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Abstract—Whole-Body  Operational Space  Controllers
(WBOSC) are versatile and well-suited for simultaneously
controlling motion and force behaviors which can enable
sophisticated modes of locomotion and balance. In this paper,
we formulate a WBOSC for point-foot bipeds with Series
Elastic Actuators (SEA) and experiment with it using a teen
size SEA biped robot. Our main contributions are on: 1)
devising a WBOSC strategy for point-foot bipedal robots, 2)
formulating planning algorithms for achieving unsupported
dynamic balancing on our point foot biped robot and testing
them using WBOSC, and 3) formulating force feedback control
of the internal forces — corresponding to the subset of contact
forces that do not generate robot motions — to regulate contact
interactions with the complex environment. We experimentally
validate the efficacy of our new whole-body control and
planning strategies via balancing over a disjointed terrain and
attaining dynamic balance through continuous stepping without
a mechanical support.

I. INTRODUCTION

During DARPA’s Robotics Challenge held in 2013 and
2015, various humanoid robots were required to execute many
practical tasks [1]. Most of these robots implemented a certain
class of controllers called whole-body controllers (WBC),
which are easily reconfigurable to accomplish multiple con-
trol objectives under environmental constraints. A perceived
limitation of these robots was that their motions were much
slower than their human counterparts. To remedy this issue,
future WBC methods must significantly improve the speed and
accuracy of the executed motions without losing their natural
versatility. Additionally, humanoid robots with series elastic
actuators are increasingly being sought for safe whole-body
physical interactions among people and to move in cluttered
environments. However, controlling fast motion behaviors with
high precision on robots with series elastic actuators is quite
challenging [2].

To demonstrate that WBCs can achieve highly dynamic
and versatile behaviors on biped robots with series elastic
actuators we devise here: 1) software and hardware control
methods to achieve whole-body operational space behaviors
that are stable and accurate, 2) feedback control strategies to
accurately regulate internal force behavior that yield pulling
or pushing forces on complex terrains, 3) a pose estimator that
can overcome the limitations of low-cost inertial measurement
units (IMU) and be well suited for highly dynamic behaviors,
and 4) a locomotion planner and controller that can stabilize
a point-foot robot on flat and rough terrains.

We consider WBCs to be very important for all types
of humanoid robots because of their versatility and intuitive
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usage. Their versatility implies that WBCs designed for one
type of robotic structure could be transferred to a different
type of robot with minimum supervision. Additionally, WBCs
have the advantage of decoupling task dynamics. In the
case of WBOSC, it is possible to simultaneously control
motion tracking behaviors and feedback-based internal force
behaviors. Internal forces correspond to the subset of contact
forces that do not generate robot motions. In a previous
paper we discussed the need to reduce joint torque controller
gains to achieve better task motion tracking performance
[2]. By combining task motion control with internal force
feedback control, WBOSC achieves precise tracking of the
internal forces regardless of the tracking setpoint of the joint
torque controllers. This capability is unique to WBOSC and
especially important when moving in sophisticated types of
terrains that require the feet to apply tensions or compressions
to the terrain by precisely controlling the contact forces.

With no doubt, WBCs, in general, offer many advantages
for versatility and contact interactions. And to get their highest
performance in terms of whole-body motion and force interac-
tions they benefit by being implemented in torque controlled
robots such as those using series elastic actuators. Previously,
WBOSC had not been formulated for and experimented with
point-foot bipedal robots with series elastic actuators. There-
fore, the main contribution of this paper is to design a WBOSC
for highly dynamic point-foot bipedal robots and assess its
performance capabilities for various types of locomotion and
balance behaviors.

In most cases, robots with unstable dynamics, such as point-
foot bipeds, use control structures that are customized to the
particular robot structure in hand. This customization allows
them to perform optimally for the designed task but makes it
difficult to improvise controllers on demand or transfer them to
other types of robotics structures. One of the most successful
point-foot biped robots is ATRIAS [3], which can continu-
ously walk unsupported using small passive feet. However,
its locomotion controller highly relies on the characteristics
of the hardware, whose natural dynamics is similar to the
spring-mass model. The reliance on hardware characteristics
makes the controller less versatile than WBCs. Additionally,
ATRIAS has not been shown to regulate internal forces on
disjointed terrains for gaining balance. Compared to ATRIAS
which uses small passive feet to stabilize the yaw motion, our
biped robot Hume does not have any feet. MABEL [4] and
MARLO [5] also have clever controllers designed to follow the
Hybrid Zero Dynamics, the latter robot being able to achieve
unsupported locomotion for several steps. But identifying the
Hybrid Zero Dynamics is a non-trivial process and difficult to
adapt to other locomotion patterns. MARLO achieves 20 steps
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of unsupported walk [5]. In comparison, our biped robot Hume
achieves 18 steps of unsupported balance. Some quadruped
robots, such as StarlETH [6] and HyQ [7], use WBCs for
locomotion and multi-contact tasks. They are also able to
balance on disjointed terrains. Compared to WBOSC they do
not use feedback control of the internal forces. With respect to
balancing capabilities, quadrupedal robots are fundamentally
different compared to point-foot bipeds since the additional
two legs provide multiple support points to regain and maintain
balance. For instance, when a quadruped robot receives a
kick it can reposition two or three of its legs to create a
large support polygon for balance adaptation and center of
mass control. On the other hand point-foot bipeds do not
have a supporting polygon and therefore need to rely on the
robustness of their locomotion planners and the precision of
the foot placement controller.

Other inverted pendulum based algorithms such as the Zero
Moment Point [8], the Capture Point [9], or the Divergent
Component of Motion [10] have not been experimentally
demonstrated in unconstrained point-foot robots to date. Pre-
viously, we introduced a new foot placement planner [11]
which we extend for this paper for correctness and physical
implementation via 1) formulating a stability analysis, 2)
extending it to rough terrains, 3) extending it to unsupported
point-foot dynamic locomotion, and 4) explaining the effect
of ground impacts on the robot’s trajectory. We use this loco-
motion planner and controller on the physical biped system
for flat terrain locomotion and we also present a walking
demonstration on rough terrain in a simulation.

The paper is structured as follows. In Section II, we present
background of WBOSC and point-foot biped locomotion.
Section III presents details of our experimental system includ-
ing hardware and software. We explain gain scheduling and
internal force feedback control in Section IV. In Section V,
we present our foot placement planner. Section VI presents
experimental results. Finally, Section VII discusses interesting
issues and future issues to be addressed. Additionally, the Ap-
pendix briefly summarizes WBOSC, establishes the equations
that we use for the prismatic inverted pendulum, and explains
our state estimation approach for estimating the robot’s body
orientation.

