us to modify foot behavior during conflicting scenarios.

Figure 3.5: Condition number of the prioritized inertias for Figure 3.4: These
graphs depict the evolution of the condition number of the prioritized inertias for the foot
and hand tasks during movement execution. When the foot reaches full stretch the prior-
itized foot inertia becomes singular while the prioritized hand inertia stays within normal
values.

Task feasibility can be measured by either evaluating the condition number of prioritized

Jacobians, i.e.

κ(J∗
k|prec(k)) =

σ1(J
∗
k|prec(k))

σdim(k)(J
∗
k|prec(k))

, (3.41)

where σi(.) corresponds to the i-th singular value of the enclosed term, or the condition

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 61

number of prioritized inertias, i.e.

κ(Λ∗
k|prec(k)) =

σ1(Λ
∗
k|prec(k))

σdim(k)(Λ
∗
k|prec(k))

. (3.42)

For instance, in Figure 3.4 we depict the evolution of the condition number of the prioritized

foot and hand Jacobians, abbreviated κ(J∗
foot|P) and κ(J∗

hand|P). Here the subscripts foot|P
and hand|P are used to indicate that the foot and hand tasks are prioritized with respect

to higher priority tasks as indicated in Table 3.3. As we can see, when the swinging leg

approaches full stretch the prioritized Jacobian of the foot task becomes singular. However,

the prioritized Jacobian of the hand task remains within normal values indicating that only

the foot task is infeasible.

Data graphs showing the evolution of the condition numbers of prioritized inertias are

shown in Figure 3.5. Similarly to the previous case, the foot prioritized inertia becomes

singular while the hand prioritized inertia remains within normal values. Although either

method can be used to measure task feasibility, an advantage of using prioritized inertias is

that their dimension is much smaller compared to prioritized Jacobians. In fact, prioritized

Jacobians have as many columns as the number of actuated joints.

3.2.5 Overview of Control Strategies

Operational space control yields linear control of task forces and accelerations, facilitat-

ing the implementation of a variety of control strategies involving position and force level

behaviors. We will review now some acceleration-level control policies.

Goal-Based Position Control

During teleoperated or sensor-based position control, trajectories cannot be provided be-

forehand. Our approach is to move instantaneously in the direction of the commanded

goals. This can be done by implementing a simple PD control law. However, to avoid

reaching arbitrarily velocities and accelerations we need to integrate saturation strategies.

Velocity Saturation: This control method was proposed by (Khatib 1986) when presenting

potential field techniques. It consists on implementing the following velocity-level controller

aref
k = −kv

(

ẋk − νv vdes

)

, (3.43)

vdes =
kp

kv

(

xk − xgoal

)

, νv = min

(

1,
vmax

||vdes||

)

, (3.44)

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 62

where xgoal is the operational goal, νv is a velocity saturation factor, and vmax is the max-

imum allowable velocity. If ‖ vdes ‖< vmax this control law will be equivalent to a PD

controller with the following behavior

ẍk + kvẋk + kp

(

xk − xgoal

)

= 0. (3.45)

If the desired velocity reaches values beyond the maximum allowable velocity, the above

control law will yield the following velocity-based behavior

ẍk + kv

(

ẋk − vmax
vdes

‖ vdes ‖
)

= 0, (3.46)

which will maintain a constant velocity in the direction of the goal.

Simultaneous Acceleration and Velocity Saturation: We have designed a new PD controller

that integrates saturation on both velocities and accelerations, and is expressed as follows

aref
k = νaades, (3.47)

ades = −kv

(

ẋk − νv vdes

)

, νa = min

(

1,
amax

||ades||

)

, (3.48)

vdes =
kp

kv

∇
(

xk − xgoal

)

, νv = min

(

1,
vmax

||vdes||

)

, (3.49)

where νa is an acceleration saturation factor, amax is the maximum allowable acceleration,

and vmax is the maximum allowable velocity. When ‖ ades ‖< amax this controller is equiva-

lent to the previous velocity saturation controller. However when the desired accelerations

are higher than the maximum allowable accelerations the resulting behavior is

ẍk = amax
ades

‖ ades ‖
, (3.50)

which means that the task will accelerate in the direction of the desired goal with a value

equal to amax.

ZMP Control

Acceleration control can be used to control dynamic balance by manipulating the ZMP, the

point on the ground where the horizontal moments due to ground reaction forces are equal

to zero. To maintain balance stability the horizontal component of the ZMP, xzmpH , needs

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 63

to be located within the stability polygon defined by the current placement of the feet. The

control law that achieves this goal is (Vukobratovic and Borovac 2004; Sugihara 2004)

aref
cogH =

frz

M(xcogz − xzmpz)
(xcogH − xdes

zmpH), (3.51)

where xdes
zmpH is the desired location of the ZMP within the support polygon, frz is the

vertical component of the reaction forces at the feet, M is the total mass of the robot,

xcogz is the current height of the robot’s COG, xzmpz is the ground level, and xcogH is the

horizontal position of the COG.

The ZMP horizontal position depends directly on COG accelerations according to the

equation (Vukobratovic and Borovac 2004; Sugihara 2004)

xzmpH = xcogH −MẍcogH
(xcogz − xzmpz)

frz

. (3.52)

Therefore, we propose to apply the control law

ẍcogH = aref
cogH (3.53)

to achieve the desired behavior

xzmpH = xdes
zmpH . (3.54)

3.3 Examples

Let us study a few examples demonstrating the implementation of goal-oriented prioritized

multi-task control. To implement the proposed control framework we have used a simulated

humanoid called Collabot. Collabot is a robot measuring 1.60 m in height and weighting

83kg. The kinematic model of the robot is similar to some of the existing high-end research

humanoids. It has 29 DOF: 6 for each leg, 7 for each arm (3 shoulder, 1 elbow, 3 wrist),

1 for the chest yaw angle, and 2 for the head (pitch and yaw). The masses and inertias of

the links are based on estimations from a real humanoid robot.

The examples we will show here were obtained using a simulation and control envi-

ronment running on a PC at 2.13 GHz. Collabot’s graphic model — provided by Honda

Motor Co. — contains approximately 60,000 polygons. Our servo loop runs at 200 MHz

on simulated time while the graphics are updated at 100frames/s. Collisions on the feet are

computed using hierarchical distance models described in (Ruspini and Khatib 2000). The

collision update rate is 10000Hz. A dynamic simulation environment based on (Chang and

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 64

Khatib 2000) takes the controller output and simulates the robot’s movement. Controller,

simulator, and graphics, run at a speeds 4 times slower than real time for our 29 DOF robot.

3.3.1 Tracking the Contour of an Object

Our first example shown in Figure 3.6 involves tracking the contour of a large object (a

sculpture) using hybrid force/position control. To create this behavior we have used the

following task decomposition

Task Decomposition (Manipulation on object)

Task Primitive DOFs Control Policy Priority level

Balance 2 (x− y plane) goal-based 1

Gaze orientation 2 (⊥ plane) goal-based 2

Right hand control 6 (y force, x moment) hybrid force/position 3

Switching postures n = number of joints goal-based 4

Balance is achieved using velocity and acceleration saturation control as described in (3.47)

and (3.48). The desired COG position is commanded to remain at the center of the sup-

porting feet. The saturation values we use for the balance task are vmax = 1m/s and

amax = 3m/s2. These values are picked to avoid violating ZMP limits.

Gaze control is achieved by orienting the robot’s sight vector towards the teleoperated

point (see Figure 3.7). The cartesian space error between the current head orientation and

the desired goal orientation is

φerror = φEλ

(

λhead − λgoal

)

, (3.55)

where φEλ is a 3× 4 representation transformation between quaternions to cartesian space

angles (Khatib 2004), λhead is the quaternion representing the current head orientation,

and λgoal is the quaternion representing the desired orientation. Although φerror is a 3 × 1

vector, only 2 DOFs are needed to orient the gaze towards the desired point. The orientation

component around the head’s local z axis does not contribute to gaze orientation. Therefore

when controlling the gaze task we do not need to use the full rotation Jacobian. Instead we

remove the contributions from the z axis based on the following projection

Jgaze =
(

0Rh S
T
gaze Sgaze

hR0

)

Jhead(φ). (3.56)

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 65

Figure 3.6: Tracking the contour of an object: This behavior has been created using the
task decomposition shown in the previous table. Four tasks are simultaneously controlled:
balance, gaze orientation, hybrid hand force/position, and posture switching. Linear forces
perpendicular to the sculpture’s contour and moments tangent to the sculpture are simul-
taneously controlled to track the contour while maintaining a desired contact force against
the surface.

Here Jhead(φ) is the 3× (n+ 6) Jacobian corresponding to head rotation coordinates, 0Rh is

a rotation transformation from head coordinates to global coordinates, hR0 is the transpose

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 66

Figure 3.7: Gaze control: The head is controlled to track a teleoperated point.

of this transformation, and

Sgaze =

1 0 0

0 1 0

(3.57)

is a selection matrix that selects the x and y rotation DOFs. Therefore, the above transfor-

mation projects the head’s rotation Jacobian into its local frame and removes the z com-

ponent. The control policy used for gaze control is the velocity saturation law described in

(3.43) adapted to the above rotation task, i.e.

aref(gaze) = −kv

(

Jgaze

ϑb

q̇

− νvωdes

)

(3.58)

ωdes =
kp

kv

φerror, νv = min
(

1,
ωmax

‖ ωdes ‖
)

. (3.59)

The robot’s right hand is controlled using hybrid force/position control which will be

discussed in a future paper in the context of prioritized control. Contact forces between

the hand and the sculpture are controlled to push against the sculpture with a linear force

on the y direction equal to 13N while the contact moments on the x axis are controlled for

compliance. The cartesian position of the hand in the x and z directions is teleoperated

while the rotation in the y and z directions is fixed to a value coplanar with the y−z plane.

During movement execution the hand is teleoperated to track up and down the contour of

the sculpture. Contact is maintained at all times due to forces applied in the y direction. At

the same time the hand rotates along the sculpture to maintain zero contact moments. The

data graphs shown in Figure 3.6 show the evolution of the linear force on the y direction

and the moment on the x direction in the first instants of contact.

The robot’s postural stance is controlled using the methods we will describe in the

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 67

next chapter. We use the two snapshots shown in Figure 3.8 as desired poses. When the

robot’s right hand is 35cm or higher above the ground, the robot’s posture is commanded

to imitate the upright pose while when the hand reaches heights below 35cm the posture is

commanded to imitate the crouching pose.

Figure 3.8: Posture attractors: Two static posture snapshots are used as posture at-
tractors. For behaviors where the hand is above a predetermined height we command the
posture to imitate the upright pose. When the hand goes below this threshold we command
the robot to imitate the crouching pose.

3.3.2 Walking with Posture Variations

We consider the locomotion behavior shown in Figure 3.9. The robot’s feet are commanded

to track desired goals while the posture is interactively controlled. In the first steps of

Figure 3.9 the hip height is commanded to swing up and down, while in the final steps the

upper-body orientation is commanded to swing back and forth. The walking behavior is

created by sequencing a collection of whole-body movements (i.e. phases). Four phases are

used to create the walking pattern as shown in Figure 3.10. In the first phase the robot’s

COG is shifted towards the left foot. In the second phase, the right foot is commanded

to step forward. The remaining two phases are counterparts of the previous two. This

walking behavior is described as a collection of tasks, but no trajectories need to be provided

beforehand. In fact, feet goals could be fed at runtime allowing the robot to step in different

directions and with different walking patterns. Likewise, upper-body postural goals are

changed at runtime. Changing the posture does not affect the stepping motion because our

controller decouples tasks. In Figure 3.11 we plot the torque values obtained for the above

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 68

Figure 3.9: Walking behavior with posture variations: This behavior has been created
using the walking sequence shown in Figure 3.10. Different phases are described in terms
of task goals instead of relying on pre-programmed trajectories. Task goals can therefore
be fed at runtime. In our example we command interactively the hip link to swing up and
down and back and forth.

behavior. These values were recorded for an example with no hip variations.

3.3.3 Dynamic Walking: First Step

Dynamic balance is the technique used to create human-like walking and running behaviors

in humanoid systems. It relies on COG accelerations instead of using COG positions only.

COG accelerations are determined by the reaction forces acting on the supporting feet as

well as by the action of gravity forces acting on the robot’s COG. This balance of forces

can be characterized by the following equation of motion

M(ẍcog +G) = fr, (3.60)

where fr is the 3 × 1 vector of reaction forces projected on the robot’s COG (i.e. the sum

of linear forces acting on supporting points), and G is the gravity acceleration vector, i.e.

G =

0

0

−9.81m/s2

. (3.61)

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 69

Figure 3.10: Walking phases: This diagram depicts the four walking phases and their
decomposition into low-level tasks to accomplish the walking behavior of our experiment.

The ZMP (Vukobratovic and Borovac 2004), is used to characterize the robot’s ground

stability during dynamic walking. The ZMP is the point on the ground where the horizontal

moments due to ground reaction forces are equal to zero. In general, the moment of an

arbitrary point xp within the stability support polygon can be expressed as mp = xp×(−fr).

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 70

Figure 3.11: Torques during waling motion: These values correspond to torques on the
right leg during the walking behavior described in the above example. No posture variations
were used for this experiment, i.e. the hip link was kept at a fixed height and the torso
orientation was kept upright at a fixed orientation. The highest values correspond to the
torques on the knees during single support phases. The right hip’s roll joint (i.e. the hip
abduction/adduction DOF) reached also high torque values because it sustains the lateral
weight of the upper body when stepping forward.

Therefore the balance of moments between the COG and the ZMP can be formulated as

(xcog − xzmp) × fr +mcog = mzmp, (3.62)

where mcog and mzmp are the moments around the COG and ZMP respectively, and ×
is the vectorial product. To obtain the ZMP we set the horizontal moments to zero, i.e.

mzmpx = mzmpy = 0. We also assume that mcog is small and therefore can be ignored.

Using the balance of forces of Equation (3.60), the previous equation yields the equality

xzmpH = xcogH −MẍcogH
(xcogz − xzmpz)

frz
, (3.63)

where xzmpz is the ground position where the ZMP is projected. This equality allows us to

express COG accelerations as a function of the ZMP, i.e.

ẍcogH =
frz

M(xcogz − xzmpz)
(xcogH − xzmpH). (3.64)

Although dynamic balance has been widely studied, our task oriented control approach

allows us to control directly COG accelerations, facilitating the control of the ZMP. For

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 71

instance, let us consider the following control structure based on (3.20)

Γ = J ∗T
cogH

(

Λ∗
cogHa

ref
cogH + µ∗cogH + p∗cogH

)

, (3.65)

where we have assumed that the COG is controlled as the first priority task. When using

the above control structure in (3.15) we obtain the linear behavior

ẍcogH = aref
cogH. (3.66)

Based on (3.64), the following reference vector provides control of dynamic balance

aref
cogH =

frz

M(xcogz − xzmpz)

(

xcogH − xdes
zmpH

)

, (3.67)

where xdes
zmpH is the desired ZMP location within the stability polygon. In fact, xdes

zmpH

determines the instantaneous direction and acceleration magnitude of the walk.

Because the generation of full dynamic walking patterns is an elaborate procedure (see

Kajita et al. 2003a), for simplicity we will use the proposed ZMP controller to generate a

single dynamic step. An example is illustrated in Figure 3.12 and has been created using

the following task decomposition

Task Decomposition (Dynamic Walking)

Task Primitive DOFs Control Policy Priority level

ZMP 2 (x− y) COG accelerations 1

R foot position and orientation 6 position 2

Hip height 1 position 3

Hip orientation 3 position 4

Chest orientation 1 position 5

Arms posture 2 × 6 joint position 6

In Figure 3.12 we depict a forward step and a lateral step patterns. The accompanying

data graphs correspond to the forward step. The ZMP is positioned within the supporting

foot in a way that will accelerate the COG towards the landing position of the swinging

foot. As a result the COG moves on a line within the stability polygon. To gain stability

upon landing we command the COG to decelerate smoothly within the supporting polygon.

CHAPTER 3. PRIORITIZED MULTI-TASK CONTROL 72

Figure 3.12: Dynamic Walking (first step) A single step is shown here using dynamic
balancing. (a) depicts a forward step and (b) a lateral step. The data graphs correspond
to the forward step. The blue sphere correspond to the ZMP and the green sphere to the
horizontal projection of the COG. On the lateral step, only the ZMP sphere is shown.

Chapter 4

Posture Control

In this chapter we will develop methods for the control of postural tasks in humanoid

systems. The coordination of the prioritized multi-task controller developed in the previous

chapter and the posture controllers that will be developed in this chapter will provide

the support to create interactive manipulation and locomotion behaviors while enhancing

overall movement performance.

Posture control is an integral component of redundant manipulators and multi-legged

robots where the goal is to enhance the execution of manipulation and locomotion behaviors.

Earlier work on quadrupeds (Hirose et al. 1985; Raibert et al. 1986) discussed the role of the

robot’s posture to create efficient locomotion behaviors. More recently, postural behavior

in living animals has been studied to inspire the control of robotic systems (Full 1993;

Nelson and Quinn 1998). Postural behavior will be studied in detail in this chapter in the

context of humanoid systems emphasizing interactive aspects for the realtime generation of

whole-body behaviors.

Postural behavior plays an important role at different levels. For instance, the analysis of

stiffness response in humans (Mussa-Ivaldi, Hogan, and Bizzi 1985) has inspired techniques

to modulate postural response in robotic manipulators (Hogan 1987). More recently, new

techniques to modulate postural dynamic behavior in biped and humanoid systems were

developed at the actuator and control levels (Pratt, Dilworth, and Pratt 1997; Pratt 1995).

Advanced redundant manipulators and whole-body control methods capable of modulat-

ing both the task’s impedance and the null-space stiffness have been recently developed

(Albu-Schaffer and Hirzinger 2002). In this chapter we will propose techniques to modulate

postural stiffness in humanoid systems as well.

Postural behavior plays a key role in both implementing effective locomotion patterns

73

CHAPTER 4. POSTURE CONTROL 74

and optimizing manipulation performance. Liegeois addressed this issue by creating pos-

tural fields to keep joint angles close to pre-defined equilibrium positions (Liegois 1977).

Yoshikawa developed techniques to avoid kinematic singularities based on task manipula-

bility optimization (Yoshikawa 1985). In this chapter we will address related performance

criteria while bringing an additional requisite, imitating human poses. Imitating human

poses is imposed in humanoid systems to facilitate their acceptance among humans. It is

believed that human-like appearance in structure and movement plays an important role on

the response of humans towards virtual characters and robots (Mori 2004). This hypoth-

esis has been successfully exploited in computer animation and has become of increasing

importance in robotics with the development of humanoid systems. Several android robots

illustrating this concept have been recently developed (Ishiguro 2005). Our approach to ad-

dress this problem will be to imitate human captured poses, a similar technique to the usage

of key frames in film animation. However, in contrast with trajectory based techniques, our

approach will not be based on interpolating between key frames. Instead, it will be based on

imitating captured poses acting as attractors. In this context, captured poses will be used

as equilibrium configurations projected into the task’s residual redundancy, providing the

support for arbitrary variations on task movement while imitating the desired poses. For

instance, to enhance the reachable workspace during a manipulation task we will choose

captured poses that are away from joint limits. Multiple capture poses supported by a

switching policy will be considered to address large variations on the task.

From an efficiency perspective, actuation effort plays a key role in postural behavior.

Using musculoskeletal models of the human body and a dynamic simulation environment we

recently observed a strong correlation between gravity torques and muscle’s torque capac-

ity (Khatib, Warren, Desapio, and Sentis 2004). Based on this observation we conjectured

that human postural behavior involves minimization of muscle effort and defined a mathe-

matical representation of effort in the form of a Euclidean norm of gravity torques weighted

by muscle torque capacities. In this chapter we will implement effort minimization in pos-

ture space based on this effort potential. A similar effort potential based on unweighed

torques was proposed and implemented by (Boulic and Mas 1995) in the context of inverse

kinematic control.

This chapter is organized as follows. In Section 4.1 we will characterize the task’s

residual redundancy for posture control extending the prioritized controller presented in the

previous chapter. In Section 4.2 we will develop task based control methods for controlling

the robot’s posture. In Section 4.2 we will develop gradient descent methods to optimize

the robot’s postural behavior based on optimal criteria. We will discuss the imitation of

CHAPTER 4. POSTURE CONTROL 75

human captured poses and the minimization of actuation effort. Finally, in Section 4.4

we will discuss the modulation of postural stiffness to provide safe whole-body contact

interactions.

4.1 Posture Control Structure

In the previous chapter, we developed a prioritized multi-task controller characterized by

the control structures shown in (3.11) and (3.30), i.e.

Γ =

N
∑

k=1

Γk|prec(k), Γk|prec(k) = J ∗T
k|prec(k)Fk|prec(k). (4.1)

Similarly to the whole-body torque decomposition shown in (2.76), when multiple pri-

oritized tasks are simultaneously controlled, the residual redundancy defines the posture

space of motion and can be characterized by the following structure:

Theorem 4.1.1 (Whole-body prioritized control structure). The following control

structure provides linear control of N prioritized tasks and defines the postural space of

motion

Γ =

N
∑

k=1

J ∗T
k|prec(k)Fk|prec(k) +N ∗T

t Γposture, (4.2)

where,

N∗
t , I −

N
∑

k=1

J
∗
k|prec(k)J

∗
k|prec(k), (4.3)

is the null-space of all prioritized tasks and can be derived using the recursive expression

presented in (3.40). Here, N∗
t signifies the null space of all priority tasks.

Proof. While the terms J ∗T
k|prec(k)Fk|prec(k) provide linear control of task forces and acceler-

ations as discussed in Theorem 3.2.1, N∗
t acts as a base for the control of residual DOFs as

discussed in Corollary 3.2.3, and therefore Γposture defines the control of the robot’s postural

motion with no coupling effects on priority tasks.

In general, we will use the following more compact notation equivalent to (4.2)

Γ =
N
∑

k=1

Γk|prec(k) + Γp|t = Γt + Γp|t, (4.4)

CHAPTER 4. POSTURE CONTROL 76

where

Γp|t , N ∗T
t Γposture (4.5)

is the vector of prioritized postural torques. Here the subscript p|t is used to indicate that

postural torques are projected in the null space of all priority tasks.

Figure 4.1: Postural DOFs in the main body: Posture movement associated with the
main body is due to hip attitude and height and chest vertical orientation. By directly
controlling these DOFs we can control the robot’s posture.

We consider two different methods to control the robot’s posture. The first consists on

controlling pre-determined task points on the robot’s body associated with postural motion

(see Figure 4.1). The second consists on optimizing desired postural criteria in joint space

via gradient projection. Let us start describing the first method.

4.2 Task Based Postures

The first approach to controlling the task’s residual redundancy is an extension of multi-

task control of the previous chapter. If in the previous chapter we addressed multi-task

CHAPTER 4. POSTURE CONTROL 77

control as the control of multiple operational points used to maintain balance stability and

to interact with the environment, we now consider the control of additional task points

describing the robot’s internal motion. For instance, let us consider a humanoid equipped

with 6 DOFs per leg, 1 DOF in the upper body (e.g. vertical orientation), 3 DOFs in the

head, and 7 DOFs per arm. Considering the robot is standing up, postural DOFs on the

main body involve the 3D orientation and the vertical position of the hip’s link and the

vertical orientation of the chest’s link (see Figure 4.1).

Controlling these degrees of freedom is independent of manipulation, locomotion, and

balance tasks. Therefore, each postural DOF can be individually controlled towards desired

goals. For instance, to keep the body upright we can directly command the hip’s upright

orientation to align with the direction of the gravity field. Similarly, to keep the hip at a

certain height from the ground we can command the hip’s vertical DOF to reach the desired

position.

Let us consider the following coordinate representation for the different postural DOFs

xposture ,

hhip

λhip

φchest

ǫR6, (4.6)

where hhip represents the hip’s link vertical position, λhip represents the hip’s link orientation

(using Euler parameters), and φchest represents the chest’s vertical orientation as shown in

Figure 4.1. We can simultaneously control all postural DOFs by handling xposture as a

macro task and associating the following joint Jacobian

ẋposture = Jposture

ϑb

q̇

, Jposture =

Jh,hip

Jλ,hip

Jφ,chest

, (4.7)

where Jh,hip, Jλ,hip, and Jφ,chest are the Jacobians associated with the different postural

DOFs and can be obtained from the basic Jacobian representation of the hip and chest

links as shown in (3.3).

Let us now consider the posture’s dynamic behavior by left-multiplying (2.24) by the

CHAPTER 4. POSTURE CONTROL 78

Figure 4.2: Goal-based posture control: These snapshots from an actual experiment
are obtained using goal-based control of postural DOFs. The COG’s horizontal component
is controlled to remain at the center of the feet to maintain balance stability, while arms
and head are controlled in joint space to remain fixed.

term JpA
−1, leading to the following equation of motion

ẍp − J̇p

ϑb

q̇

+ JpA
−1N T

s (b+ g) + JpA
−1J T

s ΛsJ̇s

ϑb

q̇

=

JpA
−1(SNs)

T
(

Γp|t +

N
∑

k=1

Γk|prec(k)

)

. (4.8)

Notice that we use the abbreviated notation xp and Jp to represent the postural coordinates

and the associated Jacobian shown in (4.6) and (4.7). For the above representation we have

used the equality

ẍp = Jp

ϑ̇b

q̈

+ J̇p

ϑb

q̇

(4.9)

and the torque decomposition shown in (4.4).

Based on the prioritized multi-task control structures presented in (3.20) and (3.26), we

propose to control postural DOFs using the following posture control vector:

CHAPTER 4. POSTURE CONTROL 79

Proposition 4.2.1 (Posture motion control). The following torque vector yields linear

control of postural accelerations

Γp|t = J ∗T
p|t

(

Λ∗
p|ta

ref
p + µ∗p|t + p∗p|t − Λ∗

p|tJpA
−1(SNs)

T
N
∑

k=1

Γk|prec(k)

)

, (4.10)

where aref
p is a joint feedback control policy for all postural DOFs, J∗

p|t , J∗
pN

∗
t is the

prioritized posture Jacobian discussed in (3.14),

Λ∗
p|t =

(

J∗
p|tΦ

∗J ∗T
p|t

)−1
, (4.11)

is a posture inertial term similar to (3.19), and µ∗
p|t and p∗

p|t are Coriolis/centrifugal and

gravity terms with similar expressions than (3.27) and (3.28).

Proof. Because this controller is based on Corollary 3.2.1, it will yield the linear behavior

ẍposture = aref
p . (4.12)

Choosing the following aggregation of control policies

aref
p =

aref
h,hip

αref
λ,hip

αref
φ,chest

, (4.13)

where aref
h,hip, α

ref
λ,hip, and αref

φ,chest are control policies for the different postural DOFs, will

result in linear control of postural coordinates, i.e.

ẍposture = aref
p ⇐⇒

ḧhip = aref
h,hip

λ̈hip = αref
λ,hip

φ̈chest = αref
φ,chest

. (4.14)

For instance, for the example shown in Figure 4.2, we have used the following joint PD

CHAPTER 4. POSTURE CONTROL 80

control law

aref
p = −Kp

hhip − hgoal(t)

λhip − λgoal(t)

φchest − φgoal(t)

−Kv

ḣhip

λ̇hip

φ̇chest

. (4.15)

where Kp and Kv are desired proportional and differential gain matrices. The goal positions

are determined using a 6-D haptic device connected to the proxy red sphere shown in Figure

4.2.

4.2.1 Example: Posture Control to Avoid an Overhead Obstacle

Figure 4.3: Posture control for avoiding overhead obstacle: This sequence of snap-
shots of an actual experiment illustrates the interactive control of upper-body orientations
during walking. The walking behavior is created using the primitives described in 3.10,
while the hip’s link pitch orientation is commanded to rotate forward 45◦ from the vertical
axis.

CHAPTER 4. POSTURE CONTROL 81

An example implementing realtime interactive control of the posture during a walking

behavior is shown in Figure 4.3. Here, walking is created using the four phases described

in Figure 3.10. The posture is controlled based on the techniques previously shown in

this section. To avoid colliding with the overhead obstacle, the hip’s pitch orientation is

commanded to rotate 45◦ forward with respect to the global vertical axis. Because the

posture is controlled in the null space of tasks involved in the walking behavior, all goals

can be simultaneously accomplished at runtime.

4.3 Criteria Based Postures

A second approach to controlling the robot’s posture consists on optimizing desired criteria

through gradient projection in the task’s null space. Although null space control of sec-

ondary criteria has been widely used mostly in the context of inverse kinematic control, we

will propose here a novel projection technique that will provide optimal gradient descent at

the torque level. Using this technique we will implement novel postural control strategies

that will mimic human postural behavior and optimize actuator performance in humanoids.

In the previous section we presented techniques to control the position and orientation of

postural DOFs. However, it is often more convenient to determine desired postural criteria,

and optimize it using all available movement redundancy. Our representation of humanoids

as non-fixed branching systems will allow us to characterize the task’s residual redundancy

at the whole-body level and use it to optimize the desired criteria.

Supported by anthropomorphic bodies, humanoids are designed to transcend conven-

tional machines. While prioritized multi task control provided a platform to implement

interactive locomotion and manipulation behaviors, the objective of the robot’s posture is

to optimize performance criteria and mimic human behavior. The posture control strategies

we will discuss in this section will be designed to achieve such performance.

4.3.1 Imitation of Human Poses

Our goal here is to develop control strategies to mimic captured human poses (see Fig-

ure 4.4). In contrast with other approaches, our control strategy will not rely on interpo-

lating trajectories between poses. Instead we will use poses as attractor potentials.

Let us consider the two captured poses shown in Figure 4.4. One of the snapshots

corresponds to an upright pose while the other one corresponds to a crouching pose. The

musculoskeletal data used in the capturing process has been derived from SIMM models

CHAPTER 4. POSTURE CONTROL 82

Figure 4.4: Captured human poses: Concept depicting the mapping of captured human
poses into robot poses. The above images connected with virtual muscles (red lines) are
the outcome of a motion capture process of a real human standing up and crouching down.
These poses are mapped into our humanoid model to be used as equilibrium poses by
our posture controller. The tags adjacent to the superimposed images correspond to joint
positions of the captured poses.

(Delp and Loan 2000). Our hypothesis is that human-like movement will emerge when im-

itating locally captured human poses. To avoid interfering with the robot’s global task, the

desired poses will be used as attractor potentials operating in the null space of operational

tasks.

Let us consider the control of the robot’s posture to mimic a single pose attractor (e.g.

the upright pose in the previous example). Captured poses are represented in terms of joint

positions by the vector qpose.

CHAPTER 4. POSTURE CONTROL 83

Definition 4.3.1 (Postural criteria). The following potential function defines an error

function in joint space designed to imitate recorded poses

Vp(qs) =‖ qp − qpose ‖2 . (4.16)

Here qp is the vector of joint coordinates for posture control and ‖ . ‖2 is the Euclidean

norm.

Definition 4.3.2 (Joint coordinates for posture control). The following vector rep-

resents a subset of joint positions assigned to control postural criteria

qp ⊂ q. (4.17)

In turn, postural velocities are expressed as

q̇p = Sp

ϑb

q̇

, (4.18)

where Sp is a predefined posture selection matrix that acts like a Jacobian.

Definition 4.3.3 (Prioritized postural Jacobian). The following matrix represents the

prioritized postural Jacobian with similar derivation than (3.14)

S∗
p|t = S∗

pN
∗
t , (4.19)

where N∗
t is the null space matrix shown in (4.3) and

S∗
p = SpSNs (4.20)

is the constrained postural Jacobian with similar derivation than (2.47).

Dynamics and Control

We first derive the equation of motion of postural coordinates by left-multiplying (3.15) by

the term SpA
−1, leading to the following equation of motion

q̈p + SpA
−1N T

s (b+ g) + SpA
−1J T

s ΛsJ̇s

ϑb

q̇

= SpA
−1(SNs)

T
(

Γp|t + Γt

)

, (4.21)

CHAPTER 4. POSTURE CONTROL 84

where we have used the equality

q̈p = Sp

ϑ̇b

q̈

(4.22)

and the torque decomposition given in (4.4). We seek control solutions that yield linear

control of postural accelerations while operating in the task’s null-space as shown in (4.5).

Definition 4.3.4 (Prioritized inverse postural inertia). The following expression is

referred to as the prioritized inverse posture inertia

Φ∗
p|t , S∗

p|tΦ
∗S ∗T

p|t , (4.23)

where Φ∗ is the constrained projection of A−1 shown in (2.42). In general the above inverse

inertia will not be full rank because qp is normally larger than the number of available DOFs

within the tasks’s residual redundancy, i.e.

rank(Sp) > rank(N∗
t). (4.24)

Although Φ∗
p|t does not have a strict physical meaning it will appear when formulating control

structures as an inertial term.

Theorem 4.3.1 (Postural criteria-based control). The following posture control vector

will yield optimal gradient descent of postural criteria

Γp|t = S ∗T
p|t Fp|t, (4.25)

where Fp|t is a posture control vector with the following expression

Fp|t =
(

Φ∗
p|t

)+
αref

p + b∗p|t + g∗p|t −
(

Φ∗
p|t

)+
SpA

−1(SNs)
T Γt. (4.26)

Here (.)+ is the Moore-Penrose pseudo-inverse, αref
p is a control policy implementing gra-

dient descent of postural criteria, and the following vectors are Coriolis/centrigural and

gravity terms

b∗p|t , (Φ∗
p|t)

+SpA
−1N T

s b+ (Φ∗
p|t)

+SpA
−1J T

s ΛsJ̇s

ϑb

q̇

, (4.27)

g∗p|t , (Φ∗
p|t)

+SpA
−1N T

s g. (4.28)

CHAPTER 4. POSTURE CONTROL 85

Proof. Based on the above control terms, (4.21) becomes

q̈p + SpA
−1N T

s (b+ g) + SpA
−1J T

s ΛsJ̇s

ϑb

q̇

= Φ∗
p|tFp|t + SpA

−1(SNs)
T Γt, (4.29)

where we have used the following equality shown in Property (4.3.1)

Φ∗
p|t = SpA

−1(SNs)
TS ∗T

p|t . (4.30)

Because Φ∗
p|t is normally not full rank, we consider its eigen-decomposition

Φ∗
p|t =

Ur Un

Σr 0

0 0

U T
r

U T
n

, (4.31)

where the U matrices are eigenvectors and Σr is the matrix of non-zero eigenvalues. Here,

the zero eigenvalues correspond to uncontrollable posture directions. The number of zero

eigenvalues is equal to the number of operational coordinates being controlled. Therefore,

the unitary matrix Ur (the subscripts r and n mean rank and null respectively) reveals the

controllable directions where the posture operates. Based on the above eigen-decomposition

the pseudo-inverse of the posture inertia can be expressed as

(

Φ∗
p|t

)+
= UrΣ

−1
r U T

r . (4.32)

Plugging this expression into (4.26) and using (4.25) into (4.29) we obtain the linear behavior

U T
r

(

q̈p = αref
p

)

, (4.33)

revealing that our controller linearizes the controllable posture directions while ignoring

other directions dominated by priority tasks. To obtain the above equation we have used

the equality Φ∗
p|t

(

Φ∗
p|t

)+
= Ur U

T
r and the equality U T

r Ur = I. In turn, plugging αref
p will

result in optimal gradient descent.

Property 4.3.1 (Alternative expression of Φ∗
p|t). The inverse posture inertia defined

in (4.23) has the alternative expression given in (4.30).

Proof. Using the expression of S∗
p|t given in (4.19), the property N∗

t Φ∗ = Φ∗N ∗T
t shown in

(A.15), and the property (N∗
t)2 = N∗

t shown in (A.10) the following equality holds

S∗
p|tΦ

∗S ∗T
p|t = S∗

pΦ∗S ∗T
p|t . (4.34)

CHAPTER 4. POSTURE CONTROL 86

Using the expression of S∗
p given in (4.20) and the expression of Φ∗ given in (2.42) the above

expression becomes

SpSNsSNsA
−1(SNs)

TS ∗T
p|t . (4.35)

Using the equality SNsSNs = Ns given in (2.44), the equality NsA
−1 = A−1N T

s given in

(2.27), and the property (Ns)
2 = Ns given in (2.26) the above expression becomes

SpA
−1(SNs)

TS ∗T
p|t (4.36)

which is equal to (4.30).

Proposition 4.3.1 (Gradient descent control law). The following PD control law

implements postural gradient descent while providing a velocity saturation mechanism

αref
p = −kv

(

q̇p − νvωdes

)

(4.37)

ωdes = −kp

kv
∇Vp, νv = min

(

1,
ωmax

‖ ωdes ‖
)

. (4.38)

where νv is the saturation term, ωmax is the maximum allowable angular velocity, ∇Vp is

the gradient of Vp with respect to qp, and kp and kv are proportional and differential gains

respectively.

Proof. When applying this control law to (4.33), the posture will descend along the con-

trollable directions defined by U T
r ∇V (qp), achieving optimal descent within the projection

hyper-plane defined by the directions Ur. At the same time, this control law will result

in velocity saturation in the controllable directions according to the description given in

(3.43).

4.3.2 Example 1: Upright Posture Attractor

Let us consider the control example shown in Figure 4.5 designed to mimic an upright

posture. The only acting task besides the posture is balance control. Based on the task

and posture control decomposition described in (4.4) we consider the following dual control

structure

Γ = ΓcogH + Γp|t, (4.39)

where ΓcogH is the torque term designed to control the horizontal COG as shown in Section

2.4 and Γp|t is the posture torque structure. The upright pose shown in Figure 4.5 corre-

sponds to the desired pose reference qpose discussed in (4.16). In our example we use all

CHAPTER 4. POSTURE CONTROL 87

joint coordinates to define the pose, therefore qp = q. To minimize the posture potential

we use the control law described in (4.37). The focus is now on the posture. The robot is

Figure 4.5: Upright pose attractor: In this experiment, the joint space distance to
a captured pose is minimized under gradient projection in posture space. The robot is
initially set on a crouched pose. Upon movement activation the robot’s body moves upwards
to minimize the posture potential. The data graphs depict the evolution of the posture
potential towards the captured pose and the evolution of the robot’s horizontal COG.

initially set on a crouched pose. Upon activating the posture controller, the body moves

upwards towards the reference pose. The posture energy is minimized within the limits

allowed by balance constraints. The minimum energy achieved is 0.1rad, a value very close

to zero, since the capture pose was balanced in first place. Using task and posture decom-

position we are able to maintain balance while minimizing the posture energy. The robot’s

horizontal COG is maintained at the center of the feet at all times despite postural mo-

tion. The maximum error on the COG is less than 0.5mm, demonstrating that the task is

completely decoupled from the posture. Posture velocity saturation can be observed in the

accompanying data graphs. A value ωmax = 2rad/s has been used to saturate the angular

velocity. After reaching maximum velocity the energy decreases at a fixed rate.

CHAPTER 4. POSTURE CONTROL 88

4.3.3 Example 2: Upright Posture Control with Contact Task

We consider the example shown in Figure 4.6 where the robot’s right hand is commanded

to maintain contact with the pallet’s jack while optimizing the robot’s pose. The robot’s

hand is controlled to stay at a fixed location, making contact with the pallet jack. The

whole-body controller has the structure

Γ = ΓcogH + Γhand|cogH + Γp|t, (4.40)

where Γhand|cogH corresponds to hand control acting with lower priority than balance control.

The starting pose has been chosen to be off-symmetry, with the upper torso leaning to the

Figure 4.6: Upright pose under contact: Here, the robot’s right hand is controlled to
maintain contact with the pallet jack while the posture imitates the upright reference pose.

CHAPTER 4. POSTURE CONTROL 89

left. Upon posture activation the robot’s body moves upwards to minimize the posture

potential. Although the starting posture was non-symmetrical, the final posture inherits

the symmetry of the reference pose. In the data graphs, we can see that both the hand

position and the COG’s horizontal position remain quasi static during movement execution

demonstrating the decoupled effect between tasks and posture.

4.3.4 Example 3: Posture Behavior with Interactive Task

We consider the example shown Figure 4.7) based on the same control structure as in

(4.40). This time however, the right hand is teleoperated in realtime to reach different

points around the reachable workspace. The hand moves over a large area, approaching the

ground at t = 5s and reaching the highest position at t = 12s. The posture potential is

optimized at all times minimizing the distance to the reference pose.

4.3.5 Example 4: Posture Switching To Optimize Reachable Workspace

We consider the example shown in Figure 4.8 where two poses are used as references and a

switching policy between poses is implemented. Using multiple poses allows us to use more

efficiently the reachable workspace while maintaining higher resemblance to human poses. In

Figure 4.8 two different experiments are shown side by side, one involving posture switching

and another one based on a single pose. The two reference poses correspond to the upright

pose an the crouching pose shown in Figure 4.4. The task consists on reaching the ball.

While the experiment shown on the right side of Figure 4.8 is implemented using a single

reference pose, the experiment on the left side is implemented using postural switching.

This last experiment is supported by the following posture potentials,

Vpose 1 =‖ q − qupright ‖2, (4.41)

Vpose 2 =‖ q − qcrouching ‖2, (4.42)

where qupright and qcrouching correspond to the reference poses. The controller structure is

Γ = ΓcogH + Γhands|cogH + Γp|t. (4.43)

The right and left hands are simultaneously controlled. The switching policy establishes

that the upright pose is used for reaching tasks below a given height and the crouching

pose is used otherwise. Initially the robot is standing up. The goal is to reach the ball at

ground level. When reaching down, the posture energy decreases until the pose resembles

CHAPTER 4. POSTURE CONTROL 90

Figure 4.7: Posture behavior with interactive task: These images correspond to a
task and posture control example where the robot’s right hand is teleoperated to different
points around the workspace and the posture is used to minimize the distance an upright
pose.

the upright reference, however as the movement proceeds downwards the posture energy

increases again. At t = 4s the switching threshold is reached and as a result the crouching

pose is activated. Once more the posture energy decreases in its effort to imitate the new

pose.

On the right side, a similar experiment is shown based only on imitating the upright

pose, i.e. no switching policy between postures is implemented. As a result the posture

energy increases steadily departing from the reference pose.

CHAPTER 4. POSTURE CONTROL 91

Figure 4.8: Posture switching: In this example, two reference poses are used for posture
control. Pose 1 is used for upper-body reaching tasks at heights above 0.5m, and pose 2 is
used for lower-body reaching tasks.

CHAPTER 4. POSTURE CONTROL 92

Figure 4.9: Human effort: Plot showing human gravity effort compared against computed
null-space motion in posture space using the posture potential given in (4.44). The observed
final configuration, is 0.27 radians (15.5◦) from the computed minimum.

4.3.6 Effort Minimization

In a recent paper we demonstrated that during reaching tasks, humans distribute gravity

torques over the various joints in a manner that is correlated with the available torque capac-

ity at each joint (Khatib, Warren, Desapio, and Sentis 2004). Based on this observation,

and past work from the biomechanics community (Anderson and Pandy 2001; Crownin-

shield and Brand 1981), we conjectured that postural motion involves the minimization of

a muscle effort potential, Vp(q), with the following expression,

Vp(q) =

n
∑

k=1

wi
gi(q)

2

ΓBi
(q)2

, (4.44)

where gi is the gravity torque acting on joint i, ΓBi
is the muscle induced boundary torque

(upper or lower boundary depending on the sign of gi), and wi is an arbitrary weighting

term. We validated this potential in a simulated musculoskeletal model of the human body

suggesting a robust correlation between the recorded motion and the proposed postural

potential. In Figure 4.9 we show a captured human pose with the observed effort valued

compared against the computed minimum using the potential function given in (4.44). As

we can see, the final configuration of the real and simulated human are very close in value

(0.27 radians), validating the proposed effort potential.

CHAPTER 4. POSTURE CONTROL 93

Based on these observations we have implemented gravity effort minimization for hu-

manoid posture control using similar control representations than in previous examples. In

fact, we also use the control structure described in 4.25 to minimize effort. However, the

reference acceleration vector αref
p is now determined based on an effort energy. We first

characterize the vector of gravity torques as

g(q) = S g(xb, q) =

g6(xb, q)
...

gn+6(xb, q)

, (4.45)

where S is the actuation matrix given in (2.19) and g(b, q) is the vector of generalized

torques described in (2.4). This selection matrix removes components corresponding to

passive DOFs. Furthermore, we use the following simplified effort potential

Vp

(

g(q)
)

=‖ g(q) ‖2=

n
∑

k=1

gi(q)
2. (4.46)

To optimize the above potential we propose the following velocity saturated control law

αref
p = −kv

(

q̇ − νvωdes

)

(4.47)

ωdes = −kp

kv

∇qVp

(

g(q)
)

, νv = min
(

1,
ωmax

‖ ωdes ‖
)

, (4.48)

where ∇qVp

(

g(q)
)

is the gradient of the effort energy with respect to joint coordinates.

The gradient of the above effort potential can be further expressed using the following

decomposition

∇qVp

(

g(q)
)

=
δVp(q)

δq
=
δVp(g(q))

δg(q)

δg(q)

δq
= J T

g(q)g(q), (4.49)

where Jg(q) = ∂g(q)/∂q is the Jacobian of the gravity torque vector. To determine the

gravity Jacobian we use the following numerical approximation

Jg(q) =

g1(q1+∆q1)−g(q1)
∆q1

· · · g1(qn+∆qn)−g(qn)
∆qn

...
...

gn(q1+∆q1)−gn(q1)
∆q1

· · · gn(qn+∆qn)−gn(qn)
∆qn

. (4.50)

An alternative closed form expression of the above Jacobian can be found in (Baerlocher

CHAPTER 4. POSTURE CONTROL 94

2001) and has the following expression

Jg(q) =

∂g(q)
∂q1

· · · ∂g(q)
∂qn

 , (4.51)

with
∂g(q)

∂qi
= Jcog(G× aj). (4.52)

Here, Jcog is the Jacobian of the global COG as expressed in (2.52), G =

0 0 −9.81m/s2

T

is the gravity acceleration vector, and aj is the 3×1 unit axis of rotation (e.g. for a revolute

joint rotating on its y axis, aj =

0 1 0

T

).