II. RELATED WORK
A. Whole-Body Controllers

“Whole-Body Operational Space Control” (WBOSC) is a
torque-level, prioritized, projection-based, multi-task, opera-
tional space, feedback controller for floating based robots
originally outlined in [12] and extended to include internal
force control in [13]. It uses null-space projections to accom-
plish task prioritization and computes contact and constraint
consistent reduced Jacobian matrices to project multiple task
impedance controllers into joint torques. WBOSC also controls
internal forces using the internal force matrix, which resides
in the orthogonal space to joint accelerations and by extension
to operational space motion tasks.

Many experimental approaches for WBC
impedance-based techniques or inverse dynamics

rely on
and

contain optimization algorithms to solve for constraints and
contacts. One of them is the pioneering work by [14] which
formulates task space impedance controllers to fulfill contact
and task constraints; the concept of impedance control was
first presented in [15]. [16] represents the first implementation
that we know of to achieve full dynamic model based task
control with contact constraints on a humanoid robot. In
[17] the implementation of hierarchical inverse dynamic
algorithms using a quadratic program is presented and
demonstrated on a Sarcos biped robot. Experiments include
balancing while withstanding external forces, balancing on
a moving platform, and standing on a single foot. In [18] a
torque-based WBC is presented for controlling the Atlas and
Valkyrie humanoid robots. A quadratic program solver is used
to minimize the error with respect to the desired momentum
rate, contact forces, and task accelerations. In [19] WBC with
inequality constraints via inverse dynamics and a quadratic
program solver is proposed for the humanoid robot HRP-2.
The algorithm is used offline to generate trajectories that are
then tracked by a real-time controller. In [20] a torque-based
WBC focused on optimizing multi-contact wrenches derived
from desired center of mass movements is presented. These
studies aim at controlling humanoid robots with actuated
ankles, and thus do not consider the underactuation nature
and fast locomotion dynamics of point-foot biped robots.

Many of the previous WBCs formulate structures for con-
trolling contact forces. There are many styles for regulating
those forces. In [14], desired center of mass accelerations and
task wrenches are projected and summed up yielding a total
center of mass wrench. When there are multiple contacts,
an optimization algorithm is applied to optimally distribute
the contact wrenches before projecting them to the center of
mass. A center of mass Jacobian transpose projection is used
to achieve the desired global wrench. One of the problems
with this method is that the forward kinematics model used
for controlling the center of mass does not account for contact
constraints which could result in less accurate motion tracking
and force regulation. Nonetheless, the method allows the
Sarcos humanoid robot to balance fairly well but with visibly
slow center of mass motions.

One great controller is the Full Body Controller by [21]
focusing on two stages consisting on first solving for the con-
tact forces then followed by solving the full-body constrained
inverse dynamics problem. To deal with multiple contacts,
a quadratic program is posed based on a simplified relation
between center of mass and task wrenches to solved for the
contact forces that comply with friction constraints. Although
this work was one of the first to produce locomotion on a
physical humanoid robot using WBCs, its algorithm suffers
from two problems: First task wrenches are projected into
the center of mass using a heuristic model. Second, it solves
the inverse dynamics problem by artificially incorporating
fictitious task wrenches yielding a physically incorrect whole-
body dynamic equation.

Another successful WBC is the Momentum-Based Con-
troller by [22]. Variations of this controller were used to obtain
the second place for the DARPA Robotics Challenge. The
controller has a similar two-stage nature than the previous
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Full Body Controller. But it has multiple advantages. First,
for the contact solver, it uses the centroidal momentum matrix
[23], [24] which correctly describes the relationship between
external wrenches, i.e. contact wrenches and gravitation forces,
and joint accelerations. Then it solves a quadratic problem that
includes motion task constraints. In turn, the output reaction
forces are dynamically correct with respect to center of mass
behavior and motion tasks. Second, using the centroidal mo-
mentum matrix it solves for joint accelerations, which is a
more generic output than reaction forces alone. In its second
stage, it solves for the constrained inverse dynamics based on
the output joint accelerations and contact wrenches. In terms of
being dynamically consistent, we cannot think of advantages
or disadvantages between the Momentum-Based Controller
and our WBOSC. The biggest difference is that WBOSC
uses internal forces as the control input for regulating contact
forces. Because internal forces are fully controllable, WBOSC
uniquely formulates a sensor-based feedback controller to
precisely regulate internal forces. In comparison, previous
controllers rely on feedforward control of the internal forces
which require high-bandwidth joint torque control. However,
the high-bandwidth joint torque control impedes achieving
high-bandwidth task control as discussed in Section I'V-A.

It is necessary for us to convert desired contact forces to
internal forces. Fortunately, this is realizable by using the
simple projection operators from contact forces to internal
forces described in Equation (41). As for determining the de-
sired contact forces that comply with frictional constraints, we
described in [13] a search based method to do so. In the current
paper we describe a simple multi-contact model to solve for
the contact forces that comply with frictional constraints. It
would also be possible to use the contact solvers mentioned
in [21], [22] as a first stage, then proceed to solve the inverse
task dynamics problem using WBOSC as the second stage of
the controller. The takeaway message is that we can use any
contact solver of our choice, convert contact forces to internal
forces using simple projections as described in Equation
(41), then proceed to solve for the whole-body torques using
WBOSC. Note that controlling task accelerations plus internal
forces is equivalent to controlling reaction forces. For instance,
the Momentum-Based Controller previously reviewed solves
for the joint accelerations and reaction forces that comply
with task accelerations and friction constraints. In our case,
we directly solve for the task accelerations and compute the
internal forces that comply with friction constraints. The two
cases are functionally equivalent. However, WBOSC allows
for feedback control of internal forces which other controllers
do not.

There are several advantages of using WBOSC as the
inverse task dynamics solver. First, we can formulate a sensor-
based feedback controller to regulate internal forces. Using
feedback control for the internal forces is beneficial since
we intentionally reduce torque controller feedback gains in
favor of position tracking performance as discussed in Section
IV-A. Employing internal force feedback control leads to more
accurate tracking of the desired internal forces without re-
ducing the task position tracking accuracy. Another advantage
is that WBOSC exposes the task’s effective inertia matrices

which can be used to study dynamic properties such as the
effect of collisions on end effectors. Another difference is that
WBOSC provides a framework for task prioritization which
allows behaviors to automatically repress conflicting tasks that
are less critical for safety during runtime. Finally, WBOSC
supports the execution of overdetermined tasks, i.e. tasks that
attempt to control more degrees of freedom than there are
available, given desired priorities. For instance in [25] we
control multiple tasks associated with a cloud of marker points.
There are more markers than degrees of freedom in the robot.

The quadruped robot described in [6] uses a reaction force
method to balance a quadruped on a ramp with 40° inclination.
Another quadruped described in [7] balances on a split terrain
by regulating the contact forces. These types of controllers are
of a similar nature than WBOSC. One difference is that they
do not implement feedback control of the internal forces.