4.3.7 Example 1: Effort Minimization while Standing Up

We consider the example shown in Figure 4.10 illustrating the proposed effort minimization

method acting on our simulated humanoid. The simultaneous task and posture control

structure is expressed as

Γ = ΓcogH + Γp|t, (4.53)

where ΓcogH is the torque that controls the horizontal components of the COG and Γp|t is

the torque that controls the proposed effort posture according to the structures previously

discussed.

The humanoid is initially set on a crouched pose. Upon posture activation, the gradient

of the effort potential described in (4.46) is minimized using the control law (4.47) and

based on the control structure developed in (4.25). The following control parameters are

used in our example: ωmax = 2rad/s, kp = 1000, and kv = 2
√

kp.

In the data graph accompanying Figure 4.10 we can observe that the posture energy

descends at a moderate speed and reaches values close to zero.

4.3.8 Example 2: Effort Minimization with Interactive Task

We consider the example shown in Figure 4.11. This time, two operational tasks are con-

sidered consisting on controlling balance as well as the robot’s right hand. The torque

decomposition is characterized by the structure

Γ = ΓcogH + Γhead|cogH + Γhand|head|cogH + Γp|t, (4.54)

where Γhead|cogH corresponds to the a head orientation task subject to the balance task and

Γhand|head|cogH corresponds to hand control subject to balance and head control. Posture

CHAPTER 4. POSTURE CONTROL 95

Figure 4.10: Effort minimization while standing up: This experiment validates the
proposed whole-body effort minimization technique. The posture descends the effort po-
tential until it reaches zero value.

CHAPTER 4. POSTURE CONTROL 96

Figure 4.11: Effort minimization under hand control: Effort minimization is accom-
plished in the null-space balance and hand control. The robot’s right hand is teleoperated
to reach different points around the robot’s workspace.

control is achieved using the same strategy than in the previous example.

At t = 0 the humanoid starts from a crouched pose while the right hand is teleoperated

using the mouse. When posture control is activated, the robot’s posture minimizes effort

CHAPTER 4. POSTURE CONTROL 97

energy. However, since the posture operates in the null-space of priority tasks, both COG

and hand control are first accomplished. The residual redundancy is therefore used to

minimize the effort. The data graph accompanying the figure show effort minimization

while controlling the desired priority tasks. Once more the maximum posture velocity is

ωmax = 2rad/s, the linear gain is kp = 1000 and the velocity gain is kv = 2
√

kp.

4.4 Posture Stiffness Control

For tasks involving manipulation and locomotion behaviors, postural movement involves

the heaviest parts of the robot’s body, including the hips and the upper torso. In case of

accidental collisions these parts can inflict great damage to the surrounding environment.

Two aspects of the posture motion need to be controlled to provide maximum safety. First,

joint velocities and accelerations of postural motion need to be limited below dangerous

values. Second, the posture needs to be compliant upon external collisions without relying

on force sensing.

Figure 4.12: Saturated joint velocities during effort minimization: This data graph
corresponds to joint velocities during the example shown in Figure 4.10.

Posture dynamics were characterized in (4.21) and a linearized control structure was

achieved in (4.33). We will exploit these structures to implement safety procedures.

CHAPTER 4. POSTURE CONTROL 98

To limit maximum velocity and acceleration on the posture we propose using the fol-

lowing multi saturation control law first discussed in (3.47)

αref = νaαdes, (4.55)

αdes = −kv

(

q̇p − νv ωdes

)

, νa = min

(

1,
αmax

||αdes||

)

, (4.56)

ωdes =
kp

kv

∇Vp(q) , νv = min

(

1,
ωmax

||ωdes||

)

, (4.57)

where αmax and ωmax are the maximum allowable acceleration and velocity values respec-

tively, and νa and νv are saturation variables. When the acceleration component αdes reaches

a value greater or equal to αmax the controller saturates accelerations. However, because

posture control is linearized only within the controllable directions as shown in (4.33) the

saturation behavior takes only place in these directions, i.e.

U T
r

(

|q̇p| ≤ ωmax
|ωdes|
||ωdes||

)

, (4.58)

U T
r

(

|q̈p| ≤ αmax
|αdes|
||αdes||

)

, (4.59)

where |.| is the vector of absolute values of the enclosed term, and ||.|| is the Euclidian norm.

Let us consider once more the example on effort minimization shown in Figure 4.10. We

set the following saturation values, ωmax = 1rad/s and αmax = 5rad/s2. The joint velocities

for the right leg and upper body are shown in Figure 4.12. As we can see the velocities stay

below the desired value and the accelerations are smooth. The highest values correspond

to knee and hip joints.

Posture compliance is achieved by choosing low postural gains in the control law given

in (4.55). In theory, the gains can be set as low as desired since we compensate for dynamic

effects. In practice, we need to chose these gains to reject modeling errors. However,

when comparing to inverse kinematic control methods our choice of gains is quite arbitrary

whereas in inverse kinematic methods gains need to be very high. Our simulator for instance

tolerates gains as low as kp = 20Nm/rad without loosing performance.

4.4.1 Examples: Response to Force Perturbations

We consider the example shown in Figure 4.13 involving mimicking an upright pose. The

control gain kp is set to a low value, 50Nm/rad. We apply external forces on the robot’s

head and on his hips. The applied linear forces are of 300N in magnitude on the direction

CHAPTER 4. POSTURE CONTROL 99

pointed by the red arrows. As a result, the posture responds with high compliance, due to

Figure 4.13: Posture stiffness control: This snapshots depict an actual experiment of
posture compliance under low postural gains. The applied external forces are shown as red
arrows.

the low stiffness gains. In fact, the whole-body behavior is compliant. When the applied

forces are in the horizontal direction, the upper body complies on the x direction. When

CHAPTER 4. POSTURE CONTROL 100

the applied forces are in the vertical direction, the robot’s legs comply downward on the z

direction.

Chapter 5

Realtime Handling of Dynamic

Constraints

We will present here reactive control methods to handle dynamic constraints in rapidly

changing environments. When integrated into high level controllers or motion planners,

these methods will allow robots to respond autonomously to dynamic events without inter-

rupting the global task.

In control, a key problem concerns the combined interaction of high-level controllers

with reactive methods. To execute sophisticated tasks, a global controller should be able to

handle both local and global constraints. In this context, the goal of reactive controllers is

to create immediate response to fast changing events while the goal of high-level controllers

is to create a general behavioral response (emergent behaviors) or to find paths that achieve

the desired task goals (motion planning). The goal of this chapter is to present reactive

control methods to handle internal and external constraints during realtime interactions as

well as to explore the connection of reactive techniques with high level controllers. We will

focus on control methods to handle a variety of constraints including collision avoidance,

joint limit constraints, self-collision avoidance, and support constraints.

Though realtime movement generation under dynamic constraints has been thoroughly

studied in the context of mobile navigation, in humanoid systems this problem is starting

to receive much attention. The objective of this chapter will be to develop techniques to

handle dynamic events in humanoid systems. In the near future, coordinating reactive and

high-level controllers will allow humanoids to engage in sophisticated tasks such as operating

in tight spaces, walking among moving obstacles, and in general responding to a variety of

dynamic events.

101

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 102

The methods we will describe here are aimed to support the implementation of high level

controllers. For instance, our reactive techniques could support the creation of high level

behaviors that would respond autonomously to internal and external constraints. Moreover,

our control methods will provide the support to monitor task feasibility under all acting

constraints allowing controllers to change robot behavior at runtime.

In the area of motion planning our control methods will provide new capabilities. Pre-

vious work in our lab concerns the development of the elastic strip framework (Brock and

Khatib 2002), a dynamic planning method that can modify global paths in response to

dynamic events. Although in its current state the elastic strip framework works well for

mobile systems, it remains to extend it to humanoid systems where balance stability and

supporting contacts are an integral part of the movement. The methods we will describe

here will provide the necessary support to extend elastic strips to humanoids. For instance,

our methods could be used to project candidate paths in the robot’s posture space instead

of relying on direct joint space mappings, providing support consistency and precise control

of COG accelerations while tracking the desired paths. We will describe techniques that

when connected to elastic planners will allow controllers to deform candidate paths not only

in response to incoming objects but also in response to joint limits and self collisions.

With the methods we will describe here, whole-body control will be reduced to the

planning and control of a few operational points regarding locomotion and manipulation

tasks while balance stability, contact stance, and response to dynamic constraints will be

automatically handled through reactive techniques. Our methods will be based on potential

fields. For instance, collision avoidance will be implemented using repulsion fields while

joint limits avoidance will be implement using blocking attractors. Potential fields became

popular in robotics after it was proposed by (Khatib 1986).

As part of this chapter, we will discuss the role of balance constraints. In previous

chapters, manipulation and locomotion tasks were designed to operate in the null space of

COG controllers. To handle all acting constraints, we will further project operational tasks

in the combined null space of all acting constraints, thus preventing constraint violations.

In Chapters 2 and 3 we presented control methods that provided linear control of COG

accelerations. Linear control of COG accelerations will still be feasible in the presence of

multiple acting constraints. Whole-body motion generation under balance constraints has

been mostly studied as a planning problem (Kuffner et al. 2003; Hauser et al. 2006) or as

a purely locomotion problem (Harada et al. 2004; Kajita et al. 2003b). Our approach will

complement these methods by providing linear control of COG accelerations in the presence

of multiple acting constraints.

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 103

Internal constraints such as self collision and joint limit avoidance are especially relevant

when generating goal-based behaviors. Our approach to handle self collisions will rely on

implementing repulsion fields on proximity points of nearby links, creating dual repulsion

forces on link pairs. In our current implementation, to compute efficiently distances between

link pairs we use a hierarchical sphere model (Ruspini and Khatib 1999) and apply Gilbert’s

efficient distance computation (Gilbert, Johnson, and Keerthi 1988). However, we are

currently replacing these algorithms with a more efficient library called SWIFT++ (Ehmann

and Lin 2000). Self collision constraints have been previously studied in the context of

motion validation (Kanehiro and Hirukawa 2001; Kuffner et al. 2002). However, our control

approach goes further ahead by providing support to modify the robot’s pose in response to

self collisions. When combined with local planners, our approach will provide the support

to modify candidate paths in response to unplanned self-collision events.

To handle joint limits, our approach will consist on locking joints before they hit their

limits. Strategies to handle joint limit constraints date back to (Liegois 1977). With the

implementation of visual servoing techniques, joint limit prevention has recently regained

importance (Espiau, Chaumette, and Rives 1992; Marchand and Hager 1998). Our methods

here will extend these approaches to operate in full humanoid systems, exploiting the overall

system redundancy. In contrast with previous methods, our approach will rely on enforc-

ing constraints as priority tasks while other operational tasks will operate in the residual

redundancy. This technique will prevent operational tasks from violating constraints and

will allow controllers to determine task feasibility under the acting constraints.

Collision constraints will be handled reactively via repulsion fields against incoming

obstacles. Avoidance techniques have been popular in the context of path relaxation (Krogh

1984; Buckley 1986; Brock and Khatib 2002), high level reactive control (Khatib 1986;

Brooks 1986), and collision free paths (Moravec 1980; Chatila 1981; Lozano-Perez 1983;

Latombe 1991; Laumond and Jacobs 1994). Our techniques will enhance and complement

previous reactive and non-reactive techniques.

This chapter is organized as follows. In Section 5.1 we will describe a novel control

structure to handle constraints reactively. This structure will extend our previous work

on multi-task control (see Chapter 3). In Section 5.2 we will characterized a variety of

internal and external constraints and propose techniques to handle them in realtime. A

large number of examples will be presented throughout the chapter.

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 104

5.1 Control Structure to Handle Constraints

In this section we will develop control techniques to respond to dynamic constraints while

pursuing task goals. These techniques will be developed in the context of operational space

control extending the whole-body control framework described in previous chapters.

Humanoids are aimed at executing realtime manipulation and locomotion tasks in com-

plex environments, possibly with a high degree of autonomy. Operating in these environ-

ments entails responding to dynamic events such as moving obstacles and contact events

without interrupting the global task. For instance, to get into a car a humanoid needs to

handle a sequence of contact events while tracking a planned motion; balance stability and

hip placement need to be simultaneously controlled. These type of control scenarios require

control structures that can synthesize highly constrained movements. Our methods will

provide this support.

We will develop new control structures that will operate with the whole-body con-

trollers developed in previous chapters. Reactive response to movement constraints will

be addressed as an analytical problem, without involving offline computations. In contrast

with previous approaches, constraints will be handled as priority tasks, determining the

feasibility of other tasks and shaping the robot’s postural space.

5.1.1 Constraint Prioritization

Realtime response to motion constraints has been extensively addressed as a secondary

process. In contrast, our approach will consist on handling motion constraints as priority

processes and executing operational tasks in the null space of constrained tasks.

To illustrate our approach, let us consider the control example shown in Figure 5.1,

where the robot’s end-effector is commanded to move towards a target point. When no

constraints are active, the end-effector is controlled using operational space control (Khatib

1987), i.e.

Γ = J T
taskFtask, (5.1)

where Γ is the vector of actuation torques, Ftask is a control force to move the end-effector

towards the desired goal, and Jtask is the end-effector’s Jacobian matrix. When the elbow

joint enters the activation zone (shown in red), we project the task in the constraint-

consistent motion manifold, decoupling the task from the constraint. At the same time, an

artificial attraction potential is implement to prevent the elbow from penetrating further

into the activation area. The simultaneous control of constraints and operational tasks is

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 105

Figure 5.1: Joint limits control concept: In image (a), the robot’s end-effector has been
commanded to move towards a desired goal. The red area defines a joint limit activation
zone for the elbow joint. When this area is reached (b), a control approach is implemented
to block the elbow joint while pursuing the goal (c). Images (d) and (e) depict the attractor
potential used to block the elbow joint inside the activation area.

expressed as

Γ = J T
constraintFconstraint + J T

task|cFtask|c, (5.2)

where

Jtask|c , JtaskNconstraint (5.3)

determines a constraint-consistent projection of the end-effector task (the subscript {task|c}
indicates that the task is projected within the null-space of the constraint),

Nconstraint , I − JconstraintJconstraint (5.4)

is the dynamically-consistent null space matrix of the constraint Jacobian, Fconstraint is

the vector of blocking forces (in the example a 1D joint space torque) and will be soon

characterized, Jconstraint is the Jacobian of the violating joint (in the example it would be a

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 106

constant matrix with zeros in non-violating joints an a one in the elbow joint), Ftask|c is the

vector of task forces operating in the constraint-consistent motion manifold, and Jconstraint

is the dynamically consistent generalized inverse of the constraint Jacobian (Khatib 1987).

Figure 5.2: Handling of joint limits on a humanoid: This sequence of images depicts
a robot reaching a target under joint limit constraints. In image (a), the robot’s right
hand is commanded to move towards the drill. In image (b), a constraint handling task
is activated to prevent the right elbow to reach its hardware limit. In turn, the reaching
task is projected into the null space of the constraint. In image (c), the robot reaches the
drill while complying with the elbow constraint. When a new hand command is issued, the
elbow joint is unlocked. A separate process is used to determine activation conditions.

When controlling full humanoids systems, the same prioritization principles than in (5.2)

are applied. For instance, we consider the whole-body behavior illustrated in Figure 5.2,

analogous to some manipulation behaviors presented in Chapter 3. The task decomposition

to execute this behavior is shown below

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 107

Task Decomposition (Reaching a Drill)

Task Primitive DOFs Control Policy Priority level

Balance 2 (x− y plane) position 1

Gaze orientation 2 (⊥ plane) position 2

Right hand control 6 hybrid 2

Whole-body posture n = number of joints position 3

Using the multitask decomposition presented in (3.30), the control structure to accomplish

the above behavior is

Γ =
(

J ∗T
balanceFbalance

)

+
(

J ∗T
tasks|p(2)Ftasks|p(2)

)

+
(

J ∗T
postures|p(3)Fpostures|p(3)

)

. (5.5)

Here the subscripts {task|p(priority)} indicate the task name and the priority order. In

addition, the prioritized Jacobians of the above equation have the form given in (3.14) and

the control forces have the form given in (3.26). Notice, that gaze and hand tasks operate

with the same priority level. Therefore, they are combined into a single macro task as

explained in (3.7) and (3.8). However, it would also be valid to control these two tasks with

different priority levels.

As shown in Figure 5.2, when the right arm reaches full stretch, the right elbow joint

enters the constraint activation zone. To prevent constraint violations, we project the entire

whole-body control structure shown above into the constraint-consistent motion manifold

while we lock violating joints according to the following control structure:

Proposition 5.1.1 (Constraint-consistent whole-body control). The following con-

trol structure creates whole-body behaviors and provides a torque term to handle constraints

while preventing constraint violations

Γ =
(

J ∗T
constraintFconstraint

)

+
(

J ∗T
balance|p(2)Fbalance|p(2)

)

+
(

J ∗T
tasks|p(3)Ftasks|p(3)

)

+
(

J ∗T
postures|p(4)Fpostures|p(4)

)

. (5.6)

Here, the subscripts {task|p(priority)} indicate the task name and the priority order. Notice

also that we have committed to a predetermined hierarchy where balance tasks are controlled

with lower priority than constraint-handling tasks, operational tasks are controlled with lower

priority than balance tasks, and postural tasks are projected into the residual redundancy.

The control forces Fconstraint will be used to handle the acting constraints.

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 108

Proof. The above control structure is an extension of the multi-task whole-body control

structure shown in Theorem 4.1.1. Therefore it provides linear control of all prioritized

tasks. The postural term above can be used to implement task based postures as shown in

Proposition 4.2.1 or criteria based postures as shown in Theorem 4.3.1.

The above control structures will be used to handle a variety of constraints as will be

discussed in Section 5.2.

The main goal of projecting operational tasks into the constraint consistent null space is

not only to prevent constraint violations but also to provide the support to check behavior

feasibility under the acting constraints. Checking task feasibility allows controllers to change

behavior at runtime in response to dynamic constraints. Other methods to deal reactively

with dynamic constraints project avoidance criteria in the task’s null space, failing to prevent

constraint violations during conflicting scenarios.

5.1.2 Realtime Response to Dynamic Constraints

We consider here potential field techniques to handle dynamic constraints in realtime. For

example, let us analyze in more detail the joint limit behavior shown in Figure 5.2. When

the elbow joint enters the constraint activation area implement the control structure shown

in (5.6) and we apply blocking forces to stop the elbow joint inside the activation area.

To lock the joint we use attraction fields as shown in Figure 5.3. This potential can be

Figure 5.3: Constraint handling potentials: Image (a) depicts an attraction field that is
used to lock joint limits when approaching hard limits, while image (b) depicts a repulsion
field that is used to avoid obstacles or self-collisions.

expressed using the following energy function

Vconstraint =‖ qelbow(t) − qblocked ‖2, (5.7)

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 109

where qelbow represent the joint position of the elbow joint and qblocked is the desired locked

position. Furthermore, the constraint Jacobian consists of a simple selection matrix, i.e.

Jconstraint =

0 · · · 1 · · · 0

 (5.8)

where a 1 is placed to select the elbow joint, i.e.

q̇elbow = Jconstraint

ϑb

q̇

. (5.9)

Here ϑb and q̇ are base and joint velocities as discussed in Chapter 2. In general, an arbi-

trary number of joint limit constraints can be handled by extending the previous potential

function to multiple joints.

When handling obstacles and self collisions we use repulsion fields. A repulsion field is

illustrated on image (b) of Figure 5.3. This potential can be expressed using the following

energy function

Vconstraint =‖ dobstacle(t) − dsafety ‖2, (5.10)

where dobstacle is the distance between the obstacle and the closest point on the robot’s

body and dsafety is a desired safety distance. The quantities are defined as follows

dobstacle = xrobot − xobstacle, (5.11)

dsafety = Ksafety
dobstacle

‖ dobstacle ‖
, (5.12)

where xrobot is the Cartesian space position of the closest point to the obstacle on the robot’s

body, xobstacle is the position of the closest point on the obstacle, and Ksafety is a constant

gain determining a safety margin. Though we define the above distances as 3D vectors,

obstacle avoidance should be a 1D task acting on the direction of the distance vector. To

map a 3D task into 1D space we manipulate the Jacobian associated with the distance

vector, i.e. Jrobot, removing unnecessary components, i.e.

Jconstraint =
(

0Rd Sn
dR0

)

Jrobot, (5.13)

where dR0 is a 3D rotation matrix between global frame and a frame aligned with the

distance vector, and Sn is a 3 × 3 selection matrix that selects the components on the

normal direction. Although the constraint Jacobian has three rows, its rank is one. As

a result, when projecting constraint forces into actuation torques, only the perpendicular

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 110

direction to the obstacle will be considered.

To respond reactively to dynamic constraints we construct constraint handling tasks

based on the above potentials. Handling constraints is therefore analogous to controlling

operational tasks.

The dynamically-compensated structure to control the acting constraint is

Fconstraint = Λc|sä
ref
constraint + µc|s + pc|s, (5.14)

where aref
constraint is the control policy to implement constraint potentials and will be described

in a few lines. The above controller will yield the desired linear behavior

ẍconstraint = aref
constraint. (5.15)

To implement the potentials shown in Figure 5.3 we use the velocity saturation control law

previously shown in (3.43), i.e.

aref
constraint = −kv

(

ẋconstraint − νv vdes

)

, (5.16)

vdes =
kp

kv
∇Vconstraint , νv = min

(

1,
vmax

||vdes||

)

, (5.17)

5.1.3 Constraint-Consistent Task Control

Given the projection of whole-body behaviors shown in (5.6) how do we control operational

tasks and postures given the acting constraints? Since constraints are handled via force

level tasks as shown in (5.14), they can be directly integrated into our multi-task control

framework described in (3.11) and (3.13).

Let us express the torque structure presented in (5.6) as

Γ = Γconstraints + Γbalance|p(2) + Γtasks|p(3) + Γpostures|p(4), (5.18)

where each term Γtask|p(priority) represents the prioritized torque components shown in (3.11).

Therefore, to control each prioritized task we use the prioritized operational space control

structure presented in (3.20). For instance, based on the prioritized motion control struc-

ture shown in (3.26), balance under the acting constraints is controlled using the following

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 111

structure

Γbalance|p(2) = J ∗T
b|p(2)

(

Λ∗
b|p(2)a

ref
balance + µ∗b|p(2) + p∗b|p(2)−

Λ∗
b|p(2)JbA

−1(SNs)
T Γconstraints

)

, (5.19)

where we have used the abbreviation {b|p(2)} = {balance|p(2)}. This structure will accom-

plish the desired linear behavior

ẍbalance = aref
balance. (5.20)

To control balance (normally xbalance = xcogH, i.e. the horizontal components of the robot’s

COG) we use the control coordinates shown in (2.88) and the control velocity and accel-

eration control laws shown in (3.47), (3.48), and (3.49). An important point here is that

although the overall torque control structure can change when constraints kick in, the feed-

back control law aref
balance is independent of the constraints and therefore balance will not be

disturbed.

Operational tasks besides balance control will be controlled using the control structure

Γtasks|p(3) = J ∗T
t|p(3)

(

Λ∗
t|p(3)a

ref
tasks + µ∗t|p(3) + p∗t|p(3)−

(Λ∗
t|p(3)JtA

−1(SNs)
T
(

Γconstraints + Γbalance|p(2)

)

)

, (5.21)

where we have used the abbreviation {t|p(3)} = {tasks|p(3)}. Once more, the above struc-

ture will yield linear control of operational tasks. For instance, for the example described

in Figure 5.2 where the robot’s head and right hand are controlled as an aggregated task

as shown in Section 3.2.1, the above controller would result in the linear behavior

ẍgaze = aref
gaze, (5.22)

ẍhand = aref
hand, (5.23)

which has been accomplished using the aggregated acceleration vector, i.e.

aref
tasks =

aref
gaze

aref
hand

. (5.24)

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 112

Finally, postures will be controlled using all available motion redundancy using the

structures presented in Proposition 4.2.1 and Theorem 4.1.1.

5.1.4 Task Feasibility Under Constraints

Constraint prioritization ensures that constraints are first accomplished and tasks operate

in the constraint’s redundant space. This projection provides the support to measure task

feasibility and can be used to change overall behavior in response to the acting constraints.

To measure task feasibility, we propose one of the following quantities; the condition

number of the prioritized Jacobian or the condition number of the inverse prioritized in-

ertia matrix. Considering the structure presented in (5.18) and the task control structure

presented in (5.21), task level condition numbers can be expressed as

κ
(

J∗
tasks|p(3)

)

=
σ1

(

J∗
tasks|p(3)

)

σr

(

J∗
tasks|p(3)

) , κ
(

Λ∗−1

tasks|p(3)

)

=
σ1

(

Λ∗−1

tasks|p(3)

)

σr

(

Λ∗−1

tasks|p(3)

) , (5.25)

where σ1(.) and σr(.) are the first and last singular values of the enclosed term for an r-

dimensional task. Both of these operators become singular when the task becomes infeasible

under the acting constraints.

Furthermore, balance feasibility under the acting constraints should also be studied and

monitored. This can be done by computing the condition numbers of the corresponding

balance quantities, i.e.

κ
(

J∗
balance|p(2)

)

=
σ1

(

J∗
balance|p(2)

)

σ2

(

J∗
balance|p(2)

) , κ
(

Λ∗−1

balance|p(2)

)

=
σ1

(

Λ∗−1

balance|p(2)

)

σ2

(

Λ∗−1

balance|p(2)

) . (5.26)

Notice, that the balance task has two degrees of freedom, corresponding to the COG’s

horizontal coordinates.

An advantage of using the condition number of the inverse prioritized inertia over the

condition number of the prioritized Jacobian is that the former has only dimension r × r

where r is normally a small number, while the latter has dimension r × n where n is the

number of actuated joints. However, to choose the best among the two we conducted the

following experiment.

An example on task feasibility using our simulated humanoid robot Collabot is shown

in Figure 5.4. This experiment has been conducted using the task decomposition proposed

for the example of Figure 5.2. The robot’s goal is to reach the red sphere without violating

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 113

Figure 5.4: Example on task feasibility: Collabot is commanded to reach the red sphere,
placed beyond the robot’s reachable workspace.

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 114

joint limits. Hardware joint limits for the elbow joint are reached when the upper and

lower arm become aligned. The constraint activation zone is defined 0.5 rad before the

hard limit. The controller described in (5.5) is used when no joint limits are active and

the controller described in (5.6) is used when the constraint activation zone is reached. A

velocity saturation control law with maximum velocity equal to 0.2 m/s is used to control

the hand towards its goal.

The target point has been chosen in purpose to be out of reach and the behavior is not

designed to initiate walking steps. Initially, the robot’s right hand starts moving towards the

goal and quickly reaches the maximum allowable velocity of 0.2m/s. At t = 2.5 s, the right

arm has reached maximum stretch and as a result a constraint handling task is activated.

Due to the action of the constraint, both the condition number of the constrained Jacobian

J∗
task|p(3) and the condition number of the prioritized inverse inertia matrix Λ∗−1

task|p(3) grow

rapidly towards infinity. We determine a cut off value for this last condition number equal

to 20, which has been empirically chosen. When this value is reached, we change the

command of the hand to stay at its current position. Notice that while the condition

numbers of the prioritized (i.e. constrained) quantities grow rapidly towards infinity, the

condition numbers of the corresponding unconstrained quantities stay within bounds. This

characteristic validates the propose condition numbers as measurements of task feasibility.

When the elbow joint reaches the constraint activation area at 0.5rad a constraint handling

task is activated to block the joint 0.05 rad inside. In the data graphs shown in Figure

5.4 we can observe that while the operational task is feasible its trajectory is completely

straight (due to dynamic decoupling), and when it becomes infeasible due to balance and

joint limit constraints it stops at its current position, several centimeters away from the

target. Also, notice that the COG’s horizontal position remains accurately centered with

submillimeter error.

5.2 Types of Constraints and Control Approaches

In a near future, humanoids will be required to respond in realtime to a variety of dy-

namic constraints characteristic of human environments. In this section, we will discuss

our approach to handle some important motion constraints including supporting contacts,

balance, joint limits, moving obstacles, and self collisions.

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 115

5.2.1 Support Constraints

Supporting constraints were addressed in Chapter 2 assuming that the robot’s feet, and

in general any other part of the robot’s body used for support are constrained by ground

contacts. In Chapter 2 it was shown that to account for contact constraints we could

formulate the following acceleration level equality constraint previously shown in (2.16)

ϑs = 0 (5.27)

ϑ̇s = 0. (5.28)

The impact of supporting constraint appeared first in the generalized equation of motion

given in (2.24). When we developed multi-task control on Equation (3.20), contact con-

straints where integrated at the kinematic and dynamic levels. In particular, the Jacobian

matrices of arbitrary tasks k where modified to integrate the contact constraints as well as

the passive joints describing the global position and orientation of the robot’s in space as

shown in (3.14).

These integration steps allowed us to project control structures directly in the space

compliant with contact supports. As a result the proposed controllers would automatically

assigned joint resources to accomplish the commanded accelerations while complying with

the acting supports.

Let us study the example shown in Figure 5.5. The two sequences shown are part of an

interactive posture behavior. Here Collabot is standing up with its right foot laying on top

of a pedestal. The goal is to control the posture while maintaining contact constraints. To

command interactively the robot’s posture we choose the following task decomposition,

Task Decomposition (Behavior with Foot on Pedestal)

Task Primitive DOFs Control Policy Priority level

Balance 2 (x− y plane) position 1

Gaze orientation 2 (⊥ plane) position (goal-based) 2

Hip height 1 (z axis) position (teleoperated) 3

Hip orientation 3 position (teleoperated) 4

Chest rotation 1 (around z axis) position 5

Captured pose narms = number of arm joints position 6

Here the hip’s posture, which involves the control of the hip’s vertical height and orientation,

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 116

Figure 5.5: Constrained behavior with foot on pedestal: These two sequences of
movement are part of an interactive posture behavior under arbitrary contact constraints.
The red sphere is an interactive point that is modified at runtime by an operator. Support
contacts are automatically handled as part of the control strategy

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 117

is teleoperated in realtime by manipulating the position and orientation of the red sphere

shown in the figure. Vertical translations of the sphere will be translated into hip vertical

positions while rotations along the sphere axes will be translated into hip rotations. The

gaze is controlled to look at a fixed point in space. The torque actuation structure to

simultaneously accomplish all goals is

Γ = Γbalance+Γgaze|p(2)+ΓhipHeight|p(3)+ΓhipOri|p(4)+ΓchestYaw|p(5) +ΓarmsPosture|p(6), (5.29)

where each priority task is controlled through the prioritized structure presented in (3.20).

As depicted in Figure 5.5, the desired operational and postural goals are accomplished

independently of the robot’s contact stance. This capability has been used throughout this

dissertation to synthesize realtime behavior in a variety of contact scenarios.

5.2.2 Balance Constraints

Humanoids must keep balance using a small area defined by the supporting feet and other

supporting contacts. The control of other operational tasks must be accomplished without

compromising balance. As such balance acts both as a task and as a constraint. As a

task, we are interested in determining whether balance can be maintained under the acting

constraints. As a constraint, we are interested in determining whether manipulation and

locomotion tasks can be accomplished without compromising balance stability.

To address these issues, our approach shown earlier in this chapter has been to create

a prioritized control structure where balance acts with lower priority than internal and

external constraints while other operational tasks and postures act with lower priority than

balance, i.e.

Γ = Γconstraints + Γbalance|p(2) + Γtasks|p(3) + Γpostures|p(4) (5.30)

This ordering allows controllers to monitor balance and task feasibility under the acting

constraints. Notice that this structure was already presented in (5.18). The control of

balance can be done using the control structure presented in (3.65).

5.2.3 Obstacle Avoidance

To provide the support to operate humanoids in human environments, we need to develop

control structures that can support the synthesis of avoidance behaviors. A great deal of

work has been focused on the development of obstacle avoidance techniques in the context

of both reactive and global control strategies (Maciejewski and Klein 1985; Khatib 1986;

Latombe 1999; Brock et al. 2002; Kuffner et al. 2003).

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 118

Figure 5.6: Obstacle avoidance concept: When an incoming obstacle approaches the
robot’s body a repulsion field is applied to the closest point on the robot’s body. As a
result, a safety distance can be enforced to avoid the obstacle.

The control structures presented at the beginning of this chapter are designed to respond

quickly to incoming obstacles without interrupting the global task. Incoming obstacles can

strongly shape the robot’s free motion space. By implementing avoidance at the highest

level, we can measure task feasibility given constraining obstacles. To handle obstacles we

apply repulsion fields in the direction of the approaching objects as shown in Figure 5.6.

Repulsion fields can be applied to desired points on the robot’s body by using the control

structure described in (5.14) and the velocity saturation control law described in (5.16).

Let us consider the example shown in Figure 5.7. The only task considered is balance

stability, with no manipulation or locomotion tasks. The posture task is designed to imitate

an upright pose. The objective is to demonstrate the response of a robot to incoming objects.

A desired safety distance is set to 5cm. The same value is used as a threshold to activate an

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 119

Figure 5.7: Example on collision avoidance: An obstacle approaches the robot’s body
activating an avoidance task. The desired safety distance has been set to 5cm. The safety
distance is approximately maintained while the error in balance remains very small.

avoidance task. When the obstacle crosses this threshold, the avoidance task is activated as

a priority task while balance and posture control tasks are projected in the null space of the

constraint. As we can observe, the desired safety distance is approximately maintained with

respect to the moving obstacle without affecting COG control. Moreover, posture control is

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 120

also projected in the constraint’s residual space allowing the robot to optimize poses while

complying with the acting constraints.

A second example is shown in Figure 5.8. This time, not only balance stability and pos-

ture stance are actively controlled but also the robot’s right hand position is controlled. Ini-

tially, an obstacle approaches the robot’s head. Because there is enough available movement

redundancy both the avoidance and the hand task can be simultaneously accomplished.

However, when the obstacle approaches the robot’s right hand, its position cannot be main-

tained. Using the feasibility indexes presented in (5.25) we can monitor this condition and

remove hand control. The data graphs accompanying the figure depict the evolution of the

condition number of the constrained task inertia. When the obstacle approaches the hand,

this condition number grows rapidly towards infinity allowing the controller to remove the

conflicting task.

5.2.4 Joint Limit Constraints

Because the handling of joint limits was analyzed in detail at the beginning of this chapter, in

this section we will focus on two experiments involving goal-oriented control under multiple

joint limit constraints.

At the beginning of this chapter we reviewed techniques to handle elbow joint constraints

without interrupting the global task. As an extension, our approach to handle multiple joint

limits is to construct a multi-joint task with individual locks for the violating joints. Let us

define the joint position vector involving all violating joints, i.e.

qc =

qi

qj

qk
...

, (5.31)

where i, j, k, · · · are violating joints. We define an attraction potential where each joint is

attracted to a locking position inside their activation areas, i.e.

Vconstraint =‖ qc − qlock(i,j,k,...) ‖2, (5.32)

where each violating joint has an associated lock position represented by the values qlock(i,j,k,...).

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 121

Figure 5.8: Task feasibility under collision avoidance: In this sequence we depict an
obstacle approaching the robot’s hand when it is controlled to stay at a fixed location. As
a result, a constraint-handling task is activated, and the manipulation task is projected in
the constraint’s null space. In turn, the task’s condition number grows rapidly to infinity
prompting the controller to change task behavior.

The Jacobian corresponding to this multidimensional constraint is

Jconstraint =

0 · · · 1i · · · 0 · · · 0 · · · 0

0 · · · 0 · · · 1j · · · 0 · · · 0

0 · · · 0 · · · 0 · · · 1k · · · 0

· ·

, (5.33)

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 122

which corresponds to a selection matrix selecting components corresponding to violating

joints. Using the control expression given in (5.14), the control law shown in (5.16), and

the prioritized structure shown in (5.18) we can simultaneously handle multiple joint limits

without interrupting the global task.

Let us study the example shown in Figure 5.9. The task consists once more on reaching

a desired position shown as a red sphere, this time placed at ground level. Hip joint limits

in Collabot are severe to prevent collisions between its bulky torso and its upper legs.

Therefore the goal at ground level cannot be reached. At t = 1 s, the left hip roll joint

is reached causing the controller to lock it. However, there is additional redundancy to

proceed with the task. At t = 2.5 s the right hip pitch joint limit is reached and locked

simultaneously with the left hip roll joint. Almost, simultaneously at t = 2.6 s the right

elbow joint-limit is reached. With the right hip pitch and left hip roll joints locked, the knees

cannot bend down. Therefore the task becomes unfeasible which is immediately reflected in

the condition number of the hand’s prioritized inverse inertia shown in the accompanying

data graph.

A second example is shown in Figure 5.10 where the task corresponds to looking at a

teleoperated point (shown as a red sphere). The two operational tasks here are to maintain

balance and to control the robot’s gaze. To maintain visual contact with the teleoperated

point the robot uses all available joint resources. When joint limits are encountered they are

locked and if there is additional movement redundancy the gaze task can still be controlled.

The data graphs correspond to the sequence (a) and (b) of the figure where the robot is

commanded to look downward. The head’s pitch joint is first reached at t = 1s. However,

the task proceeds until the hip pitch joint limit is reached at t = 2.7s. When the teleoperated

point is further moved towards the robot’s body there is no more available redundancy

to continue looking. As a result the looking task becomes infeasible and the controller

automatically halts the behavior.

5.2.5 Self Collision Avoidance

Self collisions are especially important in humanoid systems due to their high degree of

mobility and anthropomorphic structure. Our approach to avoid self collisions is almost

identical to avoiding obstacles. A potential field is created to maintain a safety distance

between pairs of nearby links, i.e.

Vconstraint =‖ dselfcollision − dsafety ‖2 . (5.34)

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 123

Figure 5.9: Example involving multiple joint limit constraints: In this example,
Collabot is commanded to reach a desired point (sequence (a) and (b)). Image (c) corre-
sponds to the same posture as shown in image (b) but from a different perspective. The
red semicircles indicate the joints that are locked due to joint limit constraints. When the
body achieves its maximum stretch the right elbow joint, the right hip pitch joint, and the
left hip roll joint are locked to avoid reaching hard limits. As a result, the task becomes
unfeasible and the right hand control is halted.

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 124

Figure 5.10: Example involving head orientation under joint limits: The red sphere
corresponds to a teleoperated point that the robot is commanded to look at. All available
joint resources are used to maintain sight of this point.

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 125

This time the distance vector corresponds to closest points on separate links, i.e.

dselfcollision = xlink(a) − xlink(b), (5.35)

and the safety distance has identical form than for obstacle avoidance as shown in (5.11).

Similarly to the Jacobian employed in collision avoidance shown in (5.13), we define the self

collision Jacobian as

Jconstraint =
(

0Rd Sn
dR0

)

Jdistance, (5.36)

where Jdistance is the Jacobian associated with the previous distance vector. Once more, we

rotate the 3D Jacobian of the distance vector to a frame that is aligned with the distance

vector and we remove tangential components. Therefore, self collision avoidance is a 1D

task, thought its Jacobian has 3 rows. An example on self collision avoidance is shown in

Figure 5.11. Here the right hand is teleoperated towards a position where the right arm

intersects the robot’s torso. A desired safety distance of 5cm is set between the robot’s

upper arm and the torso. When the arm crosses this threshold the proposed self collision

avoidance task is activated. As a result the robot’s torso rotates counterclockwise to avoid

collision.

CHAPTER 5. REALTIME HANDLING OF DYNAMIC CONSTRAINTS 126

Figure 5.11: Example on self collision avoidance: The robot’s right hand is teleoperated
towards a position where the right arm intersects the robot’s torso. The proposed self
collision avoidance task is activated and as a result the robot’s torso rotates counterclockwise
to avoid collision.

Chapter 6

Whole-Body Control of

Movements in Midair

Besides realizing movements involving supporting limbs in contact with the ground, we

expect humanoids to execute actions in midair during running and jumping behaviors or

while performing acrobatic tricks. The goal of this chapter is to develop control methods

to create movements in mid air. An example is shown in Figure 6.1 where a humanoid is

commanded to jump upwards and stretch its legs into a straddle.

Behaviors involving mid air stages are increasingly being sought, and may become an

important skill of humanoid systems. For instance, running is needed to provide fast loco-

motion means, intercepting objects in the air could be important for extreme interactions,

and jumping is needed to overcome obstacles in unstructured terrain. More sophisticated

acrobatic behaviors may involve all sorts of movements in the air, such as back flips, body

twists, or somersaults.

When the robot looses contact with the ground there are no reaction forces acting on

the robot’s feet that can provide support to control the global center of gravity. If the

robot’s COG is considered as an inertial frame of reference, we can consider that its angular

momentum is preserved in a weightless space while the COG draws a parabolic trajectory.

These effects are characteristic of free flying and free floating systems.

The study of free flying and free floating systems has received much attention since

the late 1980s with the advent of space robotics programs. Small spacecrafts with attached

manipulators have been envisioned, developed, and tested (Oda, Kibe, and Yamagata 1996).

In this context, several control frameworks have been proposed to control free-floating and

free-flying systems in space. In (Umetami and Yoshida 1989) the notion of free floating

127

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 128

Figure 6.1: Straddle jump: This overlayed sequence taken from an actual simulated ex-
periment shows a jumping sequence with a straddle motion. The COG’s vertical trajectory
is directly controlled in tasks space to lift the robot’s body oboe the ground. Upon loosing
ground contact, a whole-body control strategy based on the methods we will discuss in this
chapter is implemented. The feet are commanded to stretch out horizontally in a straddle
and then to return to a landing position. Upon landing, the robot’s balance can be regained.

Jacobian, a Jacobian matrix that describes the instantaneous kinematics of the robot under

conservation of momenta, was introduced and later extended in (Nenchev, Umetami, and

Yoshida 1992). In (Papadopoulos and Dubowsky 1991) the dynamics of free-floating systems

were analyzed and torque controllers for space robots were proposed. In (Jain and Rodriguez

1993) fast algorithms for the computation of kinematic and dynamic quantities of under-

actuated systems were proposed. In (Russakov, Rock, and Khatib 1995) the operational

space formulation was extended to handle closed loop constraints in free-flying robots .

Other studies, have addressed the control of conventional manipulators with passive

DOFs. In (Arai and Tachi 1991) control of robots with passive DOFs in operational space

was studied, and later extended to contact tasks (Arai and Khatib 1994).

More relevant to our work, the study of legged robots that could run, trot, hop, even

execute somersaults was pioneered by (Raibert 1986) in the MIT Leg Lab. More recently,

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 129

simulation and control of robots that can trot has been studied by (Palmer and Orin 2006).

In this chapter we will extend several of the reviewed techniques and develop a whole-

body control framework to simultaneously control multiple operational tasks as well as the

robot’s posture during movements in mid air.

During movements in midair, the robot’s center of gravity cannot be controlled, therefore

our whole-body control methods will be used to anticipate landing, intercept objects in the

air, and perform acrobatic tricks.

This chapter is organized as follows. In Section 6.1 we will review the basic equations of

motion and physics of robots in free space. In Section 6.2, we will characterize task kinematic

and dynamic representations in free space and extend the operational space formulation

(Khatib 1987) to free floating systems. In Section 6.3 we will develop prioritized controllers

to control multiple tasks and postures in free space. Finally, in Section 6.4 we will discuss

several examples.

6.1 Basic Equations of Motion and Physics of Free Space

While in mid air, conservation of angular momentum imposes dynamic constraints on the

robot’s motion that need to be characterized to develop whole-body controllers.

6.1.1 Joint Space Dynamics

We consider the jumping example shown in Figure 6.1. The base position and orientation

and the associated velocities are characterized by vectors

xb =

xb,p

xb,r

, ϑb =

vb

ωb

, (6.1)

as shown in (2.1) and (2.2). The dynamic behavior of the robot in free space is characterized

by the following equation of motion equivalent to (2.4) but with no reaction forces

A

ϑ̇b

q̈

+ b+ g = S T Γ. (6.2)

where q is the vector of joint coordinates, S is the actuation matrix shown in (2.19), and Γ is

the n×1 vector of actuation torques. Moreover, A, b, and g correspond to the inertia matrix,

Coriolis/centrigural forces, and gravity forces of the free floating system respectively. It is

also convenient to characterize the dynamic behavior of actuated joints with respect to

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 130

actuation torques which can be obtained by left-multiplying the above equation of motion

by the transpose of the dynamically weighted generalized inverse of S, defined further below.

Definition 6.1.1 (Free floating inertia matrix). The following matrix determines the

inertial behavior of actuated joints

A∗ ,

(

SA−1S T
)−1

. (6.3)

This matrix was first characterized in (Xu and Kanade 1992) and (Yoshida 1994) under

the name of generalized inertia matrix.

Lemma 6.1.1 (Dynamically consistent generalized inverse of S). A generalized

inverse of S that projects the equation of motion shown in (6.2) into actuated space is the

dynamically weighted generalized inverse of S with weight equal to A−1, i.e.

S , A−1S TA∗. (6.4)

Proof. Left multiplying (6.2) by the transpose of the above expression leads to the following

reduced equation of motion

A∗q̈ + b∗ + g∗ = Γ, (6.5)

where A∗ is the free floating inertia shown in (6.3), and

b∗ = S
T
b, (6.6)

g∗ = S
T
g (6.7)

are Coriolis/centrifugal and gravity terms respectively. Here we have used the equalities

q̇ = S

ϑb

q̇

, q̈ = S

ϑ̇b

q̈

. (6.8)

Because this equation of motion characterizes the dynamic behavior of actuated joints with

respect to actuation torques, S corresponds to the dynamically consistent generalized inverse

of S.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 131

Property 6.1.1 (Commutation of SS with respect to A−1). The following equalities

hold,

SSA−1S TS
T

= A−1S TS
T

= SSA−1. (6.9)

Proof. Using the expression of S given in (6.4) and the expression of A∗ given in (6.3) we

can write the following equations

SSA−1S TS T = A−1S TA∗(A∗)−1A∗SA−1 = A−1S TA∗SA−1 = A−1S TS
T
. (6.10)

The reciprocal can be demonstrated following similar steps.