Overall, there are many great WBCs out there supporting
the control of multiple tasks under contact constraints which
we have compared to WBOSC. The main point of this paper
is to demonstrate and analyze the performance of WBOSC
on a bipedal point-foot robot which is characterized by faster
locomotion dynamics than humanoid robots with actuated
ankles and has no supporting polygon compared to quadruped
robots.

B. Locomotion of Point-Foot Biped Robots

Point-foot biped robots similar to ours have often been
studied [26]-[31] due to their mechanical simplicity and fast
locomotion capabilities. Only a few have achieved dynamical
balancing without a constraint mechanism, the three most
notable ones being the hydraulically actuated hopper from [32]
and the bipeds from [28] and [3]. These last two biped robots
are based on the same mechanical architecture but differ in
the type of controller.

One of the most successful approaches to point-foot loco-
motion comes from [33], which stabilizes the Hybrid Zero
Dynamics of a high dimensional multi-body model of the
robot. However, the algorithm is designed for robots supported
by a planarizing mechanism. Recently, the same group [28]
has combined this full-body locomotion algorithm with the
SIMBICON method [34] to achieve unsupported point-foot
locomotion. Like ours, the robot accomplishes numerous steps
before falling.

In the works [3], [35], an unsupported point-foot robot
accomplishes continuous walking by using only simple rule-
based algorithms to stabilize the walk. Our locomotion algo-
rithm is different in that it searches adequate foot positions
to stabilize the robot around a balance point. The balance
point can stay in place or track a desired trajectory for lo-
comotion. In terms of walking, we cannot think of advantages
or disadvantages compared to that line of work. The higher
performance of their experimental locomotion results is due
to a number of factors which we believe are not related to the
choice of locomotion planner. First, the mechanical structure
of their robot is more rigid than ours providing significantly
higher foot positioning accuracy. Second, they use a high
performance IMU which contributes to precision and tracking
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Fig. 1. Hume Robot Kinematics. Blue schematics describe the floating base
joints, while black describes the kinematics of the six leg joints. The locations
of the LED tracking markers identified by the PhaseSpace Impulse Motion
Capture system are shown as red dots.

stability. Third, their robot uses small passive feet that prevent
it from drifting on the yaw direction. In contrast, our robot
does not have passive feet. One key difference of WBOSC is
that it allows biped robots to use internal forces for balancing
on highly irregular terrains, such as our example on balancing
Hume on a steep disjointed terrain.

Another successful locomotion approach also based on
hybrid zero dynamics, utilizes human-inspired trajectories to
generate stable periodic locomotion and even handle some
roughness on the terrain [31], [36]. However, the locomotion
experiments use a mechanical planarizing stage to constraint
the robot to a plane.

Frameworks such as the Capture Point [9] and the Divergent
Component of Motion [10] based on the linear point mass
pendulum model are very practical and widely used for
controlling humanoid robots with actuated feet. However, they
have not been used to control point-foot robots to date.

III. SYSTEM CHARACTERIZATION
A. Hardware Setup

Our robot, Hume, is a biped robot that is 1.5 meters tall
and 20 kg in weight. The leg kinematics resemble simplified
human kinematics and contain an adduction/abduction hip
joint followed by a flexion/extension hip joint followed by
flexion/extension knee joint as shown in Fig. 1. The lack
of ankle joints allows the shank to be a lightweight carbon
fiber tube. The tip of the shank contains contact sensors
based on limit switches. The series elastic actuators on all
six joints are based on a sliding spring carriage connected to
the output by steel ropes. The deformation in the springs is
directly measured within the carriage assembly. The concept,
kinematics, and specifications of the robot were proposed by
our team at UT Austin, and the manufacturing was done
mostly by Meka Robotics with some of our help. For fall

safety the robot is attached to a trolley system with a block and
tackle system allowing easy lifting and locking at a particular
height.

Hume is controlled with distributed digital signal processors
connected by an EtherCAT network to a centralized PC
running a real-time RTAI Linux kernel. This communication
system introduces a 0.4 ms delay from the Linux machine
to the actuator DSPs and back. Each DSP controls a single
actuator and they do not communicate directly with each other.
Power is delivered through a tether.

Similar to [37], Hume is electrically powered and has
six actuated joints. Our poses estimation setup combines an
overhead motion capture system with a low cost IMU. This
sensing modality contrasts the setup found in [3] which takes
advantage of its highly accurate IMU sensor. A relatively inex-
pensive Microstrain 3DM-GX3-25-OEM inertial measurement
unit on our robot’s torso measures angular velocity and linear
acceleration, which is used in the state estimator. Additionally,
the robot has a full overhead PhaseSpace Impulse motion cap-
ture system that gives it global coordinate information about
seven uniquely identifiable LED tracking devices mounted
rigidly to the torso. The PhaseSpace system produces a data
stream at 480 Hz and communicates to the Linux Control PC
via a custom UDP protocol. There is approximately 5 ms of
delay in the feedback data. It accomplishes this using a system
of eight high speed sensors mounted on the ceiling above the
robot, and a proprietary software package to fuse their readings
into a single estimate for the three dimensional position of each
marker. On each update, the system reports the location of as
many of the uniquely identifiable LED markers as it can see
in Fig. 1.

B. End-to-End Controller Architecture

The feedback control system is split into six joint level con-
trollers and a centralized high level controller (see Fig. 2). This
forms a distributed control system where the joint controllers
focus on high speed actuator dynamics while the centralized
controller focuses on overall system dynamics. Yet the high-
level feedback is necessary to create the coupling between
joints implied by operational space impedance tasks as well as
regulating the internal forces between multi-contact supports.
In SEA control, we kept Meka’s joint torque controller, which
is based on passivity as described in [38] (shown on the lower
right corner of Fig. 2).

C. Whole-Body Operational Space Control Algorithm

WBOSC [13] is a feedback control strategy based on
Operational Space Control [39], which extends it to floating
base robots in contact with the environment. It allows the
user to specify multiple task objectives and their impedance in
operational space. It also subdivides the torques applied to the
robot into orthogonal spaces that affect either robot motion or
internal forces. When the user specifies these internal forces,
WBOSC achieves them using feedback. The full details of
WBOSC are explained in Appendix A.

At the implementation level, WBOSC works well provided
that communication latencies are sufficiently small. Achieving
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achieving the best possible performance of each task.

a 0.667 ms latency required significant software optimiza-
tion. We modified Meka’s firmware to ensure our controller
operated within a real-time context, and to incorporate it
into a hierarchical chain structure that ensures minimum
latency for stacked control systems. We also reduced the
basic computational cost of our WBOSC implementation by
bypassing recursive dynamics software and instead using a
closed-form expression to calculate the mass, gravity, and
Coriolis matrices. To reduce the tracking error, we added an
integral term to all position tasks.