Let us also consider the following block decomposition of dynamic quantities,

A =

Abb Abr

Arb Arr

, b =

bb

br

, g =

gb

gr

, (6.11)

where the subscripts containing b and r indicate passive and active (i.e. base and robot)

components, and the mixed subscripts correspond to coupling components.

Property 6.1.2 (Alternative expressions of free floating quantities). The following

expressions are equivalent to the dynamic quantities shown in Equations (6.3), (6.6), and

(6.7)

A∗ = Arr −ArbA
−1
bb Abr (6.12)

b∗ = br −ArbA
−1
bb bb (6.13)

g∗ = gr −ArbA
−1
bb gb . (6.14)

Proof. The expression of A∗ will be demonstrated in (6.32). Using the expression of S given

in (6.1.2) it is straightforward to demonstrate the expressions of b∗ and g∗.

6.1.2 Analysis of the System’s Momentum

Characterizing the robot’s momentum in free space will reveal dependencies between base

and joint displacements. These kinematic dependencies will later be used to develop oper-

ational space controllers for movements in mid air. To study the system’s momentum let

us consider its Euler-Lagrangian representation, i.e.

d

dt

∂K

ϑb

q̇

− ∂(K − U)

∂x̃b

∂q

= S T Γ, (6.15)

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 132

where K and U correspond to kinetic and potential energy values respectively. To match

dimensions, the vector of base positions and orientations x̃b is assumed to be expressed

using Cartesian space positions and Euler angles. The kinetic energy of the system can be

expressed in terms of the system’s inertia as follows

K =
1

2

ϑb

q̇

T

A

ϑb

q̇

. (6.16)

This allows us to split (6.15) into passive and actuated terms, i.e.

d

dt

∂K

∂ϑb

− ∂(K − U)

∂x̃b

= 0, (6.17)

d

dt

∂K

∂q̇
− ∂(K − U)

∂q
= Γ. (6.18)

Since the inertia matrix A is independent of the robot’s position and orientation in space, the

partial derivative of the kinetic energy with respect to x̃b is equal to zero , i.e. ∂K/∂x̃b = 0.

On the other hand, the robot’s potential energy U is due to gravitational forces. The

partial derivative of U with respect to x̃b corresponds to the first six components (the base

components) of the gravity term g shown in (6.11), i.e.

gb = − ∂U

∂x̃b

. (6.19)

Developing the robot’s kinetic energy given in (6.16) we obtain the equality K =

ϑT
b Abbϑb + q̇ TArbϑb + ϑT

b Abr q̇ + q̇Arr q̇, which allows us to further transform (6.17) into

the equality

d
(

Abbϑb +Abr q̇
)

dt
+ gb = 0. (6.20)

Integrating this equation reveals the system’s momentum, i.e.

Abbϑb +Abr q̇ +

∫ t

0
gbdτ = Linitial. (6.21)

where Linitial is the initial angular momentum. The above expression allows us to write the

following dependency between base and joint velocities

ϑb = −A−1
bb Abr q̇ +A−1

bb Linitial −A−1
bb

∫ t

0
gbdτ. (6.22)

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 133

6.1.3 Constrained Kinematics

The previous dependency between base and joint velocities will allow us to represent kine-

matic behavior of arbitrary points on the robot’s body as a function of joint velocities.

These representations will be used to develop operational space controllers as well as to

develop strategies to measure task feasibility under actuator commands. For an arbitrary

point x on the robot’s body, we consider the following velocity representation

ẋ = J

ϑb

q̇

(6.23)

where J is the full task Jacobian. The following expression of J reveals the contribution

from the passive chain (the virtual joints describing the movement of the base) and the

actuated joints

J =

Vb Jr

 , Vb ,

I p̂b,x

0 I

ǫR6, (6.24)

where Vb is a transformation matrix which maps angular movement of the base to linear

velocities at the task point (see discussion on macro/mini structures in Khatib 2004), Jr

corresponds to displacements of actuated joints of the robot with respect to its base, pb,x

corresponds to the distance vector between the task point and the robot’s base, p̂b,x is the

cross product operator associated with the position vector.

By replacing ϑb in (6.23) by the constrained term of (6.22), we reveal the dependency

of task velocities with joint velocities, i.e.

ẋ = J

−A−1
bb Abr

I

q̇ + J

A−1
bb Linitial −A−1

bb

∫ t

0 gbdτ

0

. (6.25)

Using the decomposition given in (6.24) we can further express the above velocity as

ẋ = J∗q̇ + ẋbias, (6.26)

where

J∗ , Jr − VbA
−1
bb Abr (6.27)

is referred to as the free floating Jacobian (Umetami and Yoshida 1989; Papadopoulos

and Dubowsky 1991) and will be further characterized below, and xbias corresponds to the

rightmost term of (6.25).

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 134

Lemma 6.1.2 (Free floating Jacobian). The following expression is equivalent to the

free floating Jacobian given in (6.27)

J∗ = JS, (6.28)

where

S =

−A−1
bb Abr

I

, (6.29)

is an alternative expression of the dynamically weighted generalized inverse of the selection

matrix S shown in (6.4).

Proof. Let us first proof that (6.29) is equal to (6.4). The inverse of the block expression of

A shown in (6.11) can be written in terms of Schur complements (Kailath et al. 2000) as

A−1 =

A−1
bb

(

I +AbrP
−1ArbA

−1
bb

)

−AbbAbrP
−1

−P−1ArbA
−1
bb P−1

, (6.30)

where

P , Arr −ArbA
−1
bb Abr (6.31)

is the Schur complement of Abb. As we can see

A∗ =
(

SA−1S T
)−1

= P, (6.32)

and therefore

S , A−1S TA∗ =

−A−1
bb AbrP

−1

P−1

P =

−A−1
bb Abr

I

. (6.33)

Lemma 6.1.3 (Dynamically consistent generalized inverse of J∗). The following

expression is a dynamically consistent generalized inverse of J∗

J
∗

, (A∗)−1J ∗T Λ∗, (6.34)

where

Λ∗ ,

(

J∗(A∗)−1J ∗T
)−1

(6.35)

is a projection in task space of the inverse free floating inertia (A∗)−1.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 135

Proof. Because J
∗

will give us the correspondence between task torques and accelerations

as we will be show in (6.37) and it will also define the task’s null space behavior as we

will show in (6.45), we will refer to it as the dynamically consistent generalized inverse of

J∗.

The above kinematic representations will allow us to develop operational space con-

trollers for free space behaviors and to monitor task feasibility at runtime by studying the

singular values of J∗. The singularities of J∗ will be very different from the singularities of

the full Jacobian because the full Jacobian reflects the contributions from both passive and

active DOFs. On the other hand the free floating Jacobian reflects the dependency of the

active DOFs on the passive DOFs.

6.2 Operational Space Control

Humanoids should be able to perform a variety of highly skilled tasks in mid air, such

as intercepting objects, jumping, or performing acrobatic movements. Our approach to

tackle these issues is once more to design whole-body controllers that can simultaneously

control multiple operational tasks as well as the robot’s posture while characterizing the

conservation of the system’s momentum.

6.2.1 Task Dynamics and Control

We consider an arbitrary task point x describing the coordinates of a desired part of the

robot’s body with the velocity representation given in (6.23). We can characterize the

task’s dynamic behavior in free space by left-multiplying (6.2) by the term JA−1, yielding

the following task space equation

ẍ− J̇

ϑb

q̇

+ JA−1(b+ g) = JA−1S T Γ, (6.36)

where we have used the equality ẍ = J

ϑ̇b

q̈

+ J̇

ϑb

q̇

.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 136

Lemma 6.2.1 (Task dynamic behavior in free space). The following equation of

motion describes the behavior of the task in free space due to actuation torques

Λ∗ẍ+ µ∗ + p∗ = J
∗T

Γ (6.37)

where Λ∗ is the inertial quantity defined in (6.35) and

µ∗ , Λ∗JA−1b− Λ∗J̇∗q̇ (6.38)

p∗ , Λ∗JA−1g (6.39)

are Coriolis/centrifugal and gravity terms.

Proof. The above equation of motion can be obtained by left-multiplying (6.36) by Λ∗,

using the following alternative expression of J
∗T

J
∗T

= Λ∗JA−1S T . (6.40)

This last expression can be demonstrated by using the expression of J
∗

given in (6.34),

the expression of A∗ given in (6.3), the expression of J∗ given in (6.28), the property

SSA−1 = A−1S TS
T

shown in (6.9), and the property of generalized inverses SSS = S.

Theorem 6.2.1 (Operational space motion control). The following torque vector

yields linear control of task accelerations during free floating movements

Γ = J ∗T
(

Λ∗aref + µ∗ + p∗
)

. (6.41)

Here aref is a desired control policy in acceleration space.

Proof. Plugging the above expression in (6.37) and using the equality J∗J̄∗ = I yields the

desired linear behavior

ẍ = aref . (6.42)

Residual Task Redundancy

To complete the proposed operational space formulation for free-flying behaviors let us char-

acterize the task’s residual redundancy. The task’s redundant behavior can be characterized

in torque space by adding an additional term with null effect on the task

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 137

Theorem 6.2.2 (Whole-body control structure in free space). The following con-

trol structure provides linear control of task accelerations and defines the task’s residual

movement redundancy

Γ = J ∗TF +N ∗T Γ0. (6.43)

Here,

F , Λ∗aref + µ∗ + p∗ (6.44)

is a force level control vector appearing in (6.41), N∗ is the null space matrix of J∗ and Γ0

is an arbitrary torque vector acting in the null space.

Proof. While the term J ∗TF provides linear control of task accelerations as discussed in

Theorem 6.2.1, the above null space term provides no coupling effects between null space

torques and task space accelerations as we will show next. In turn, the vector Γ0 can be used

to control the robot’s postural behavior or additional operational tasks without interfering

with the primary task.

Corollary 6.2.1 (Dynamically consistent null space matrix in free space). The

following null space matrix projects secondary control criteria into null task accelerations

N∗ , I − J̄∗J∗. (6.45)

Proof. Plugging the above expression into (6.43) and the resulting expression into (6.37)

yields the desired cancelation of terms.

6.2.2 Task Feasibility

In Chapter 2 we studied task feasibility under supporting constraints. During free floating

movements the robot is not in contact with the ground, however the laws of physics impose

that the robot’s momentum is conserved imposing constraints in the overall movement.

Therefore, task feasibility during free floating behaviors can be determined by studying

the impact of momentum conservation into the task. Because we have characterized the

kinematic and dynamic quantities of the robot in free space, we can measure task feasibility

using the condition number of the free floating Jacobian J∗ or the condition number of

the inverse free floating inertia Λ∗. In contrast, task feasibility cannot be measured using

the full Jacobian or the full inertia, because they do not reflect the impact of momentum

conservation. In particular Λ∗ will become singular when arbitrary actuation torques yield

zero task accelerations, while J∗ will become singular when task velocities cannot take

arbitrary values.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 138

Figure 6.2: Task feasibility in free space: The snapshots (a), (b), and (c) depict a
jumping behavior where positioning the legs forward becomes infeasible. When the robot
goes in free flying mode, the feet are controlled in cartesian space to stretch forward. When
the legs reach full stretch the task becomes unfeasible. The condition numbers of the free
floating (constrained) Jacobian and the inverse inertia reflect the singular behavior. The
condition number of the full (unconstrained) Jacobian and inverse inertia are also shown
for comparison. Their value remain within bounds.

The condition numbers of the free floating Jacobian and inverse inertia for an r−dimensional

task are shown below

κ(J∗) ,
σ1(J

∗)

σr(J∗)
, κ(Λ∗) ,

σ1(Λ
∗)

σr(Λ∗)
. (6.46)

When the task becomes infeasible these condition numbers grow to infinity, giving us valu-

able information to monitor task feasibility and the support to modify behavior during

conflicting scenarios.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 139

An example demonstrating task feasibility is shown in Figure 6.2. Here, a simulated

jumping behavior is created and controlled using the proposed operational space control

structures. When the robot looses contact with the ground the feet are commanded to

stretch forward to an unreachable position. When the legs reach the maximum stretch the

task becomes infeasible. Monitoring task feasibility allows us to handle conflicting scenarios

at runtime.

6.3 Prioritized Multi-Task Control

As in ground based movements, free space behaviors require the simultaneous coordination

of multiple operational tasks and postures. An example is shown in Figure 6.3 where a

Figure 6.3: Multi task free floating behavior: This sequence depicts a control scenario
involving hitting a ball in mid air. Multiple tasks need to be simultaneously controlled in
the air to accomplish the desired action.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 140

hitting task in mid air has been implemented controlling the tasks shown in Table 6.1.

Here, feet position and orientation are controlled in preparation for landing, the robot’s

right hand is controlled to intercept the ball in mid air, joint limits are monitored and if

approached they locked, etc.

The goal of this section is to develop whole-body control structures that can handle

multiple tasks during free flying behaviors. Handling simultaneously operational tasks,

constraints, and postures will be once more our objective. To decouple high priority tasks

from lower priority tasks and to monitor task feasibility we will implement a prioritized

control strategy as we did in Chapter 3.

Task Decomposition (Volleyball Hit)

Task Primitive Coordinates DOFs Control Policy

Joint Limits joint positions variable locking attractor

Feet position and orientation of feet 6 × 2 feet position

Right Hand position and orientation of hand 6 position

Gaze head orientation 2 (⊥ plane) position

Posture joint coordinates n = NumJoints optimal criterion

Table 6.1: Volleyball task decomposition.

6.3.1 Representations and control structures

In Table 6.2 we illustrate our choice of priorities for the previous volleyball hitting behavior.

This selection is determined according to the relative importance of each task. Joint limit

control is the highest priority task because it prevents damaging the robot’s body. Feet

control is next because it determines landing stability. Head orientation follows because

the robot’s vision system needs to track the ball before it can hit it. Hand position and

orientation control has been broken down into two parts with position control taking higher

priority than orientation control since the former is more relevant for hitting. The posture

has the lowest priority to access the available residual redundancy.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 141

Task Hierarchy (Volleyball Hit)

Task Primitive Priority Level

Joint limit lock 1

Feet position and orientation 2

Head orientation 3

Hand position 4

Hand orientation 5

Posture (captured pose) 6

Table 6.2: Task hierarchy.

Constrained Kinematics

The full kinematic representation of an arbitrary task point k is

xk =

xk,p

xk,r

, (6.47)

where xk,p is a position representation of the task point and xk,r is an orientation represen-

tation. The instantaneous kinematics of arbitrary task points is expressed in terms of base

and joint velocities as

ẋk = Jk

ϑb

q̇

, (6.48)

where Jk is the task Jacobian in task coordinates and ϑb and q̇ are base and joint velocities

respectively. Similarly to (6.26) we can represent arbitrary task velocities in free space as

ẋk = J∗
k q̇ + ẋk,bias, (6.49)

where

J∗
k , Jk,r − Vk,bA

−1
bb Abr. (6.50)

Here xk,bias is a generalization of the bias term given in (6.26) and Jk =

Vk,b Jk,r

 is a

generalization of (6.24).

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 142

Definition 6.3.1 (Free floating Jacobian of arbitrary points). The following kine-

matic representation is a generalization of the free floating Jacobian shown in (6.28)

J∗
k = JkS. (6.51)

Prioritization

Like in Chapter 3, we will develop here control structures based on null space projections.

Similarly to (3.11) we propose to use the following prioritized control structure to control

multiple tasks

Γ = Γ1 + Γ2|prec(2) + · · · + ΓN |prec(N) =
N
∑

k=1

Γk|prec(k), (6.52)

where the subscript k|prec(k) is used to indicate that the k-th task operates in the null

space of all higher priority tasks.

Definition 6.3.2 (Prioritized torques). The following expression determines the pro-

jection of lower priority tasks into the null space of higher priority tasks

Γk|prec(k) , NT
prec(k)Γk, (6.53)

where Nprec(k) is the combined null space of all higher priority tasks (i.e. all preceding tasks)

to the k-th level.

Once more, we will be able to formulate a general operational space control structure

that will take the form

Γ =
(

J ∗T
1 F1

)

+
(

J ∗T
2|1 F2|1

)

+ · · · +
(

J ∗T
N |prec(N)FN |prec(N)

)

, (6.54)

where the matrices J∗
k|prec(k) correspond to prioritized task Jacobians as will be defined in

(6.55), and the vectors Fk|prec(k) correspond to control forces to control the k-th priority

task.

Definition 6.3.3 (Prioritized Jacobian). The following prioritized Jacobian is associ-

ated with the k-th priority task

J∗
k|prec(k) , J∗

kN
∗
prec(k), (6.55)

where J∗
k is the constrained Jacobian associated with the k-th task as shown in (6.51) and

N∗
prec(k) is the prioritizing null space of all preceding tasks and will be characterized in (6.69).

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 143

Task Dynamics and Control

We can derived task dynamics by left-multiplying (6.2) by the term JkA
−1, where Jk is the

full Jacobian of the k-th operational task yielding the following equation of motion

ẍk − J̇k

ϑb

q̇

+ JkA
−1(b+ g) = JkA

−1S T

(

Γk|prec(k) +
N
∑

(i>0)∧(i6=k)

Γi|prec(i)

)

. (6.56)

Here we have used the equality

ẍk = Jk

ϑb

q̇

+ J̇k

ϑ̇b

q̈

(6.57)

and we have decomposed the actuation torques into torques allocated to control the k-th

operational task and torques allocated to control all other operational tasks, i.e.

N
∑

i=1

Γi|prec(i) =

(

Γk|prec(k) +

N
∑

(i>0)∧(i6=k)

Γi|prec(i)

)

. (6.58)

Definition 6.3.4 (Prioritized inertia). The following term is referred to as the priori-

tized inertia of the k-th priority task

Λ∗
k|prec(k) ,

(

J∗
k|prec(k)(A

∗)−1J ∗T
k|prec(k)

)−1
. (6.59)

Theorem 6.3.1 (Prioritized operational space motion control). The following con-

trol vector yields linear control of accelerations for the k-th prioritized task

Γk|prec(k) = J ∗T
k|prec(k)Fk|prec(k), (6.60)

where Γk|prec(k) is the k-th component of the prioritized torque control structure shown in

(6.52), J∗
k|prec(k) is the prioritized Jacobian for the k-th task point discussed in (6.55), and

Fk|prec(k) is a vector of control forces that will be discussed in a few lines.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 144

Proof. Based on the above control term, (6.56) becomes

ẍk − J̇k

ϑb

q̇

+ JkA
−1(b+ g) =

(

Λ∗
k|prec(k)

)−1
Fk|prec(k)+

JkA
−1S T

N
∑

(i>0)∧(i6=k)

Γi|prec(i), (6.61)

where the term Λ∗
k|prec(k) is the inertial term defined in (6.59) whose inverse maps prioritized

forces into task accelerations and fulfill the following equality which can be demonstrated

in a similar way than we did in Property 3.2.1

(

Λ∗
k|prec(k)

)−1
= JkA

−1S TJ ∗T
k|prec(k). (6.62)

Under normal conditions Λ∗
k|prec(k) is full rank, and therefore the vector Fk|prec(k) yields

linear control of task accelerations and forces.

Corollary 6.3.1 (Prioritized motion control). The following control vector yields lin-

ear control of task accelerations

Fk|prec(k) , Λ∗
k|prec(k)a

ref
k + µ∗k|prec(k) + p∗k|prec(k) − Λ∗

k|prec(k)JkA
−1S T

k−1
∑

i=1

Γi|prec(i). (6.63)

Here Fk|prec(k) is the control force shown in (6.60), aref
k is an acceleration-level control policy

for the k-th priority task, and the remaining dynamic quantities for the above equation have

the following expressions,

µ∗k|prec(k) , Λ∗
k|prec(k)JkA

−1b− Λ∗
k|prec(k)J̇k

ϑb

q̇

, (6.64)

p∗k|prec(k) , Λ∗
k|prec(k)JkA

−1g. (6.65)

Proof. It is straightforward to verify that using the above expressions in (6.61) will yield

the linear behavior

ẍk = aref
k . (6.66)

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 145

Corollary 6.3.2 (Prioritized multi-task control structure). The following control

structure yields linear control of accelerations of a set of N prioritized tasks

Γ =
(

J ∗T
1 F1

)

+
(

J ∗T
2|1 F2|1

)

+ · · · +
(

J ∗T
N |prec(N)FN |prec(N)

)

=

N
∑

k=1

J ∗T
k|prec(k)Fk|prec(k). (6.67)

Proof. Using (6.60) we can further express (6.52) as the above aggregation of prioritized

operational space control structures.

Recursive Redundancy

Null space projections impose that lower priority tasks do not introduce acceleration and

force components in higher priority tasks. Given Equation (6.56) this is equivalent to the

following condition

∀i ǫ prec(k) JiA
−1S TN ∗T

prec(k) = 0. (6.68)

Similarly than we did in Corollary 3.2.5 and without going into detail the following

corollary defines the recursive null space expression

Corollary 6.3.3 (Compact expression of N∗
prec(k)). The null space matrix that fulfills

the above set of constraints can be expressed using the following compact expression

N∗
prec(k) = I −

k−1
∑

i=1

J
∗
i|prec(i)J

∗
i|prec(i), (6.69)

Proof. The proof for this expression is analogous to the proofs used for Corollaries 3.2.3

and 3.2.5.

Corollary 6.3.4 (Dynamically consistent generalized inverse of J∗
k|prec(k)). The

following expression is the dynamically consistent generalized inverse of J∗
k|prec(k)

J
∗
k|prec(k) , (A∗)−1J ∗T

k|prec(k)Λ
∗
k|prec(k). (6.70)

Proof. The proof for the above expression is analogous to that given for Corollary 3.2.4.

6.3.2 Task Feasibility

The constrained Jacobian J∗
k|prec(k) given in (6.55) or the constrained inertia matrix Λ∗

k|prec(k)

given in (6.59), reflect the impact of momenta conservation and prioritization and can be

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 146

used to determine the feasibility of the operating tasks. To study task feasibility we study

their condition numbers, i.e.

κ
(

J∗
k|prec(k)

)

,
σ1

(

J∗
k|prec(k)

)

σr

(

J∗
k|prec(k)

) , κ
(

Λ∗
k|prec(k)

)

,
σ1

(

Λ∗
k|prec(k)

)

σr

(

Λ∗
k|prec(k)

) , (6.71)

where κ(.) represents the condition number and σi(.) represents the i-th singular value of

the enclosed matrix.

6.3.3 Posture Dynamics and Control

During free flying behaviors the posture plays an important role in determining the overall

movement behavior. For instance, the posture determines landing stability or the optimal

orientation of the body during jumping and running behaviors. Posture control structures

for free space will be very similar to those of Chapter 4. In fact, whole-body control is

characterized once more using the prioritized expression given in Once more, the whole-

body control structure for free space movements will have the same form than in Theorem

4.1.1.

Theorem 6.3.2 (Whole-body prioritized control structure). The following control

structure for free space behaviors provides linear control of N prioritized tasks and defines

the postural space of motion

Γ =

N
∑

k=1

J ∗T
k|prec(k)Fk|prec(k) +N ∗T

t Γposture, (6.72)

where,

N∗
t , I −

N
∑

k=1

J
∗
k|prec(k)J

∗
k|prec(k), (6.73)

is the null-space of all prioritized tasks and can be derived using the recursive expression

presented in (6.69). Here, N∗
t signifies the null space of all priority tasks.

Proof. The proof is analogous to that of Theorem 4.1.1.

Once more, we will use the more compact notation

Γ =

N
∑

k=1

Γk|prec(k) + Γp|t = Γt + Γp|t, (6.74)

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 147

where

Γp|t , N ∗T
t Γposture (6.75)

are torques operating in the task’s residual redundancy and will be used to control the

robot’s posture.

Task Based Postures

Here the objective is to control the position of postural DOFs as we described in Section

4.2 of Chapter 4. Postural dynamic behavior can be obtained by left-multiplying (6.2) by

the term JpA
−1 where Jp is the full Jacobian of the posture,

ẍp − J̇p

ϑb

q̇

+ JpA
−1(b+ g) = JpA

−1S T
(

Γp|t +

N
∑

k=1

Γk|prec(k)

)

, (6.76)

where xp is a set of postural DOFs and Jp is the associated Jacobian and we have used the

torque decomposition given in (6.74).

Proposition 6.3.1 (Posture motion control). The following torque vector for free space

behaviors yields linear control of postural accelerations

Γp|t = J ∗T
p|t

(

Λ∗
p|ta

ref
p + µ∗p|t + p∗p|t − Λ∗

p|tJpA
−1S T

N
∑

k=1

Γk|prec(k)

)

, (6.77)

where aref
p is a joint feedback control policy for all postural DOFs, J∗

p|t , J∗
pN

∗
t is the

prioritized posture Jacobian discussed in (6.55),

Λ∗
p|t =

(

J∗
p|t(A

∗)−1J ∗T
p|t

)−1
, (6.78)

is a posture inertial term similar to (6.59), and µ∗
p|t and p∗

p|t are Coriolis/centrifugal and

gravity terms with similar expressions than (6.64) and (6.65).

Proof. Because this controller is based on Corollary 6.3.1, it will yield the linear behavior

ẍposture = aref
p . (6.79)

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 148

Criteria based postures

To optimize postural criteria we first characterized the dynamic behavior in joint space.

Here, the posture coordinates are equal to all joint coordinates. For a set qp of postural

coordinates as described in Definition 4.3.2, posture dynamics can be obtained by left-

multiplying (6.2) by the term SpA
−1, where Sp is the posture selection matrix, yielding the

following joint space equation of motion

q̈p + SpA
−1(b+ g) = SpA

−1S T

(

Γp|t|c +
N
∑

k=1

Γk|prec(k)

)

. (6.80)

Definition 6.3.5 (Prioritized postural Jacobian). The following matrix represents the

prioritized postural Jacobian with similar derivation than (6.55)

S∗
p|t = S∗

pN
∗
t , (6.81)

where N∗
t is the null space matrix shown in (6.73) and

S∗
p = SpS (6.82)

is the constrained postural Jacobian with similar derivation than (2.47).

Definition 6.3.6 (Prioritized inverse postural inertia). The following expression is

referred to as the prioritized inverse posture inertia

Φ∗
p|t , S∗

p|t(A
∗)−1S ∗T

p|t . (6.83)

In general the above inverse inertia will not be full rank because qp is normally larger than

the number of available DOFs within the tasks’s residual redundancy.

Theorem 6.3.3 (Postural criteria-based control). The following posture control vector

for free space behaviors will yield optimal gradient descent of postural criteria

Γp|t = S ∗T
p|t Fp|t, (6.84)

where Fp|t is a posture control vector with the following expression

Fp|t =
(

Φ∗
p|t

)+
αref

p + b∗p|t + g∗p|t −
(

Φ∗
p|t

)+
SpA

−1S T Γt. (6.85)

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 149

Here (.)+ is the Moore-Penrose pseudo-inverse, αref
p is a control policy implementing gra-

dient descent of postural criteria, and the following vectors are Coriolis/centrigural and

gravity terms

b∗p|t , (Φ∗
p|t)

+SpA
−1b, (6.86)

g∗p|t , (Φ∗
p|t)

+SpA
−1g. (6.87)

Proof. The proof for the above theorem is analogous to the proof for Theorem 4.3.1 of

Chapter 4 and therefore will yield the desired linear behavior in the controllable posture

directions, i.e.

U T
r

(

q̈p = αref
p

)

, (6.88)

where Ur is the basis of controllable directions in posture space and are determined through

the following eigen-decomposition

(

Φ∗
p|t

)+
= UrΣ

−1
r U T

r . (6.89)

Proposition 6.3.2 (Gradient descent control law). The following PD control law

implements postural gradient descent while providing a velocity saturation mechanism

αref
p = −kv

(

q̇p − νvωdes

)

(6.90)

ωdes = −kp

kv

∇Vp, νv = min
(

1,
ωmax

‖ ωdes ‖
)

. (6.91)

where νv is the saturation term, ωmax is the maximum allowable angular velocity, ∇Vp is

the gradient of Vp with respect to qp, and kp and kv are proportional and differential gains

respectively.

Proof. The proof of the above proposition is analogous to that of Proposition 4.3.1.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 150

6.4 Examples

6.4.1 Forward Jumping

We study the jumping behavior shown in Figure 6.4. To create this behavior we sequence a

collection of states corresponding to whole-body movements. Sequencing of movements is a

topic that will be discussed in the next chapter. A jumping behavior results from sequencing

Figure 6.4: Forward jumping behavior: These superimposed snapshots are taken from
an experiment on jumping. During the free flying phase, the whole-body controller proposed
in this chapter is implemented.

ground level movements and free space movements. When the robot is in contact with the

ground, reaction forces are used to provide balance stability and to push the body upwards.

To control ground-based movements we use the whole-body control structure given in (5.30)

of the previous chapter. The task decomposition associated with ground phases is shown

in the following table,

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 151

Task Decomposition (Vertical Jump): Ground-Based Phases

Task Primitive Coordinates DOFs Priority Control Policy

Joint Limits joint positions variable 1 locking attractor

COG Vertical COG(z) 1 2 trajectory

COG Horizontal COG(x, y) 2 3 position

Head head orientation 2 (⊥ plane) 4 position

Upright posture hip orientation 2 5 position

Joint posture joint coordinates n = NumJoints 6 optimal criterion

This set of tasks is used to create movements involving crouching down and accelerating

the body upwards. To move the robot to a crouching pose the goal of the COG’s vertical

position is set to a predetermined value close to the ground, in our case 0.5m. To jump

forward, we command the COG to track an inclined trajectory at a speed equal to 1.7 m/s

with an elevation angle equal to 75◦ with respect to the ground plane. An upright posture

is implemented to keep the upper body vertical. On the other hand, in the free floating

phase we implement the following set of tasks

Task Decomposition (Vertical Jump): Free Floating Phases

Task Primitive Coordinates DOFs Priority Control Policy

Feet pos/ori 6 × 2 feet 1 position

Head head orientation 2 (⊥ plane) 2 position

Upright posture hip orientation 2 3 position

Joint posture joint coordinates n = NumJoints 4 optimal criterion

Here the main task is to maintain the orientation of the feet horizontal to the ground and

to move the feet forward to gain stability upon landing. Although the position of the feet

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 152

should depend on the estimated reaction forces upon landing and on the COG’s trajectory

in midair, here we choose them empirically. The above set of tasks is executed using the

whole-body control structure for free space movements described in (6.72).

Extending
knees

Losing ground
contact

Landing

Free floating phase

Stabilizing

Bending down

Figure 6.5: Torques values during jumping: Torque values corresponding to the robot’s
right leg during forward jumping.

The overall jumping behavior occurs by sequencing five different phases: (1) crouching

down, (2) accelerating upwards, (3) releasing the body into the air (4) preparing for landing,

and (5) gaining stability upon landing. Phases (1), (2) and (5) are ground based phases

and phases (3) and (4) are free floating phases. The events that trigger each phase are

the following. Phase (2) starts when the crouching down position is reached. Phase (3) is

triggered when the feet loose ground contact. Phase (4) is triggered when the body starts to

fall towards the ground. Phase (5) starts when the feet touch down. The resulting jumping

height (i.e. the COG’s maximum height) achieved using the previous sequence and COG

trajectory is 0.35m above the ground while the resulting jumping length is approximately

0.5m.

Torque values during the above jumping behavior are shown in Figure 6.5. The highest

torque values occur on the knees reaching peak values of more than 700Nm. Peak values

for the ankle pitch joints are 200Nm corresponding to the period when the body accelerates

upwards. The hip’s pitch joint reaches peak torques around 200Nm upon landing.

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 153

6.4.2 Kick in Mid Air

A similar jumping behavior is shown in Figure 6.6, but this time the robot’s right foot

is commanded to kick forward in midair. This action can be achieved by sequencing the

same movements than in forward jumping but commanding the robot’s right foot to move

forward 0.2m in mid air.

Figure 6.6: Jumping forward with kick: This forward jumping behavior involves kicking
in midair. The foot’s kicking position is provided at runtime with no previous trajectories
precomputed.

6.4.3 Twist’N’Jump

A third jumping behavior is shown in Figure 6.7, where the robot’s upper body is com-

manded to spin horizontally to create a twisting reaction moment. While accelerating the

body upwards, the chest’s yaw joint is accelerated counterclockwise. The set of tasks to

twist the chest during the phase corresponding to accelerate the body upwards is

CHAPTER 6. WHOLE-BODY CONTROL OF MOVEMENTS IN MIDAIR 154

Figure 6.7: Twist ’n’ jump behavior: This behavior is similar to a vertical jump but
with an additional spin of the chest to create a twisting movement.

Task Decomposition (Twist ’N’ Jump): Accelerating Body Upwards

Task Primitive Coordinates DOFs Priority Control Policy

Joint Limits joint positions variable 1 locking attractor

COG Vertical COG(z) 1 2 trajectory

COG Horizontal COG(x, y) 2 3 position

Head head orientation 2 (⊥ plane) 4 position

Upright posture hip ori 2 5 position

Twist posture chest joint 1 6 position

Joint posture joint coordinates n = NumJoints 7 captured pose

Chapter 7

Realtime Synthesis of Whole-Body

Behaviors

In this chapter we will develop tools for the composition and sequencing of whole-body

behaviors, representing a first step towards the design of a high-level behavioral platform

for humanoid systems.

A great deal of work has been focused on the areas of behavior-based control (Brooks

et al. 2004) and motion planning (Latombe 1999), addressing a variety of mobile robotic

platforms. However, research on humanoid systems has been mostly focused on low-level

controllers (Sentis and Khatib 2006; Kajita et al. 2003a; Fujimoto and Kawamura 1996), in

part due to the difficulty of creating complex behaviors while maintaining balance stability

and while complying with joint limit and self collision constraints. The control methods

presented throughout this dissertation open new opportunities to create emergent behaviors

in humanoid systems. In particular, our methods are capable of executing arbitrary control

objectives (both at the contact and non-contact levels) while maintaining balance stability

and while responding to dynamic events. The next logical step is to connect our controllers

to perception and decision systems. However, a direct connection between execution and

behavioral layers is not obvious. The goal of this chapter is to develop behavioral entities

to interface these two layers.

While the main task of an execution layer is to create torque commands to accomplish

desired control objectives, the task of a behavioral layer is to sense the environment and

coordinate sets of actions to create desired responses. Much work has been focused on

the synthesis of autonomous behaviors. In (Brooks et al. 2004) the synthesis of emergent

behaviors as the coordinated action of distributed processes is addressed. In (Arkin 1998)

155

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 156

motor schemas are proposed as the basic units of action concurrently operating to control

the overall behavioral response. The goal of this chapter is to develop novel control entities

to support the implementation of emergent behaviors in humanoid systems.

At the execution level, our operating engine is the whole-body control framework de-

scribed in previous chapters. To support the creation of low-level tasks we will create new

software abstractions called control primitives. Control primitives are entities that define

task representations and control policies. However, control primitives are not based on pre-

defined goals or trajectories. Instead, task goals can be provided at runtime as part of the

emergent behavior.

To support the creation of whole-body behaviors we will define new entities called whole-

body behaviors which consist on sequences of actions accomplished by executing sets of

control objectives. For instance, a whole-body behavior designed to sit down on a chair will

involve placing the hands on the arms for support, lowering the hip to make contact with

the seat, and resting the back on the seat support, where each of these actions is defined as

a unique set of objectives.

Whole-body behaviors are therefore self-coordinated modules that can execute a specific

action given the appropriate goals. In Figure 7.1 we show a control diagram involving

execution and behavioral layers connected through an action layer which embodies a library

of whole-body behaviors.

While research on autonomous navigation for mobile platforms and legged robots has

make impressive progress in recent times, tackling high dimensional problems such as the

realtime generation of manipulation and locomotion behaviors in humanoids systems is

an unsolved problem. Not only the system’s state is very large but controllers have to

cope with arbitrary supporting contacts, balance stability, and internal constraints. To

tackle this problem the action layer we will discuss here will be aimed at reducing the

dimensionality of the control problem as well as at handling arbitrary contacts and internal

constraints without the necessity to plan the global task. For this layer we will define

action units called whole-body behaviors responsible for characterizing task decomposition

and movement sequencing. Therefore, the action layer will embody a library of whole-

body behaviors that can be instantiated and coordinated by a high level controller. As an

example, walking or pushing behaviors would be defined as part of the action layer.

This chapter is organized as follows. In Section 7.1 we will describe the composition

and instantiation of control primitives for the creation of low-level tasks. In Section 7.2 we

will describe the mechanisms of the action layer in the form of whole-body behaviors.

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 157

Figure 7.1: Connection between behavior and execution layers: The execution layer
operates at fast rates with the objective of executing low-level tasks. The behavioral layer
operates at low speeds sensing the environment and determining the whole-body behaviors
necessary to accomplish a global task. To interface these two layers, we define an action
layer which is responsible for providing access to whole-body behavioral entities. These
entities are meant to serve as the main units of action orchestrated by the behavioral layer.

7.1 Composition and Instantiation of Low-Level Behaviors

To facilitate the creation of whole-body behaviors it is our objective here to provide support-

ing entities to create and instantiate low-level tasks as part of the composition of whole-body

behaviors. These entities represent a direct mapping between desired objectives and motor

commands.

In Figure 7.2 we depict our implementation of the execution layer. The centerpiece of

this diagram is the whole-body controller described in previous chapters which has been

designed to execute sets of tasks and to monitor task feasibility. To create new tasks, we

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 158

Figure 7.2: Execution layer: The centerpiece of this layer is the whole-body controller
described in previous chapters. The definition and instantiation of low-level behaviors is
supported by abstract entities called control primitives.

define control primitives that characterize task representation and control policies. The

instantiation of control primitives leads to the creation of low-level behaviors associated

with specific body parts (i.e. task points).

7.1.1 Control Primitives

Control primitives are software abstractions that support the creation of low-level tasks.

These abstractions encapsulate task representation and control policies, serving as basic

units of control. To support the implementation of control primitives we define software

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 159

Figure 7.3: Control primitives: This figure shows software interfaces designed to create
a variety of control primitives.

interfaces associated with the different types of tasks, as shown in Figure 7.3. Three inter-

faces are shown here: an interface to implement constraint-handling tasks, an interface to

implement operational tasks, and an interface to implement postural tasks.

Control primitives are created as part of the description of whole-body behaviors, en-

capsulating the representation and functionality of different body parts. However, specific

goals and control parameters do not need to be pre-programmed. Instead this information

can be passed by the sensory layer at runtime. Using similar modules we have built an

extensive library of control primitives to address the control of different body parts. Some

of them are shown in Table 7.1.

7.1.2 Task Creation

Task creation is the process of instantiating control primitives and assigning control pa-

rameters. In Figure 7.4 we illustrate a whole-body multi-contact behavior and the task

structures associated with it.

The instantiation of low-level tasks involves creating task objects and passing associated

control parameters. For instance, to instantiate a hand position control task we execute the

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 160

Library of control primitives and their function

Control primitive Function Category

Joint limits avoidance Locks violating joints Constraint

Obstacle avoidance Keeps safety distance Constraint

Static balance Controls COG position Balance

Dynamic balance Controls ZMP position Balance

Position control Controls arbitrary task positions Operational Task

Orientation control Controls arbitrary task orientations Operational Task

Hybrid force/position control Controls arbitrary force/position Operational Task

Imitate captured pose Imitates captured poses Posture

Minimize effort Minimizes torque effort Posture

Table 7.1: Library of control primitives: In this table we list some control primitives
we have created to support the creation of whole-body behaviors.

following C++ statements

PositionPrimitive* handTask;

handTask = new PositionPrimitive(robotModel, "right-hand");

Here, PositionPrimitive is an abstraction that encapsulates position representations of

arbitrary parts and PD control policies of desired position commands. A class structure is

associated with this primitive, containing a constructor that takes as input the robot model

and the desired body part to be controlled. The robot model is characterized by the UML

diagram shown in Figure 7.5.

After instantiating a task, the next step is to pass desired control parameters. For

instance, to use the PD control law with velocity and acceleration saturation described in

Equations (3.47) and (3.48) we pass the following parameters: kp = 400s−2 for the control

gain, νv = 0.5m/s for the velocity saturation value, and νa = 3m/s2 for the acceleration

saturation value. This can be done by accessing the task interfaces described in Figure 7.3,

i.e.

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 161

Figure 7.4: Task decomposition: We depict here a decomposition into low-level tasks
of a whole-body multi-contact behavior. Each low-level task needs to be instantiated and
controlled individually as part of the whole-body behavior.

handTask→maxVelocity(0.5);

handTask→maxAcceleration(3);

handTask→gain(400);

We also need to pass the desired task goal. For instance, if the goal is a teleoperated point

we make the following calls

PrVector opGoal = worldModel→teleoperatedPoint();

handTask→goal(opGoal);

Here PrVector is an algebraic vectorial abstraction defined in our math library and worldModel

is a pointer to a software module created to describe the robot’s environment. In the above

case, a haptic device is used to command desired hand positions with respect to a global

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 162

Figure 7.5: Robot model: UML class diagram describing robot kinematic and dynamic
representations. The robot model provides access to kinematic and dynamic quantities
both in joint and task spaces. It also contains a branching representation to compute these
quantities recursively based on efficient kinematic and dynamic algorithms.

frame of reference. To finalize the instantiation of the task, we also need to indicate the

desired priority level with respect to other operating tasks. This ordering will allow the

controller to create prioritized control structures based on the algorithms we described in

previous chapters. To indicate the priority we make the following call

handTask→priorityLevel(level);

We assign priorities based on the relative importance of each task with respect to the oth-

ers. In general we divide primitives into different categories, each emphasizing its relative

importance with respect to other categories. For instance, we consider the clustering of

tasks shown in Figure 7.6 listed in decreasing order: (1) constraint handling primitives, (2)

balance primitives, (3) operational primitives, and (4) posture primitives.

At every servo loop we update task representations and low-level controllers by making

the following call

handTask→update();

which in turn executes the following calculations,

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 163

Figure 7.6: Relative importance of task categories: The above categories indicate
the relative importance between tasks and are used to assign control priorities. The left
most category has the highest priority since constraint-handling tasks ensure that the robot
structure and the surrounding environment are not damage, while the right most category
corresponds to the lowest priority level associated with the execution of postures.

void positionPrimitive::update() {
calculateTaskState();

calculateJacobian();

calculateTaskDynamics();

calculateControlRef();

};

In other words, it updates kinematic, dynamic, and control quantities of the task and

calculates the control policy using the function calculateControlRef(). For the previous

PD position control law with velocity saturation, the following control reference at the

acceleration level is computed

aref
hand = νaades,

ades = −kv

(

ẋ− νv vdes

)

, νa = min

(

1,
amax

||ades||

)

,

vdes =
kp

kv
∇
(

x− xgoal

)

, νv = min

(

1,
vmax

||vdes||

)

.

Here x is the right hand task coordinate computed with the robot model shown in Fig-

ure 7.5, and xgoal is the desired teleoperated goal obtained from the world model previously

described.

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 164

7.1.3 Task Execution

While control primitives encapsulate task representation and control policies, the main task

of the servo loop in the execution layer (see Figure 7.1) is to calculate control torques of

all operating tasks and aggregate them together to create the desired whole-body behavior.

To execute each task the following calls are made

handTask→jacobian(jacobian);

handTask→dynamicQuantities(inertia, ccForces, gravityForces);

handTask→priorityLevel(level);

handTask→controlRef(refAccel);

Here, kinematic and dynamic quantities are first obtained from the task primitive at hand,

and the associated control policy is used to obtained the desired acceleration reference. For

instance, for the previous hand position task where the priority level is equal to 3 according

to the category ordering shown in Figure 7.6, the associated torque control vector as shown

in the torque expression (5.6) is

Γtasks|p(3) = J ∗T
hand|p(3)

(

Λ∗
hand|p(3)a

ref
hand + µ∗hand|p(3) + p∗hand|p(3)

)

, (7.1)

where the subscript {hand|p(3)} means that the hand task is controlled provided that

balance and the acting constraints are first fulfilled and aref
hand is the acceleration reference

for right hand control based on the previous PD control law implementing velocity and

acceleration saturation.

In general, when a set of low-level tasks are controlled as part of a whole-body behavior,

the execution layer will produce the following torque output

Γ =
(

J ∗T
constraintFconstraint

)

+
(

J ∗T
balance|p(2)Fbalance|p(2)

)

+
(

J ∗T
tasks|p(3)Ftasks|p(3)

)

+
(

J ∗T
postures|p(4)Fpostures|p(4)

)

, (7.2)

where each task will be instantiated and used as an individual object as we did for the

previous hand task.

7.2 Composition and Instantiation of Whole-Body Behaviors

We will develop here computational entities for the composition and creation of whole-body

behaviors. When properly coordinated, these entities will serve as the main units of action

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 165

of a high level controller.

Figure 7.7: Operation of the movement layer: The centerpiece of this layer is a repre-
sentation of whole-body behaviors as sequences of actions implementing different movement
phases.

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 166

If the goal of the previous section was to abstract the representation of low-level tasks,

the goal of this section is to abstract the representation of whole-body behaviors. This level

of abstraction is aimed at providing meaningful units of action that encapsulate task decom-

position and movement sequencing. Whole-body behaviors allow us to define, aggregate,

and sequence collections of tasks into single units of action.