D. Contact Switching Transitions

To reduce the high speed behavior caused by a sudden
change in joint torques, we devise a strategy that smoothens
out the torque commands when the robot transitions between
single and dual support. The sudden change in torque com-
mand is due to the instantaneous switch between constraint
sets within WBOSC. When the controller uses a single contact
constraint, it returns Tgingle. When it uses a dual contact con-
straint, it returns Tqua1. 1O ensure a smooth torque trajectory,
we employ Tirans, Which is a special instance of WBOSC that
uses a single contact constraint but adds an artificial transition
force associated with the contact behavior of the transitioning
foot. The transitioning foot corresponds to the foot that just
landed on the ground or the foot that is about to lift up from the
ground. In either case, we do not instantaneously switch the
controller between single and dual contact phases, but instead
transition smoothly from single contact to dual contact or vice

versa. And the manner that we transition is by adding the
artificial transition force to the single contact controller and
slowly increasing or decreasing its value until it matches the
final torques of the next phase. That is, for the single contact
transitioning controller, we adjust Equation (36) to include an
artificial transitional force, fi,ans, as follows:

(D

Based on the dual contact hypothesis, Tqua1, We find the
reaction force that would be generated on the foot that just
landed on the ground or that is generated on the foot about to
take off. Using the second row of the matrix Equation (30),
and based on the forces corresponding to the task set in single
contact phase resulting from the dual contact phase reaction
fOTCCS, Le. fdual—)single £ Sdual—)singleFT» we get

* * %
Ftask = AtaskutaSk + Htask + Prask + ftrans~

fdual—>sing1e =
7T LI
Sdua1—>sing1e (']5 [UTTdual —-b— g] + AsJSQ) , @)

where Squal—ssingle 1S @ projection operator that transforms
the dual contact reaction forces to equivalent task forces of
the single contact controller. Let us take the case of the
swinging foot that just landed on the ground. Rather than
switching instantaneously to the dual contact controller, we
continue using the single contact controller with the artificial
transition force. That force is smoothly increased until it
matches the dual contact reaction forces projected to the
single contact controller. Therefore, as the controller transition
approaches to dual support we increase the artificial force
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from (ftrans = 0) — (ftrans = fdual—)single)~ COHVGTSC]}C
after the controller switches from dual support phase to single
support phase prior to lifting the foot from the ground, we
smoothen the transition by gradually removing the artificial
force, (ftrans = fdual%single) — (ftrans = 0) To achieve
this gradual transition, we define firans = W - fdual—singles
w € [0,1], where w varies linearly with time from one to
zero or from zero to one over the course of the transition as
appropriate.

To avoid running the controller twice every servo cycle
during transitions, we reuse previous values for 7q,, and
fdual—single- When a foot lifts, the old value of 74y is simply
the last controller action before the start of the transition, and
fdual—single 18 calculated once based on that controller state.
When a foot lands, we run the dual support controller once
at the start of the transition for the sole purpose of acquiring
fdual—single.- This process is similar to [6] except that they
apply it to a quadratic-programming based controller whereas
we apply it to a WBOSC-based controller.

IV. ENHANCEMENT OF WHOLE-BODY OPERATIONAL
SPACE CONTROL

A. Online Feedback Gain Adjustment

To enhance the bandwidth of the proposed WBOSC con-
troller (shown in the upper portion of Fig. 2), we lowered
the gains of the torque feedback controllers (shown in the
lower portion of the same figure). A detailed study on stability
and bandwidth trade-off between high-level position control
and low-level torque control is presented in [2]. In particular,
reducing the low-level torque controller bandwidth allows
us to increase the high-level position controller bandwidth
without compromising stability. To achieve a higher bandwidth
with position control, we increase the PID feedback gains in
WBOSC, reduce the joint-level torque feedback gains, and set
the integral gains on the low-level torque controllers. Detuning
torque gains would reduce the accuracy of internal force
tracking performance if we would solely rely on feedforward
models — see discussion in Section IV-B. For this reason we
design internal force feedback controllers to precisely track
that subset of the contact forces — this technique was also
discussed in Section IV-B.

One drawback of detuning torque controllers is that friction
and stiction cause torque errors. This effect results in joints
not moving when torque commands are small compared to the
stiction threshold. To tackle this problem, we simultaneously
adjust the torque controller gains and the WBOSC feedback
controller gains based on each robot joint’s effective load: in
joints belonging to the stance leg, we turn off the integral gain
of the torque controller. In joints belonging to the swing leg,
we turn on the integral gain of the same controller to reduce
the effects of friction in the actuators.

This can be counter-intuitive since larger effective mass
implies larger feedback gain. Intuitively, the natural frequency
of joint force output in SEA actuators decreases as the joint’s
effective load increases [40]. When one of the robot’s legs is in
contact with the ground, its effective mass increases and as a
result its natural force frequency decreases. Applying integral

Biped Robot -

Triped Robot

Contact
Surfaces

Virtual actuators representing Internal Forces

Fig. 3. Illustration of Internal Forces for Various Robots. Internal forces
in point-foot robots correspond to tensions or compressions between pairs of
supporting contacts.

torque gain in a controller with a small natural frequency can
reduce the phase margin due to an increase in bandwidth and a
drop in phase by —90°. After various trials, we concluded that
a proportional feedback control with motor velocity feedback
in the torque controller and a PID control in WBOSC gives
the best performance for the stance leg.

B. Sensor-Based Internal Force Feedback Control

Internal forces are associated with joint torques that produce
no net motion. As such, internal forces correspond to mutually
canceling forces and moments between pairs or groups of con-
tact points, i.e. tensions, compressions and reaction moments.
For instance, a triped point-foot robot has three internal force
dimensions while a biped point-foot robot has a single internal
force dimension as shown in Figure 3.

Internal forces are fully controllable since they are or-
thogonal to the robot’s motion. As such, both the robot’s
movements and its internal forces can be simultaneously
controlled. Moreover, in many types of contact poses, internal
forces are easily identifiable using some physical intuition.
For instance, in the triped pose of Figure 3 the three feet can
generate three virtual tensions between the points of contact.
The physics of tension forces were analyzed in greater detail
using a virtual linkage model in [13].