In Figure 7.1 we illustrate the operation of the action layer. This layer defines whole-

body behavior representations. A whole-body behavior is a sequence of goal-oriented actions

coordinated to achieve a global behavior. For instance, the volleyball jumping behavior

depicted in the previous figure consists on five unique movement phases: (1) stand-up,

(2) move the hip down, (3) accelerate the hip upwards, (4) hit the target, (5) prepare to

land, and go back to standing up (1). Transitions between movements are predetermined

and triggered by sensory events. Action primitives encapsulate task decomposition and

coordination. For instance, a primitive used to accelerate the robot’s body upwards as in

the previous example would involve simultaneously coordinating balance, hand position and

orientation, head control, and posture control.

7.2.1 Action Primitives

An action primitive is an abstraction that encapsulates task decomposition and coordina-

tion. For instance, the primitive shown in the table below is used to create the previous

Action Primitive (Jumping Movement)

Control Primitive Priority Level Control Parameters

Obstacle Avoidance 1
(

dsafe = 0.1m,kp = 800, vmax = 2m/s
)

Static balance 2
(

xgoal = Cfeet, kp = 1000
)

Hip height 3
(

xgoal = in, vmax = in, kp = 400
)

Head orientation 3
(

φgoal = ûball, kp = 100, vmax = 2πrad/s
)

Right hand position 3
(

xgoal = in, ẋgoal = in, kp = in
)

Right hand orientation 4
(

φgoal = in, ωgoal = 2πrad/s, kp = 100
)

Upper-body orientation 4
(

φgoal = ûupright, ωgoal = πrad/s, kp = 100
)

R/L arm posture 4
(

qarm = Qhuman, kp = 100
)

jumping behavior. Here, dsafe stands for a safety threshold to arbitrary obstacles, Cfeet

represents the center of the feet supporting polygon, ûball is the direction of sight towards

the ball, ûupright is an upright orientation vector, Qhuman is a captured human pose, and

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 167

the symbol in means an input parameter provided at runtime by the sensory layer.

Figure 7.8: Instantiation of movements: By providing different input parameters we
synthesize different type of movements at runtime.

In fact, action primitives serve as platforms to implement a variety of movements de-

pending on the desired goals as shown in Figure 7.8.

7.2.2 Whole-Body Behaviors

We create whole-body behaviors by sequencing action primitives. With the proper se-

quencing and goals, the desired behavior emerges. For instance, let us consider the two

movements shown in Figure 7.9 which are part of the jumping behavior shown in Figure

7.7. To accelerate the hip upwards we use an action primitive that involves the control

of the hip’s vertical position as part of the overall movement. When the knees reach full

stretch, the next phase is triggered loading a new action to hit the ball in mid air. This

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 168

Figure 7.9: Action sequencing: This figure illustrates two actions used to create a jumping
behavior. Initially an action primitive to accelerate the hip upwards is used. When the knees
are fully stretched, a new action is loaded to control the body in mid air.

second action implements control of the robot’s right hand. The goals to accelerate the hip

upwards and to hit the ball in mid air are provided at runtime by the sensory layer.

7.2.3 Behavior Feasibility

In previous chapters we discussed behavior feasibility and proposed metrics to measure it.

For instance, when jumping in the previous example the task becomes infeasible if joint

limits are reached while accelerating the body upwards. To modify the robot’s behavior in

case of conflicting situations such as the previous one we create additional safety procedures.

For instance, in Figure 7.10 we illustrate a more elaborated state machine where safety

CHAPTER 7. REALTIME SYNTHESIS OF WHOLE-BODY BEHAVIORS 169

Figure 7.10: Handling of infeasible tasks: The two upper actions in the above figure
are equivalent to the actions described in Figure 7.9. However, an additional state is added
to handle conflicting scenarios where joint limits on the knees are reached while moving
upwards.

actions are implemented to land safely in case of conflict.

Chapter 8

Concluding Remarks

Throughout this dissertation we have developed a whole-body control framework and sup-

porting behavioral entities for the realtime synthesis of complex behaviors in humanoid

systems. In this final chapter we will discuss some of the key points of our work and

provide concluding remarks.

8.1 Summary of Results and Contributions

Looking back, we have addressed several key areas on control of humanoid systems. We

extended the operational space formulation (Khatib 1987) to handle arbitrary task points

under arbitrary supporting contacts and we proposed novel hybrid position/force control

strategies for humanoid systems. We developed prioritized and non-prioritized multi-task

control strategies that could control all aspects of motion. We developed techniques to

respond in realtime to dynamic constraints and to measure task feasibility under dynamic

constraints. Finally, we developed control and behavioral abstractions to support the cre-

ation of complex behaviors.

8.1.1 Whole-Body Control Methods

In whole-body control, we have focused on four different subjects: (1) The control of low-

level tasks under supporting contacts, (2) the coordination and control of collections of tasks

as part of whole-body behaviors, (3) the control of postural behavior, and (4) the control

of movements in midair.

170

CHAPTER 8. CONCLUDING REMARKS 171

Task Control Under Supporting Contacts and Balance Constraints

• Based on the characterization of humanoids as underactuated systems with 6 passive

DOFs attached to their base, we have developed novel task kinematic and dynamic

representations under supporting constraints. In particular, studying the effect of

supporting constraints we have developed representations of task velocities in terms

of joint velocities alone and we have derived associated constrained Jacobians. Based

on these representations we have developed operational space controllers for arbitrary

task points that provide linear control of task forces and accelerations under sup-

porting contacts. Our contributions on this subject are on characterizing constrained

kinematic and dynamic representations under arbitrary supporting contacts, on de-

veloping novel operational space controllers to accomplish arbitrary task goals, on

characterizing the residual movement redundancy associated with the task at hand,

and on outlining strategies for controlling internal forces between supporting limbs.

• Using the above control representations, we have developed balance controllers to

achieve static and dynamic balance based on direct manipulation on COG accelera-

tions. Our contributions here are on developing controllers for linear control of COG

accelerations and on developing controllers for linear control of ZMP positions.

Prioritized and Non-Prioritized Multi-Task Control

• We have develop torque controllers to simultaneously accomplish multiple task goals

as part of whole-body behaviors. We have develop non prioritized structures where

multiple tasks are represented as single macro tasks and controlled using operational

space control methods. To decouple high priority tasks from lower priority tasks and

to resolve conflicting scenarios between tasks we have also developed complementary

prioritized controllers where lower priority tasks are projected and controlled in the

null space of higher priority tasks. Our main contributions here are on developing

controllers that provide linear control of task forces and accelerations while operating

in the residual redundancy of higher priority tasks, on developing recursive expressions

of prioritized Jacobians and null space representations, and on developing techniques

to measure task feasibility under prioritized hierarchies.

• We have analyzed the decomposition of whole-body behaviors into low-level tasks

for a variety of control examples and implemented multi-task controllers to accom-

plish desired behavioral responses. Some of the examples shown included hybrid

CHAPTER 8. CONCLUDING REMARKS 172

force/position control to track the contour of an object while simultaneously execut-

ing complex postural behaviors as well as a variety of static and dynamic walking

behaviors.

Posture Control

• To control the robot’s postural behavior, we have characterized the motion space that

complies simultaneously with supporting constraints and prioritized tasks and use it

to optimize performance criteria in posture space or to control position and orientation

of postural DOFs without interrupting the global task. Our contributions here are

on developing controllers that identify the controllable direction in posture space and

use them to optimize gradient descent of postural criteria.

• Based on these methods we have presented novel techniques to imitate captured hu-

man poses without interrupting the global task. In particular, we have proposed

postural criteria to minimize the joint-space distance to captured poses. We have also

proposed a novel technique to minimize actuation effort in posture space. Associated

criterions are based on previous observations of human behavior and consists on min-

imizing the weighted norm of gravity torques. By descending the gradient we have

demonstrated that humanoid robots assume human-like postures.

• Based on dynamic compensation of posture behavior, we have demonstrated that we

can choose arbitrary posture gains without loosing postural performance. Low gains

imply high posture compliance while high gains imply stiff postures.

Whole-Body Control of Movements in Midair

• We have developed kinematic and dynamic representations of humanoids during move-

ments in mid air based on the conservation of the system’s momentum. We have

developed non-prioritized and prioritized multi-task controllers to handle whole-body

movements in mid air akin to the controllers developed for ground based movements.

Our contribution here is on providing a whole-body control framework for the realtime

synthesis of movements in midair.

• When the robot is not in contact with the ground, the COG’s trajectory cannot be

modified. We have formulated feasibility measurements to monitor task feasibility

during movements in free space.

CHAPTER 8. CONCLUDING REMARKS 173

8.1.2 Reactive Handling of Dynamic Constraints

We have developed a variety of techniques to respond quickly to dynamic changes in the

environment and to deal with internal constraints imposed by the robot’s own motion.

• We have developed novel control methods to handle dynamic constraints without

interrupting the global task. In contrast with other approaches where constraints

are handled as secondary tasks, we have addressed the handling of constraints as

priority tasks while other operational tasks are projected in the null space of the acting

constraints to prevent potential violations. Our contribution here is on proposing

prioritization of constraints and on developing controllers that can accomplish task

goals while operating in the constraint consistent residual space of motion. We have

also proposed feasibility measurement quantities that can monitor task feasibility

under the acting constraints and can be used to change robot behavior at runtime as

part of a high level decision layer.

• We have also developed reactive techniques to respond to a variety of constraints in

realtime including joint limits, obstacle avoidance, and self-collision avoidance.

8.1.3 Synthesis of Whole-Body Behaviors

To support the synthesis of emergent behaviors, we have developed control and behavioral

abstractions that encapsulate task representations and action mechanisms.

• We have developed novel control abstractions called control primitives that support

the instantiation of low-level tasks. These primitives encapsulate kinematic and dy-

namic representations as well as desired control policies. Instead of being based on

predefined trajectories, these primitives represent a direct mapping between arbitrary

task goals and actuation commands.

• We have developed novel behavioral abstractions called whole-body behaviors. These

abstractions encapsulate task decomposition and action sequencing to achieve complex

whole-body behaviors.

8.1.4 Implementation Details

The whole-body control framework developed in this thesis has been designed to run in

realtime as part of the central control process of humanoid systems. We will discuss here

some implementation details.

CHAPTER 8. CONCLUDING REMARKS 174

• We have developed a software architecture that implements the proposed control

framework as well as the behavioral abstractions earlier described. This software

implements a unified whole-body controller that controls simultaneously multiple op-

erational tasks while automatically adapting to new contact conditions and dynamic

constraints. It also provides a library of whole-body behaviors to be orchestrated by

a high level control layer. Whole-body behaviors are implemented as state machines

where the states are sets of low-level tasks simultaneously operated to accomplish

individual movement actions.

• Computing kinematic and dynamic quantities in our control framework is compu-

tationally expensive for a realtime controller, with operations ranging from O(n) to

O(n3) of algorithmic complexity. To handle these computations in realtime, we im-

plement two separate update loops. While feedback controllers are updated at servo

rates, around 1KHz, kinematic and dynamic quantities that depend only on joint po-

sitions are updated at slow rates, normally around 20Hz to 50Hz. This dual update

strategy is currently under test.

• To increase the computational speed associated with kinematic and dynamic quanti-

ties, we use the set of efficient kinematic and dynamic algorithms described in (Chang

and Khatib 2000). Using these algorithms we compute kinematic quantities with O(n)

complexity, and whole-body dynamic quantities with O(n2) complexity.

• We have recently begun implementing the proposed whole-body control framework

into Honda’s Asimo robot. Because many humanoid robots are controlled through

joint positions and not through torques, Khatib et al. recently developed a torque to

position transformer (see Khatib, Thaulaud, and Park 2006). Here, joint positions are

calculated through the transformation of torques based on the characterization of servo

motor transfer functions. We have recently succeeded to control whole-body torque

commands in the real humanoid and we are now in a position to start implementing

the algorithms developed throughout this thesis.

• We have successfully tested all concepts of this dissertation into simulated humanoid

systems. To simulate multibody dynamics and contact interactions we have used the

Arachi simulation engine, an environment developed by former students of our lab

K.C. Chang and D. Ruspini (Chang and Khatib 2000; Ruspini and Khatib 2000).

CHAPTER 8. CONCLUDING REMARKS 175

8.2 Discussion

Although our whole-body control framework is fairly complete and successfully tested in

simulation, several issues need to be addressed.

In Chapter 2 we developed control structures to control internal forces between sup-

porting links. However, no methods for controlling the actual forces were discussed. We

are currently developing novel control methods to handle internal forces and moments.

We have described various techniques to measure task feasibility under the acting con-

straints. The condition numbers of constrained task Jacobians or inertias were proposed

to characterize task feasibility. Normal values of these quantities need to be empirically

characterized.

In Chapter 4 we developed control techniques for whole-body effort minimization. How-

ever, some of the motions did not look natural. To solve this problem, it would be more

effective to minimize effort using only a few DOFs. For instance, effort could be minimized

using knee, ankle, and hip joints only.

An open issue concerns the control of arm postures. A candidate posture would involve

a weighted combination of effort minimization and self-collision avoidance but has not been

implemented yet.

In Chapter 5 we described reactive techniques to avoid obstacles based on measuring

close points between the robot and nearby obstacles. However, multiple points in different

links could become close to objects leading to possible oscillations on the movement. The

transition between one or more avoidance behaviors should be smoothen with additional

techniques.

8.3 Summary of Publications

Although much of the theory and examples described throughout this dissertation is not

yet published, here is a list of some publications generated during this thesis.

In (Sentis and Khatib 2006) we published an early version of whole-body control based

on the concepts described in Chapters 2, 3, and 5. In (Sentis and Khatib 2005b) we pub-

lished recursive control representations for multi-task control corresponding to some of the

concepts described in Chapter 3. In (Sentis and Khatib 2005a) we published underactuated

representations of humanoids and whole-body controllers for movements in mid air, corre-

sponding to some of the concepts described in Chapter 6. Finally, in (Khatib, Sentis, Park,

and Warren 2004) we published whole-body control foundations and posture controllers

corresponding to some of the concepts described in Chapters 2 and 4.

CHAPTER 8. CONCLUDING REMARKS 176

8.4 Future Work

Implementation into Real Humanoids

We are currently implementing whole-body control into a full humanoid robot. At this stage

we have succeeded in implementing torque to position transformations and whole-body

torque controllers. We recently started to implement the concepts described throughout

this thesis.

Towards Emergent Behaviors

The methods and software entities we have developed throughout this dissertation are aimed

at supporting the synthesis of emergent behaviors in dynamic environments. Obviously

this is a very ambitious task. To move on this direction we plan to further extend the

capabilities of the proposed behavioral structures presented in Chapter 7. First, we plan

to integrate perception and decision processes. For instance, vision systems will provide

information about the environment. Contact and surface pressure sensors will provide

information on contact interactions and support the localization of objects. Gyroscopes an

accelerometers will estimate the orientation of the robot in space and the acceleration of

the robot’s COG, especially to implement effective running and jumping behaviors. On the

other hand, decision processes will be implemented to achieve global behaviors in response

to the environment.

Beyond creating intelligent modules that can sense and respond to the environment we

will seek to develop architectures that can operate to achieve greater goals. This research

connects with the work developed by Brooks on distributed behaviors (Brooks et al. 2004).

We will pursue to scale up our control framework to a decentralized behavioral framework

for the synthesis of emergent behaviors.

Learning Skills

To create new behaviors we have spent hours if not days to design movement sequences and

tune up parameters to achieve the desired behaviors. Machine learning techniques will be

needed to acquire complex skills (see reinforcement learning on quadrupeds (Stone 2000)

and learning by imitation on full humanoids (Schaal et al. 2003)). Learning techniques

applied to our control framework will benefit from the modularity of our structures and the

automatic compliance with internal constraints.

CHAPTER 8. CONCLUDING REMARKS 177

Support for Motion Planning

The methods we have developed to respond reactively to dynamic events are meant to

be implemented as stand-alone behaviors but could also be implemented as part of path

relaxation techniques to support motion planners. For instance, given a candidate path, we

can create an elastic strip and deform it using obstacle and self-collision avoidance potentials

as well as joint limit blocking potentials. When a candidate path is obtained, the candidate

trajectories can be executed in posture space, thus automatically complying with balance

and supporting contacts.

Related Applications

It is particularly important the application of robotic algorithms to the study of biological

systems, in particular to the simulation and modeling of musculoskeletal function (Delp

and Loan 2000). This area of research is currently very active having a substantial impact

on the understanding of some neurodegenerative diseases, on the design of tendon related

surgical procedures, and on the characterization of the human motor control system.

Another important area of research is computer animation. Many laboratories and

studios developing 3D animation techniques are actively incorporating robotic methods to

synthesize more realistic and responsive human like behaviors. Two big driving forces are

demanding further research on this direction: the motion picture industry and the video

game industry. However, other industries of interest concern education and visual media

which also require realistic human-like simulations to better convey information content.

Another important application is the simulation of workspaces for ergonomic design, as

well as the simulation of humans operations in factory environments.

Appendix A

Mathematical Proofs

Property A.0.1 (Null space cross product commutation). The order of multiplica-

tion between null space terms is irrelevant, i.e.

∀i, j, N ∗T
i|prec(i)N

∗T
j|prec(j) = N ∗T

j|prec(j)N
∗T
i|prec(i). (A.1)

Proof.

1. Developing the LHS of the above product we obtain

N ∗T
i|prec(i)N

∗T
j|prec(j) = I − J ∗T

i|prec(i)J
∗T
i|prec(i) − J ∗T

j|prec(j)J
∗T
j|prec(j)

+ J ∗T
i|prec(i)J

∗T
i|prec(i)J

∗T
j|prec(j)J

∗T
j|prec(j). (A.2)

Using the expression of J
∗T
i|prec(i) given in (3.36) and the expression of J∗

i|prec(i) given

in (3.14), we can further develop the last term of the above equation into

J ∗T
i|prec(i)Λ

∗
i|prec(i)J

∗
i N

∗
prec(i)Φ

∗J ∗T
j|prec(j)J

∗T
j|prec(j). (A.3)

Let us assume that the i-th task has higher priority than the j-th task. We can

then write the following expression based on the null space decomposition of Equa-

tion (3.32)

N ∗T
prec(i) = N ∗T

prec(j)N
∗T
j|prec(j)

i−1
∏

l=j+1

N ∗T
l|prec(l). (A.4)

178

APPENDIX A. MATHEMATICAL PROOFS 179

Using the above decomposition we can further develop Equation (A.3) into

J ∗T
i|prec(i)Λ

∗
i|prec(i)J

∗
i

i−1
∏

l=j+1

N∗
l|prec(l)N

∗
j|prec(j)N

∗
prec(j)Φ

∗J ∗T
j|prec(j)J

∗T
j|prec(j). (A.5)

Let us assume that the equality N∗
prec(j)Φ

∗ = Φ∗N ∗T
prec(j) holds (see Property A.0.3).

Using the equality
(

N ∗T
i|prec(i)

)2
= N ∗T

i|prec(j) given in Property A.0.2, the above equation

becomes

J ∗T
i|prec(i)Λ

∗
i|prec(i)J

∗
i

i−1
∏

l=j+1

N∗
l|prec(l)N

∗
j|prec(j)Φ

∗J ∗T
j|prec(j)J

∗T
j|prec(j), (A.6)

where we have used the expression J ∗T
j|prec(j) = N ∗T

prec(j)J
∗T
j (3.14). It is easy to demon-

strate that

N∗
j|prec(j)Φ

∗J ∗T
j|prec(j) = 0 (A.7)

by using the expressions of N∗
j|prec(j) shown in (3.33), the expression of J

∗T
j|prec(j) shown

in (3.36), and the expression of Λ∗
j|prec(j) shown in (3.21).

2. Therefore, Equation (A.2) becomes

N ∗T
i|prec(i)N

∗T
j|prec(j) = I − J ∗T

i|prec(i)J
∗T
i|prec(i) − J ∗T

j|prec(j)J
∗T
j|prec(j). (A.8)

We can do a similar development for the RHS of Equality (A.1) obtaining the same

result as above.

3. We can also demonstrate in a similar way the above equality holds when the i-th task

has lower priority than the j-th task. Therefore we conclude that the Equality (A.1)

holds. �

APPENDIX A. MATHEMATICAL PROOFS 180

Property A.0.2 (Idempotence of N ∗T
prec(k)). The following equality holds

(

N ∗T
prec(k)

)2
= N ∗T

prec(k). (A.9)

Proof.

1. We first consider the following equality

(

N ∗T
i|prec(i)

)2
= N ∗T

i|prec(i), (A.10)

which can be demonstrated developing the following expression,

(

N ∗T
i|prec(i)

)2
= I − 2J ∗T

i|prec(i)J
∗ T
i|prec(i) + J ∗T

i|prec(i)J
∗ T
i|prec(i)J

∗T
i|prec(i)J

∗ T
i|prec(i). (A.11)

When using the property of generalized inverses J ∗T
i|prec(i)J

∗ T

i|prec(i)J
∗T
i|prec(i) = J ∗T

i|prec(i),

Equation (A.11) becomes

I − J ∗T
i|prec(i)J

∗ T

i|prec(i) = N ∗T
i|prec(i). (A.12)

2. Using the recursive expression of N ∗T
prec(k) (3.32) and reorganizing terms using Property

A.0.1 we can derive the following equality

(

N ∗T
prec(k)

)2
=

k−1
∏

i=1

(

N ∗T
i|prec(i)

)2
. (A.13)

Using Equation (A.10) the above expression becomes

k−1
∏

i=1

N ∗T
i|prec(i) = N ∗T

prec(k), (A.14)

where once more we have rearranged terms using Property A.0.1 �

APPENDIX A. MATHEMATICAL PROOFS 181

Property A.0.3 (Commutation of N ∗T
prec(k) with respect to Φ∗). The following equality

holds

Φ∗N ∗T
prec(k) = N∗

prec(k)Φ
∗. (A.15)

Proof by induction.

1. We will first consider the null space expressions given in Equations (3.40) and (6.69),

N∗
prec(k) = I −

k−1
∑

i=1

J
∗
i|prec(i)J

∗
i|prec(i), (A.16)

where J
∗
i|prec(k) is defined in Corollary 3.2.4.

2. Let us demonstrate (A.15) for k = 1:

Φ∗N ∗T
1 = Φ∗

(

I − J ∗T
1 J∗ T

1

)

= Φ∗
(

I − J ∗T
1 Λ∗

1J
∗
1 Φ∗

)

= N∗
1 Φ∗. (A.17)

Here we have used the expression of J
∗
1 given in (3.36).

3. Assuming (A.15) holds for an arbitrary k value, let us demonstrate it for k + 1:

Φ∗N ∗T
prec(k+1) = Φ∗

k
∏

i=1

N ∗T
i|prec(i) (A.18)

Let us study the individual products,

Φ∗N ∗T
i|prec(i) = Φ∗(I − J ∗T

i|prec(i)J
∗ T
i|prec(i)) =

Φ∗ − Φ∗J ∗T
i|prec(i)Λ

∗
i|prec(i)J

∗
i|prec(i)Φ

∗ =

(I − J∗
i|prec(i)J

∗
i|prec(i))Φ

∗ = N∗
i|prec(i)Φ

∗, (A.19)

where we have used the expression of J∗
i|prec(i) given in (3.36). Recursively applying

this equality we can reverse the null-space terms of (A.18), yielding the equality

k−1
∏

i=1

N∗
i|prec(i)Φ

∗ (A.20)

APPENDIX A. MATHEMATICAL PROOFS 182

However, the null-space terms above are multiplied in reverse order. But as shown

in (A.1) the product between null space terms can be reversed yielding the desired

result, i.e.