Internal forces are part of the core WBOSC. In Appendix A,
we describe the model-based control structures enabling direct
control of internal forces. In particular, the basic torque
structure derived in Equation (43) is copied here:

Tint — JiTZT (Ent,ref - -Fint,{t} + Mf + p;'k)v 3)

where Fin rer 1S the vector of desired internal forces and
Fing, {4y corresponds to the mapping of task torques into the
internal force manifold. The above equation would be suffi-
cient for feedforward internal force control if the commanded
torques were equal to the actual torques, and if the kinematic
and dynamic models were exact. However, as we mentioned in
the Introduction and will further explore in detail in Section
IV-A, we intentionally lower the bandwidth of joint torque
controllers in order to increase the bandwidth of WBOSC’s
task motion controllers. As a result, we cannot solely rely
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on feedforward control of internal forces. Formulating in-
ternal force feedback control is a significant advantage over
increasing the bandwidth of joint torque controller. It enables
good force tracking accuracy but only in the dimensions that
are rendered of interest to the behaviors, which in our case
correspond to internal forces. Because internal forces do not
affect task motion, the internal force feedback controller does
not negatively affect the accuracy of the motion tasks as the
joint torque controllers do. Overall, it is best to formulate
feedback control only in the dimensions that are practical,
and in our case they are the motion tasks in one hand, and
the internal force task on the other. To our knowledge, this
is the first successful use of sensor-based feedback control of
internal forces in a real robot.

Since internal forces are fully controllable, we can achieve
better internal force tracking accuracy by incorporating a
simple proportional controller of the measured internal force
error via Equation (43),

Tint = JiTlT (Ent,ref - Ent,{t} + M;k + p:

+ KF (-Fint,ref - -FintA,act) )7 (4)

where K is a proportional control gain and Fi, act are the
actual sensor-based internal forces. To obtain these sensor-
based forces, we use the torque sensors on the series elastic
actuators to find the reaction forces as per Equation (30) and
apply a projection Wiy, to find internal forces,

Fint,act = VVint jz(UTTsensor —b— g) + ASJQ} 9 (5)

where Tgensors corresponds to the vector of torques sensed by
the spring element in each series elastic actuator (see Figure 2).

The above internal force mapping is distinguished from
previous work due to its sensor-based force feedback nature,
and its mapping is valid due to the physical fact of robot
redundancy in the multi-contact case. The induced contact
closed loop causes the number of controlled motion tasks
to be smaller than that of actuated joints. Correspondingly,
additional DOFs are available to be controlled for more force
tasks, such as internal forces in Equation (5). This mapped
internal forces are consistent with contact constraints and
cancellation of accelerations on the robot’s base or on the
actuated joints [13]. More details can be found in Appendix A.

To calculate internal forces for Hume we need to de-
fine the mapping given in Equation (41) in Appendix A,
where Wi, is the matrix representing the map from reac-
tion forces to internal forces. In our case, Hume controls
the internal forces between the two feet during dual con-
tact phases. In dual support mode, the reaction forces are
(frRe» fRys [Rzv fL2y fLy, frz)", where R and L mean
the robot’s right and left foot, respectively. According to [13],
Wint consists of S;, a selection matrix of tensions, R;, a
rotation matrix from global frame to the direction parallel to
the line between two contact points, and A;, a differential
operator matrix, i.e.

Wing = St Ry Ay, (6)

with
S=(1 0 0), (7)
N Pr—P
&7 &= PP
Re= (9" |, {0=(-%(2),21),00" , (¥
P PR
2=2x9
Ay = (Isxs —Isxs). )

where Pr and Pj, are the position of the right and left feet,
respectively.

There are two ways to compute desired internal forces: 1)
by approximating them via a simple force statics problem and
choosing values that comply with friction cones, and 2) by first
solving an optimization problem including task accelerations
and friction cones to obtain desired reaction forces, F). ¢, and
then projecting them into internal forces using Equation (41),
ie.

Ent,ref = I/Vint F’r',ref- (10)
In this paper we use method 1). If one wants to use method
2), she/he can use existing methods such as the QP-based
contact solver defined in [16] or the centroidal-momentum-
based contact solver defined in [22]. Then the equation above
can be used to solve for the desired internal forces to be
subsequently used as inputs to WBOSC.

V. FOOT PLACEMENT PLANNER

The foot placement planner determines footstep locations
based on a prismatic inverted pendulum model (PIP) that
is representative of the robot in single contact phases. The
footstep locations are selected such that the PIP model is stabi-
lized. This should result in a stable balance behavior assuming
the trajectory generators and WBOSC, 1) successfully place
the feet at the desired locations, 2) achieve the desired height
of the center of mass, and 3) fix the orientation of the robot’s
body.

We previously devised a footstep location algorithm called
the “phase space constant time to velocity reversal plan-
ner” [11]. The swing motion is separated into two phases,
lifting and landing the foot. The landing location is computed
before the landing phase starts. In every step, when the lifting
phase reaches 70% completion, the planner computes the
next footstep location. The value of 70% was empirically
determined to ensure the planner completes before the landing
phase starts. It is a processor intensive task that must be
run outside of the realtime thread. The operational space set-
point trajectory for the swing foot is then defined based on a
polynomial function and the desired landing position, with the
trajectory ending once ground contact is sensed. If the ground
is at the expected height and the position tracking is ideal, the
footstep will land after the nominal swing time. If the planned
step is outside the mechanical limits of the robot, the planner
chooses the closest reachable step.
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Fig. 4. Constant Time to Velocity Reversal Planner. As shown in (a), we approximate the dynamics of the robot with the prismatic inverted pendulum
model, shown in (b). This model predicts the dynamics of the horizontal center of mass position x, y given the stance foot location (zp, yp) = % and the
height surface z = h(z, y). This can be integrated forward in time via the numerical integration procedure shown in (c). When the planner starts operating it
records the initial state © and integrates this state forward to determine the switching state ©. As shown in timelines (d) and (e), the “Estimated sequence” of
the planner has an analogue in the “Robot states” of the state machine. In particular, the switching state © roughly corresponds to the dual support phase of
the walking state machine. This state © represents the planner’s guess at the time and state (x, 2, y,y) values immediately after the switch. The goal of the
planner is to stabilize the robot, and this is achieved by choosing the next footstep O such that = and y velocity equal zero ¢/, and t’y seconds, respectively,
after the foot switch every step. For sufficiently smooth height surfaces, the relationship between the next footstep location and the velocity is monotonic, so

only a single solution exists. We use Newton’s method with numerical differentiation to identify this solution. There exist two velocity reversal states: ¥7,

and <7, as shown in (c).

A. Velocity Reversal

Our planner attempts to stabilize the robot by making its
center of mass reverse direction every step. In its simplified
model, the feet instantly change between swing and support
modes and the CoM reverses its velocity a time ¢’ after the
previous contact switch.

In contrast to approaches based on linear models with
analytically solvable dynamics such as the Capture Point or
the Divergent Component of Motion methods, our approach
is different because the PIP model is not analytically solvable
and numerical search is used to plan the steps. This leads to
the primary computational element in the planning procedure:
a shooting method over the possible footstep locations to find
a center of mass trajectory that accomplishes the CoM velocity
reversal goal. In a previous paper [11], which only considered
constant elevation of the center of mass, we used bisection
search to find footstep locations. In this new work, which
considers variable elevations, we use Newton’s method based
on numerical derivative approximations to find the footsteps.

As illustrated in Fig. 4, the planner begins calculating the
landing location when 70% of the lifting phase is reached. As
such, the planner continuously re-plans to correct for trajectory
deviations. Using the current estimate of the CoM velocity and
position, it numerically integrates forward until the predefined
swing time ends to predict its CoM position and velocity when
its stance foot and swing foot will switch roles, © in Fig. 4.
The equation used in the numerical integration is presented in
Appendix B.

The implementation of the planner enforces the choice of

t’. This time value remains constant for every step, thus the
user only needs to specify a single parameter. The method
for selecting ¢’ is explained in Section V-B. The planner then
finds and returns the footstep location that causes the robot’s
CoM velocity to reach zero t' seconds after the foot switch.
For each potential footstep location considered, the planner
integrates forward in time starting from the post-impact state
as suggested in Fig. 4, ensuring the velocity is zero after ¢
seconds. This integration can be viewed as a function mapping
footstep location to a future velocity. Newton’s method uses
this function to find a foot placement that results in zero CoM
velocity. The number of integrations performed is very low
since the process relies on the monotonicity of the relationship
between footstep location, x,, and ¥,,, and the velocity after t’
seconds, (t},|z,) and g(t; |y,) [11].

As shown in Fig. 5, our planner allows Hume to step over
a 7 cm tall platform and using a CoM height surface that
conforms to the terrain. Specifically, this height surface is
defined, piece-wise, as a function of a global x coordinate,
with three constant height pieces connected by two sinusoidal
segments. The middle constant height piece is 7 cm above
the others to account for the obstacle’s height. The surface
maintains first order continuity. In this simulation the robot’s
planner follows a moving goal location. As this goal location
passes over the platform the robot ascends and descends it
while constantly stepping. Although the planner usually finds
the proper foot placement, the robot shows variable forward
and backward swinging motions. This variability arises when
the robot performs large motions such as stepping down
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Fig. 5. Simulation of Unsupported Point Foot Walking Over Rough Terrain. Subfig. (a) shows the sagittal CoM phase portrait of three steps of walking
over a rough terrain, while (b) shows the lateral CoM phase portrait. The smaller plots correspond to individual steps. The corresponding three steps are
shown in (c) using the SrLib Multi-Body Dynamic Simulation Environment. Subfig. (d) shows more steps of the dynamic walking simulation over the rough

terrain.

from a platform. Since the simplified PIP model used for
planning does not account for the multi-limb robot dynamics,
predicting the CoM path becomes increasingly more difficult
when estimating large motions. Despite this discrepancy, the
planner and controller successfully achieve a stable walk over
the challenging terrain.

In the simulation, we assume zero time delay, perfect
sensor data, perfect torque tracking, and correct dynamic and
kinematic models. These assumptions, which are difficult to
obtain in the real world, make it easier to check the basic
functionality of the planner.

B. Stability Analysis

It can be shown that ¢’ is stable for a limited range of
values assuming linear height surfaces. A natural property of
our planner is that the footsteps converge towards the location
of the CoM projected to the ground. In practice, this is not a
desirable behavior since the feet would move too close to each
other making the robot more sensitive to small disturbances.
To account for this potential problem, we create a hybrid
behavior—if the planned velocity at the next transition will
be too small we artificially extend the swing time, which
keeps the dynamics away from converging to the origin. In
this section, we only consider the system’s stability when this
convergence effect is not present.

We begin by formulating the well known linear inverted
pendulum model,

Y

where g, h, and x,, are gravitational acceleration, the constant
CoM height, and the stance foot location, respectively. The
solution of this ODE is,

z(t) = xp + (zo — xp) cosh(wt) + % sinh(wt), (12)

where w = \/g/h, and can be expressed as a discrete time
state-space system with a constant step duration 7"

X((k+1)T) = AX(KT) + Bapy keZ, (13)
where,
[ cosh(wT) wtsinh(wT)
A= w sinh(wT) cosh(wT) ’ 14
1 — cosh(wT)
B = (15)
—wsinh(wT)
Here, X(kT) = [zpr x'kT}T represents the state at the

instant when the input changes—the instant the stance foot
and swing foot change roles, and a new foot position x,, is
put into place.

As explained previously, the planner chooses x; such that
the CoM velocity becomes zero at time t’. This can be
expressed as a function of the state of the discrete system,

0 = @rriv = [wsinh(wt’)  cosh(wt')] X (kT)
— wsinh(wt')z, g,
Tpr=[1 w!coth(wt')] X(kT).

(16)

a7

However we include an additional linear bias term in the
control law above,

Tpk = Takp + [(1—kp) w™'coth(wt’)] X(kT), (18)
to move the robot towards a goal location x4, effectively
creating a locomotion behavior.

Without loss of generality, we assume the goal is the origin
for the stability analysis. The closed loop system under the
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Fig. 6. Unsupported Dynamic Balancing Experiment: This figure shows a portion of an experiment in which our point foot biped robot, Hume, accomplishes
18 steps of unsupported dynamic balancing. (a) Motion within the balancing experiment is divided into three states: dual support, swing leg lift, and swing
leg landing. Additionally, a transition state exists at the beginning of the lifting phase and the end of the landing phase to avoid the jerk caused by a sudden
change in controller constraints. (b) and (c) show the = and y-directional trajectory of the CoM. The blue line represents actual data while the red lines
indicate the trajectories estimated by the planner. (d) Position and orientation task tracking is plotted over a representative portion of the stepping experiment,
with sensor data in red and desired values, dotted, in blue. Height refers to CoM height. (¢) The snapshots and data of steps 3-6 are shown. The phase paths
of steps 3-6 are expanded into individual step planning plots. For each step, a red line marks the actual CoM path up to the switching state, and a green
line continues the trajectory after the switch. The robot’s initial stance foot in the step planning plot is denoted with a %, the planned second footstep with
a black circle, and the achieved second stance foot location with a blue cross. Therefore, a green line in the ith step plot is the same path as the red line in
the (¢ + 1)th step plot. A black line and a dark green dotted line are, respectively, the PIP model’s predicted paths before and after the switching state.

proposed feedback law is:
X((k+1)T) = (A+ BK)X (kT)
K =[(1-rp) w!coth(wt)]
A+ BK = A
1 — Kp + Ky cosh(wT)
w™(sinh(wT) + (1 — cosh(wT)) coth(wt’))

l
11—

/
12

/
21

/
22

Kpw sinh(wT)

cosh(wT) — sinh(wT') coth(wt)

19)
(20)
2n
(22)
(23)
(24)
(25)

Using the eigenvalues of the matrix A’, we determine the
stability of the closed loop system. To be robust to model
uncertainties, we chose parameters k, and t' such that they
produce eigenvalues with magnitudes close to 0.8 for the
desired h and T values. One interesting fact of ¢’ is that an
infinitely large ¢’ stops the robot’s CoM exactly at the stance
foot position, which is equivalent to the Capture Point [9].
However, this is not a desired behavior because when the
CoM is near the stance leg, crossing of the legs might occur.
Thus, we design the planner parameters to gradually decrease
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Position Gain