N∗
prec(k)Φ

∗ (A.21)

�

APPENDIX A. MATHEMATICAL PROOFS 183

Property A.0.4 (Compact expression of N∗
prec(k)). The following compact form of the

recursive null space matrix exists

N ∗T
prec(k) = I −

k−1
∑

i=1

J ∗T
i|prec(i)J

∗ T

i|prec(i). (A.22)

Proof.

1. Property 1: ∀ i, J∗ T
i|prec(i)N

∗T
i|prec(i) = 0. This equality can be demonstrated by visual

inspection when using the expression N ∗T
i|prec(i) =

(

I − J ∗T
i|prec(i)J

∗ T
i|prec(i)

)

shown in

(3.33), and applying the rules of generalized inverses.

2. Property 2: ∀i, J∗ T
i|prec(i)N

∗T
prec(i) = J∗ T

i|prec(i), i.e. the null-space term vanishes. This

equality can be demonstrated as follows. First we use the expression of J
∗
i|prec(i) given

in (3.36) yielding

J∗ T

i|prec(i)N
∗T
prec(i) = Λ∗

i|prec(i)J
∗
i|prec(i)Φ

∗N ∗T
prec(i). (A.23)

Now, using the property Φ∗N ∗T
prec(i) = N∗

prec(i)Φ
∗ shown in (A.15), the expression of

J∗
i|prec(i) shown in (3.33), and the property (N∗

prec(i))
2 = N∗

prec(i) shown in (A.9), the

last term of the above equation vanishes.

3. Property 3: ∀ i, j, with i < j (i.e. i has higher priority than j) J∗
i|prec(i)J

∗T
j|prec(j) = 0.

This can be seen by writing the equality

J ∗T
j|prec(j) = N ∗T

prec(i)

j−1
∏

l=i

N ∗T
l|prec(l)J

∗T
j . (A.24)

Applying Property 2 the term N ∗T
prec(i) vanishes, and applying Property 1 the term

∏j−1
l=i N

∗T
l|prec(l) (which contains N ∗T

i|prec(i)) cancels out.

4. Next, we will use induction to proof (A.22). We first demonstrate it for k = 3. First

we expand the null-space expression into

N ∗T
prec(3) = N ∗T

1 N ∗T
prec(2) =

(

I − J ∗T
1 J∗ T

1

)(

I − J ∗T
2|1 J

∗ T

2|1

)

=

I − J ∗T
1 J∗ T

1 − J ∗T
2|1 J

∗ T

2|1 + J ∗T
1 J∗ T

1 J
∗T
2|1 J

∗ T

2|1. (A.25)

APPENDIX A. MATHEMATICAL PROOFS 184

However, the last term is equal to zero because J∗ T
1 J

∗T
2|1 = 0. Here we have used the

expression J ∗T
2|1 = N ∗T

1 J ∗T
2 and Property 1.

5. In general, for any k the positive products (like the last term of the above equation)

will always contain products like the ones described in Property 3, which are always

0. �

Bibliography

Albu-Schaffer, A. and G. Hirzinger (2002, May). Cartesian impedance control techniques

for torque controlled light-weight robots. In Proceedings of the IEEE International

Conference on Robotics and Automation, Washington D.C., USA, pp. 667–663.

Anderson, F. and M. Pandy (2001). Static and dynamic optimization solutions for gait

are practically equivalent. Journal of Biomechanics 34, 153–161.

Arai, H. and O. Khatib (1994, 81-84). Experiments with dynamic skills. In Proceedings

of The Japan-USA Symposium on Flexible Automation, Kobe, Japan.

Arai, H. and S. Tachi (1991, April). Dynamic control of a manipulator with passive

joints in an operational coordinate space. In Proceedings of the IEEE International

Conference on Robotics and Automation, Sacramento, USA.

Arbib, M. (1981). Perceptual Structures and Distributed Motor Control. In: Brooks VB

(ed) Handbook of physiology (Section 2: The nervous system, Vol. IL Motor control,

Part I). American Physiological Society, pp. 1449-1480.

Arkin, R. (1998). Behavior-Based Robotics. Boston, MA: MIT Press.

Baerlocher, P. (2001). Inverse Kinematics Techniques for the Interactive Posture Con-

trol of Articulated Figures. Ph. D. thesis, Ecole Polytechnique Federale de Lausanne,

Lausanne, Switzerland.

Baerlocher, P. and R. Boulic (1998, October). Task-priority formulation for the kinematic

control of highly redundant articulated structures. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, Victoria, Canada.

Billard, A. (2000). Learning motor skills by imitation: a biologically inspired robotic

model. Cybernetics and Systems 1 (2), 155–193.

Boulic, R. and R. Mas (1995). Inverse kinetics for center of mass position control and

posture optimization. Workshop in Computing Series (234-249).

185

BIBLIOGRAPHY 186

Boulic, R. and R. Mas (1996). Hierarchical kinematic behaviors for complex articulated

figures. Advanced Interactive Animation.

Brock, O. and O. Khatib (2002). Elastic strips: A framework for motion generation in

human environments. International Journal of Robotics Research 21 (12), 1031–1052.

Brock, O., O. Khatib, and S. Viji (2002). Task-consistent obstacle avoidance and motion

behavior for mobile manipulation. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation, Washingtion, USA, pp. 388–393.

Brooks, R. (1986, March). A robust layered control system for a mobile robot. Interna-

tional Journal of Robotics and Automation 2 (1), 14–23.

Brooks, R., L. Aryananda, A. Edsinger, P. Fitzpatrick, C. Kemp, U.-M. OReilly,

E. Torres-Jara, P. Varshavskaya, and J. Weber (2004, March). Sensing and manipulat-

ing built-for-human environments. International Journal of Humanoid Robotics 1 (1),

1–28.

Buckley, C. (1986). The application of continuum methods to path planning. Ph. D. thesis,

Stanford University, Stanford, USA.

Chang, K. and O. Khatib (2000, April). Operational space dynamics: Efficient algorithms

for modeling and control of branching mechanisms. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation.

Chatila, R. (1981). Systeme de Navigation pour un Robot Mobile Autonome: Modelisation

et Processus Decisionnels. Ph. D. thesis, Universite Paul Sabatier, Toulouse, France.

Cole, A., J. Hauser, and S. Sastry (1989). Kinematics and control of multifingered hands

with rolling contact. IEEE Transaction on Automation and Control 34 (4), 398–404.

Conti, F. and O. Khatib (2005, March). Spanning large workspaces using small haptic

devices. In IEEE WorldHaptics, Pisa, Italy, pp. 183–188.

Crowninshield, R. and R. Brand (1981). A physiologically based criterion of muscle force

prediction in locomotion. Journal of Biomechanics 14, 793–801.

Delp, S. and J. Loan (2000). A computational framework for simulating and analyzing

human and animal movement. IEEE Computational Science and Engineering 2 (5),

46–55.

Dubowsky, S. and E. Papadopoulos (1993, October). The kinematics, dynamics, and

control of free-flying and free-floating space robotic systems. IEEE Transactions on

Robotics and Automation 9 (5).

BIBLIOGRAPHY 187

Ehmann, S. and M. Lin (2000). Swift: Accelerated proximity queries between convex

polyhedra by multilevel voronoi marching. Technical report, University of North Car-

olina at Chapel Hill.

Espiau, B., F. Chaumette, and P. Rives (1992). A new approach to visual servoing in

robotics. IEEE Transactions on Robotics and Automation 8 (3), 313–326.

Featherstone, R. (1987). Robot Dynamics Algorithms. Norwell, USA: Kluwer Academic

Publishers.

Featherstone, R., S. Thiebaut, and O. Khatib (1999, May). A general contact model for

dynamically-decouled force/motion control. In Proceedings of the IEEE International

Conference on Robotics and Automation, Detroit, USA.

Fichter, E. and E. McDowell (1980). A nover design for a robot arm. In Advancements

of Computer Technology, pp. 250–256. ASME.

Fujimoto, Y. and A. Kawamura (1996). Proposal of biped walking control based on robust

hybrid position/foce control. In Proceedings of the IEEE International Conference on

Robotics and Automation, Volume 4, pp. 2724–2730.

Full, R. (1993). Integration of individual leg dynamics with whole-body movement in

arthropod locomotion. Biological Neural Networks in Invertebrate Neuroethology and

Robotics, 3–20.

Gilbert, E. G., D. W. Johnson, and S. S. Keerthi (1988). A fast procedure for computing

the distance between complex objects in three-dimensional space. IEEE Journal of

Robotics and Automation 4 (2).

Hanafusa, H., T. Yoshikawa, and Y. Nakamura (1981). Analysis and control of articu-

lated robot with redundancy. In Proceedings of IFAC Symposium on Robot Control,

Volume 4, pp. 1927–1932.

Harada, K., H. Hirukawa, F. Kanehiro, K. Fujiwara, K. Kaneko, S. Kajita, and M. Naka-

mura (2004, September). Dynamical balance of a humanoid robot grasping an en-

vironment. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, Sendai, Japan, pp. 1167–1173.

Harada, K., S. Kajita, K. Kaneko, and H. Hirukawa (2004, November). An analyti-

cal method on real-time gait planning for a humanoid robot. In Proceeding of the

IEEE/RSJ International Conference on Humanoid Robots, Los Angeles, USA, pp.

640–655.

BIBLIOGRAPHY 188

Hauser, K., T. Bretl, K. Harada, and J. Latombe (2006, July). Using motion primitives in

probabilistic sample-based planning for humanoid robots. In Workshop on Algorithmic

Foundations of Robotic (WAFR), New York, USA.

Hirai, K., M. Hirose, Y. Haikawa, and T. Takenaka (1998). The development of Honda

humanoid robot. In Proceedings of the IEEE International Conference on Robotics

and Automation, Volume 2, Leuven, Belgium, pp. 1321–1326.

Hirose, S., T. Masui, and H. Kikuch (1985). Titan-iii: A quadruped walking vehicle.

Robotics Research, 325–331.

Hogan, N. (1987, March-April). Stable execution of contact tasks using impedance con-

trol. In Proceedings of the IEEE International Conference on Robotics and Automa-

tion, Raleigh, USA, pp. 1047–1054.

Ishiguro, H. (2005, July). Android science. In Proceedings on A CogSci 2005 Workshop

on Toward Social Mechanisms of Android Science, Stresa, Italy, pp. 25–26.

Jain, A. and G. Rodriguez (1993, August). An analysis of the kinematics and dynamics of

under-actuated manipulators. IEEE Transactions on Robotics and Automation 9 (4).

Kailath, T., A. H. Sayed, and B. Hassibi (2000). Linear Estimation. Prentice Hall.

Kajita, S., F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa

(2003a, September). Biped walking pattern generation by using preview control of

zero-moment point. In Proceedings of the IEEE International Conference on Robotics

and Automation, Taipei, Taiwan, pp. 14–19.

Kajita, S., F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa

(2003b, October). Resolved momentum control: Humanoid motion planning based

on the linear and angular momentum. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, Las Vegas, USA, pp. 1644–1650.

Kanehiro, F. and H. Hirukawa (2001, September). Online self-collision checking for hu-

manoids. In Proceedings of the 19th Annual Conference of the Robotics Society of

Japan, Tokyo, Japan.

Kerr, J. and B. Roth (1986). Analysis of multifingered hands. International Journal of

Robotics Research 4 (4), 3–17.

Khatib, O. (1980). Commande Dynamique dans l’Espace Opérationnel des Robots Ma-

nipulateurs en Présence d’Obstacles. Ph. D. thesis, l’École Nationale Supérieure de

l’Aéronautique et de l’Espace, Toulouse, France.

BIBLIOGRAPHY 189

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research 5 (1), 90–8.

Khatib, O. (1987). A unified approach for motion and force control of robot manipulators:

The operational space formulation. International Journal of Robotics Research 3 (1),

43–53.

Khatib, O. (2004). Advanced Robotic Manipulation. Stanford, USA: Stanford University.

Class Notes.

Khatib, O. and J. Maitre (1978, September). Dynamic control of manipulators operat-

ing in a complex environment. In Proceedings of RoManSy’78, 3rd CISM-IFToMM

Symposium, Udine, Italy, pp. 267–282.

Khatib, O., L. Sentis, J. Park, and J. Warren (2004, March). Whole body dynamic

behavior and control of human-like robots. International Journal of Humanoid

Robotics 1 (1), 29–43.

Khatib, O., P. Thaulaud, and J. Park (2006). Torque-position transformer for task control

of position controlled robots. Patent. Patent Number: 20060250101.

Khatib, O., J. Warren, V. Desapio, and L. Sentis (2004, First edition). Human-like motion

from physiologically-based potential energies,. In Advances in Robot Kinematics, pp.

149–163. Kluwer Academic Publishers.

Krogh, B. (1984, August). A generalized potential field approach to obstacle avoidance

control. In Proceeding of the Internatioal Robotics Research Conference, Betlehem,

USA.

Kuffner, J., K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue (2003, October). Mo-

tion planning for humanoid robots. In Proceedings of the International Symposium of

Robotics Research, Siena, Italy.

Kuffner, J., K. Nishiwaki, S. Kagami, Y. Kuniyoshil, M. Inabal, and H. Inouel (2002,

May). Self-collision detection and prevention for humanoid robots. In Proceedings of

the IEEE International Conference on Robotics and Automation, Washington, USA,

pp. 2265–2270.

Kwon, S., W. Chung, Y. Youm, and M. Kim (1991, October). Self-collision avoidance for

n-link redundant manipulators. In Proceedings of the IEEE International Conference

on System, Man and Cybernetics, Charlottesville, USA, pp. 937–942.

Latombe, J. (1991). Robot Motion Planning. Boston, USA: Kluwer Academic Publishers.

BIBLIOGRAPHY 190

Latombe, J. (1999). Motion planning: A journey of robots, molecules, digital actors, and

other artifacts. International Journal of Robotics Research 18 (11), 11191128.

Laumond, J. and P. Jacobs (1994). A motion planner for nonholonomic mobile robots.

IEEE Transactions on Robotics and Automation 10 (5), 577–593.

Liegois, A. (1977). Automatic supervisory control of the configuration and behavior of

multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics 7,

868–871.

Lozano-Perez, T. (1981). Automatic planning of manipulator transfer movements. Pro-

ceedings of the IEEE International Conference on System, Man and Cybernet-

ics 11 (10), 681–698.

Lozano-Perez, T. (1983). Spatial planning: a configuration space approach. IEEE Trans-

action of Computers 32 (2), 108–120.

Maciejewski, A. and C. Klein (1985). Obstacle avoidance for kinematically redundant

manipulators in dynamically varying environments. International Journal of Robotics

Research 4 (3), 109–117.

Marchand, E. and G. Hager (1998, May). Dynamic sensor planning in visual servoing.

In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, Volume 3, Leuven, Belgium, pp. 1988–1993.

Mataric, M. (2002). Sensory-motor primitives as a basis for learning by imitation: Linking

perception to action and biology to robotics. Imitation in Animals and Artifacts,

Kerstin Dautenhahn and Chrystopher Nehaniv, eds., MIT Press, 392–422.

Merlet, J.-P. (1996, February). Redundant parallel manipulators,. Laboratory of Robotics

and Automation 8 (1), 17–24.

Minguez, J. and L. Montano (2004). Nearness diagram navigation (nd): Collision avoid-

ance in troublesome scenarios. IEEE Transactions on Robotics and Automation 20 (1),

45–59.

Moravec, H. (1980). Obstacle Avoidance and Navigation in the Real World by a Seeing

Robot Rover. Ph. D. thesis, Stanford University, Stanford, USA.

Mori, M. (2004, September-October). Uncanny valley. In ROBOCON, Volume 28, Seoul,

Korea, pp. 49–51. (Originally reported in 1970 in “Energy” vol. 7, no. 4).

Mussa-Ivaldi, F., N. Hogan, and E. Bizzi (1985, October). Neural, mechanical, and geo-

metric factors subserving arm posture in humans. The Journal of Neuroscience 5 (10),

2732–2743.

BIBLIOGRAPHY 191

Nakamura, Y., H. Hanafusa, and T. Yoshikawa (1987). Task-priority based control of

robot manipulators. International Journal of Robotics Research 6 (2), 3–15.

Nelson, G. and R. Quinn (1998, May). Posture control of a cockroach-like robot. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation, Leuven,

Belgium, pp. 157–162.

Nenchev, D., Y. Umetami, and K. Yoshida (1992, February). Analysis of a redundant

free-flying spacecraft/manipulator system. IEEE Transactions on Robotics and Au-

tomation 8 (1).

Neo, E., K. Yokoi, S. Kajita, F. Kanehiro, and K. Tanie (2005). A switching command-

based whole-body operation method for humanoid robots. IEEE Transactions on

Mechatronics 10 (5), 546–559.

Nilsson, N. (1969). Mobile automation: An application of artifitial intelligence techniques.

In Proceedings of the 1st International Joint Conference on Artificial Intelligence,

Washington D.C. USA, pp. 509–520.

Oda, M., K. Kibe, and F. Yamagata (1996, April). ETS-VII space robot in-orbit experi-

ment satellite. In Proceedings of the IEEE International Conference on Robotics and

Automation, Minneapolis, USA.

Palmer, L. and D. Orin (2006). 3d control of a high-speed quadruped trot. Industrial

Robot 33 (4), 298–302.

Papadopoulos, E. and S. Dubowsky (1991, December). On the nature of control al-

gorithms for free-floating space manipulators. IEEE Transactions on Robotics and

Automation 7 (6).

Petrovskaya, A., J. Park, and O. Khatib (2007, April). Probabilistic estimation of whole

body contacts for multi-contact robot control. In Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, Rome, Italy.

Pieper, D. (1968). The Kinematics of Manipulators Under Computer Control. Ph. D.

thesis, Stanford University, Stanford, USA.

Pratt, G. (1995, August). Series elastic actuators. In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, Pittsburgh, USA.

Pratt, J., P. Dilworth, and G. Pratt (1997, April). Virtual model control of a bipedal

walking robot. In Proceedings of the IEEE International Conference on Robotics and

Automation, Albuquerque, USA.

BIBLIOGRAPHY 192

Quinlan, S. (1994). Real-time Modification of Collision-free Paths. Ph. D. thesis, Stanford

University, Stanford, USA.

Raibert, M. (1986). Legged Robots that Balance. MIT Press, Cambridge, Ma.

Raibert, M., M. Chepponis, and H. Brown (1986, June). Running on four legs as thoiugh

they were one. IEEE Journal of Robotics and Automation 2 (2), 70–82.

Roth, B., J. Rastegar, and V. Sheinmann (1973). On the design of computer controlled

manipulators. In First CISM IFToMM Symposium, pp. 93–113.

Ruspini, D. and O. Khatib (1999, October). Collision/contact models for dynamic simula-

tion and haptic interaction. In The 9th International Symposium of Robotics Research

(ISRR’99), Snowbird, USA, pp. 185–195.

Ruspini, D. and O. Khatib (2000). A framework for multi-contact multi-body dynamic

simulation and haptic display. In Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems.

Russakov, J., O. Khatib, and S. Rock (1995, May). Extended operational space formula-

tion for serial-toparallel chain (branching) manipulators. In Proceedings of the IEEE

International Conference on Robotics and Automation, Nagoya, Japan, pp. 1056–1061.

Russakov, J., S. Rock, and O. Khatib (1995, June-July). An operational space formulation

for free-flying, multi-arm space robot. In Preprints 4th International Symposium on

Experimental Robotics, Stanford, USA, pp. 278–283.

Schaal, S., A. Ijspeert, and A. Billard (2003). Computation approaches to motor learning

by imitation. Philosophical Transactions - Royal Society of London Series B Biological

Sciences 358 (1431), 537–548.

Sentis, L. and O. Khatib (2005a, April). Control of free-floating humanoid robots through

task prioritization. In Proceedings of the IEEE International Conference on Robotics

and Automation, Barcelona, Spain, pp. 1730–1735.

Sentis, L. and O. Khatib (2005b, December). Synthesis of whole-body behaviors through

hierarchical control of behavioral primitives. International Journal of Humanoid

Robotics 2 (4), 505–518.

Sentis, L. and O. Khatib (2006, May). A whole-body control framework for humanoids

operating in human environments. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation, Orlando, USA.

Siciliano, B. and J. Slotine (1991, June). A general framework for managing multiple

BIBLIOGRAPHY 193

tasks in highly redundant robotic systems. In Proceedings of the IEEE International

Conference on Advanced Robotics, Pisa, Italy, pp. 1211–1216.

Stewart, D. (1965). A platform with six degrees of freedom (platform with six degrees

of freedom for flight simulation in pilot training). Proceedings of the Institution of

Mechanical Engineers 180 (15), 371–378.

Stone, P. (2000). Layered Learning in Multiagent Systems: A Winning Approach to

Robotic Soccer. Ph. D. thesis, Carnegie Mellon University, Pittsburgh, USA.

Sugihara, T. (2004). Mobility Enhancement Control of Humanoid Robot based on Reaction

Force Manipulation via Whole Body Motion. Ph. D. thesis, University of Tokyo, Tokyo,

Japan.

Udupa, S. (1977). Collision Detection and Avoidance in Computer Controlled Manipula-

tors. Ph. D. thesis, California Institute of Technology, Pasadena, USA.

Umetami, Y. and K. Yoshida (1989, June). Resolved motion rate control of space ma-

nipulators with generalized Jacobian matrix. IEEE Transactions on Robotics and

Automation 5 (3).

Vukobratovic, M. and B. Borovac (2004). Zero-moment point thirty tive years of its life.

International Journal of Humanoid Robotics 1 (1), 157–173.

Xu, Y. and T. Kanade (1992). ”Space Robotics: Dynamics and Control”. Prentice Hall.

Yamane, K. and Y. Nakamura (2003). Dynamics filterconcept and implementation of

online motion generator for human figures. IEEE Transactions on Robotics and Au-

tomation 19 (3), 421–432.

Yokoyama, K., H. Handa, T. Isozumi, Y. Fukase, K. Kaneko, F. Kanehiro, Y. Kawai,

F. Tomita, and H. Hirukawa (2003, September). Cooperative works by a human and

a humanoid robot. In Proceedings of the IEEE International Conference on Robotics

and Automation, Taipei, Taiwan, pp. 2985–2991.

Yoshida, K. (1994). Practical coordinationcontrol between satellite attitude and manipu-

lator reaction dynamics based on computed momentumconcept. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems, Piscataway,

USA, pp. 1578–1585.

Yoshikawa, T. (1985). Manipulability of robotics mechanisms. International Journal of

Robotics Research 4 (2).