Dual Support Single Support
CoM;, 4Rz 4Ry 4Rz CoM. qdRy 4Rz footy fOOty foot
Kz (s72) 270.0 100.0 200.0 210 270.0 200.0 210.0 220.0 237.0 400.0
I:(s™3) 20.0 0.0 20.0 35.0 20.0 20.0 35.0 35.0 40.0 35.0
Dy(s™1) 10.0 0.0 15.0 10.0 10.0 15.0 10.0 35.0 40.0 60.0
Torque Gain
Stance Leg Swing Leg
Both Abduction Both Hip  Both Knee Both Abduction Right Hip Left Hip Right Knee Left Knee
Kp,(Nmrads—1) 2.84 43 22 3.09 58.57 32.70 49.75 26.1
K; (Nmrads™1) 0.15 0 0 0.19 5.86 3.48 6.85 4.15
TABLE I
Gain Set for the Unsupported Dynamic Balancing Experiment
Transition Lifting Landing Dual Support Kzy Ky th, ty Az Ay
0.024 (s) 0.145 (s) 0.15 (s) 0.016 (s) 04,04 0.185, 0.18 0.7, -0.88 0.69, -0.81
TABLE II

Planner Parameters for the Unsupported Dynamic Balancing Experiment
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Fig. 7. Knee Joint Torque: The plot shows torque trajectories of right and
left knee joints. Blue dotted lines are commanded torque and red solid lines
are measured torque. Color indication of the state machine in Fig. 6 is used.

the robot’s CoM velocity at the moment when the stance leg
switches to the other leg. We achieve this decrease in velocity
by setting the magnitudes of the eigenvalues of A’ close to
0.8.

C. Impact Model

In many cases, the hybrid dynamics of a robot impacting
the ground are significant. This warrants a model that includes
a discrete map to represent the sudden velocity changes
that occur during impact [41]. However, since our planning
algorithm focuses exclusively on the CoM behavior, and since
the body mass of our robot is much larger than the leg mass,
we used a model that predicts no change of the CoM velocity
during impact. Here we use the approximations that 1) the
series elastic actuators of our robot decouple the reflected rotor

inertias, that 2) the actuators are frictionless, that 3) the robot’s
upper body mass is fairly decoupled from the foot due to the
leg’s kinematic chain, and that 4) the knee of the landing leg
is not entirely stretched.

VI. EXPERIMENTAL RESULTS AND ASSESSMENT
A. Unsupported Dynamic Balancing

To start the experiment, Hume is briefly supported while it
rises to the desired height for balancing. Once it reaches its
starting height, the experimenter balances the robot carefully
and lets it go as it takes its first step. Once free, the robot
continuously steps until it falls over. There is a harness rope,
slack when the robot is at its starting height, which catches it
if it falls to prevent major damage. The power and Ethernet
tether hang slack from another rope.

The motion follows a time scripted state machine, shown in
Fig. 6(a). Since the states are symmetric with respect to the
supporting leg being either right or left, states are categorized
in two different compound tasks with left and right single
support having symmetric structures. The WBOSC compound
task, xiask, differs between dual support and single support
phases of the stepping state machine. In dual support, the
compound task coordinates are [CoM., qr:, qry, qrz)" .
where CoM,, represents the height of the center of mass. qg.,
dry and gg, are body yaw, pitch and roll angles, respectively.
Those coordinates are controlled via the acceleration input
of WBOSC, ut,sk, shown in Equation (36) and via PD or
PID control laws. In single support, the compound task is
[CoM., qry, qrz, footy, foot,, foot,)T. The desired
height is set to the initial height when Hume begins to step
and the body orientation is set to be straight up. The desired
foot trajectory for the lifting phase consists on first reaching a
predefined z height while keeping = and y constant. Then, a
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Fig. 8. Trajectory Tracking and Human Disturbance Rejection on Disjointed Terrain: Subfigure (a) shows Hume standing between two inclined wooden
panels and tracking a position task with its center of mass. This position set-point follows a constant velocity trajectory along an elliptical path shown, along
with the measured CoM path, in Subfigure (b). In Subfigure (c) the CoM has different impedances in the horizontal and vertical directions. When the robot
is pushed backwards it moves as though the center of mass were connected to a low-spring-constant spring, whereas when the robot is pushed downwards
it reacts as though connected to its set point by a far stiffer spring. Due to the feedback regulation of internal forces, the biped does not fall down when

disturbed with large external forces.

3rd order polynomial is used to generate the desired (z,y, 2)
landing trajectory. Since Hume’s feet are points, in single
support phase it is not possible to control the yaw motion,
qr-- To compensate for this deficiency, we use the brief time
that the robot spends in dual support to correct for it. In the
balancing experiment we do not use internal force feedback
control to reduce complexity of the sequencing process. Since
the standing surfaces are flat, internal force regulation is not
needed to keep the contacts stable. All control parameters for
the single and dual support phases, and for the stance and
swing legs are shown in Table I. The parameters of the planner
used in this experiment are shown in Table II.

In Fig. 6(b) and (c), The x and y directional CoM tra-
jectories (red) are superimposed on the one-step predicted
path by our planner (blue). Although predicting CoM path for
multiple steps is difficult, computing the CoM path for a single
step using the PIP model closely approximates the actual
CoM motion. The orientation error is bounded by 0.05rad
(Fig. 6(d)). Given the model disturbances and the impacts,
this error is reasonable small to validate the controller’s
performance. Fig. 6(e) shows snapshots and phase paths for
this experiment. The phase space data is corrupted by high
frequency noise from the IMU sensor signal and the joint
encoders that combined to compute CoM velocity.

Transition and gain scheduling techniques also play an
important role by smoothing the motion and tracking the tasks.
In Fig. 7, the commanded torque (blue) changes from 0 to
—60 N'm without significant jerk due to our contact transition
technique. When the right leg switches to a stance leg (green
background), around 20 N'm of torque tracking error appears.
This is expected because we detune the low-level torque
controller to achieve stiffer position control by the WBOSC
controller. The controller corrects yaw error during the dual
support phase. Additionally, Hume incurs a significant bending
of the stance leg which results on uncertainty of the position
of the CoM with respect to the stance foot. Despite all these

sources of error our robot was able to dynamically balance
unsupported for 18 steps using its point contacts.

B. Balance on a Disjointed Terrain

In this experiment, Hume balances on a high pitch terrain
composed of two 45° wedges angled in towards the robot
to create a convex floor profile. Because there is no way to
control lateral motion, the planarizer is used to constrain the
motion of Hume to the sagittal plane.

Note that we do not include the 5kg sliding linkage in the
dynamic model and regard it as unmodeled disturbance. The
robot’s tasks were to maintain a 100 N internal force pushing
outwards against the two contact points, a desired impedance
task for the center of mass, and a desired impedance task
for the body orientation. The reference of 100N is roughly
calculated with the assumption that the 200N body weight is
equally distributed between each foot and a 100 N horizontal
force generates a reaction force normal to the 45° angled
surfaces.

By controlling the internal force, Hume does not slip
while it tracks the reference CoM path within a 2cm error.
This experiment is divided into two sub-experiments: Hume
was controlled to track a time-varying CoM trajectory which
followed an elliptical path in the sagittal plane, as shown
in Fig. 8(b); and Hume was controlled to hold a Cartesian
impedance task on the CoM which had low stiffness horizon-
tally and high stiffness vertically as shown in Fig. 8(c). In the
test, Tiask = [COan CoM_, qRy; qu]T’ Ftask,ref = [O]4><1
and Fing ref = 100N, using the notation of Fig. 2. We do not
control CoM,, and gr. since the planarizer rigidly constrains
those directions of motion. However, we do control the robot’s
roll, qr;, since the planarizer is slightly flexible in the roll
direction. Thus, controlling the roll and pitch helps to sustain
the body pose.

CoM tracking performance is shown in Fig. 8(b). Although
tracking errors exist they are bounded within 2 cm. We believe
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Fig. 9. Internal Force Control Without Feedback: Without feedback loop,
internal force control shows larger than 50% error.

this error occurs because of various reasons: 1) the legs of
Hume are flexible and that flexibility is not modeled, 2) the
planarizer that holds Hume on the back is unmodeled, and 3)
the low cost IMU that we use suffers from quick orientation
drift. The second sub experiment shows that feedback control
of internal forces allows Hume to stay balanced despite
external forces exerted by a human. Due to the WBOSC'’s
internal force feedback controller, the disturbances we exert
on the robot do not produce large deviations in the internal
force tracking performance.

Due to feedback control, the errors between desired (blue)
and actual (red) internal forces are small enough to keep Hume
balance on the difficult terrain. In contrast, in Fig. 9 we turned
off the feedback control of internal forces. The experiment
was conducted on a 20° pitch terrain due to the robot being
unable to stay up on the 45° pitch terrain when turning off the
feedback. We can see that the error to command ratio is much
larger when using feedforward control only (more than 50 %)
relative to the experiment with the feedback enabled (less than
20 %). These experiments ultimately show the effectiveness of
closed loop internal force control as applied to maintaining a
frictional contact.

VII. DISCUSSION AND CONCLUSIONS

The central focus of our paper has been on formulating a
WBOSC and a new balance planner to achieve unsupported
dynamic balancing of a point foot biped robot without passive
feet. The underactuated nature of point foot bipeds forces us
to “give up” on the x and y components of CoM motion,
leaving those aspects to evolve naturally while the WBOSC
controls the remaining degrees of freedom. These liberated
degrees of freedom are still controlled, but must be controlled
indirectly, on a step by step basis, by choosing the footstep
locations. By formulating a WBOSC and a phase-space-based
foot placement planner we make Hume, our 6-DoF point-
foot biped robot with series elastic actuators, balance on
rough terrain when constrained to move in the robot’s sagittal
plane and take 18 steps on flat terrain when unsupported. In
addition, our framework also demonstrates its ability to step
over a 7cm obstacle in simulation. Achieving these capabilities
required advancements in WBOSC that push its performance
boundaries to the next level by stabilizing highly dynamic
biped robots and showing the benefits of employing feedback
control of internal forces.

WBOSC uses the robot’s dynamic model to simultaneously
control motion and force behaviors in the task dimensions
that are rendered practical for the operations at hand. For
example, WBOSC on a torque controlled robot can precisely

control the position of the robot’s center of mass while also
precisely controlling the internal forces - in the sense of the
tensions and compressions performed with the entirety of the
robot’s body - between disjointed surfaces. And only when
joint torque sensing is available, these type of sophisticated
behaviors can be achieved without reliance on force sensors
located on the end effectors. More importantly, using the same
idea, WBOSC on torque controlled robots could control the
internal forces between any two points in the robot’s structure,
provided that they are distant enough from each other. In our
case, we employed this unique force / motion feedback control
capability, to balance our biped robot on a high pitch split
surface. Beyond contacts on the feet or end-effectors, WBOSC
aims at achieving contact awareness and command over the
entire robot’s body structure. And as such, it may one day be
the ideal type of controller for walking or moving in direct
contact with objects and people.

An important issue of this paper has been the integration
of WBOSC with joint level torque controllers. To obtain
good performance, torque control at the joint level has been
sought. The reason is that joint torque control reduces the
effect of the natural dynamics of the actuator, i.e. stiction,
dynamic friction, non-linearities, thus yielding excellent force
behaviors for the actuator. However, using torque-feedback
control nested within a position feedback controller needs
careful understanding of its stability as a function of loop
latencies [2]. Torque controllers substantially decrease the
effect of natural friction of the actuators, forcing the task
position controllers to provide damping via velocity feedback.
However, velocity feedback is very sensitive to loop latencies
as was analyzed in detail in [42]. In order to achieve stiff task
position control, which is desirable for some tasks to reject
modeling disturbances, system latencies both due to the WBC
and to communications, need to be minimized. In the case of
Hume, we have greatly optimized all control computations and
embedded communications to decrease the servo round trip,
including communications, to 0.667 ms.

Additionally, when there is a need to deliver stiff position
tracking control, it is desirable to detune or reduce torque
gains. This effect was reported in [43] and more recently
analyzed in depth in our paper [2]. In essence, we prioritize
position accuracy over torque accuracy when position tracking
is essential. To compensate for the detuned torque controllers,
when our biped balanced on the split terrain, we added a
force feedback loop that regulated the internal force from
joint torque sensor. This feedback loop mitigated the effects
of trading off motion accuracy versus torque accuracy. The
key advantage is that increasing internal force control gains
does not affect the task position control performance whereas
increasing torque gains reduces task position performance.

Finally, exact state measurement has been crucial to maneu-
vering with the highest possible accuracy given the hardware
limitations of our low cost IMU. However, many successful
legged robots, such as Atlas, ATRIAS, and the MIT Cheetah 2
robot, use an optical IMU called KVH Industries Model 1750,
which has a minuscule bias error, 0.000 55°/s. This is not the
case in our experimental setup, as we used a low cost and much
less accurate MEMS IMU, i.e. the Microstrain 3DM-GX3-25-
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OEM, with a bias error 500 times worse than the previous
one, i.e. 0.25°/s. In other words, our IMU’s orientation
estimate drifts away quickly. In practice, the drift appears
to be much faster than the specification. To compensate for
this discrepancy, we devised a sensor fusion approach by
combining the IMU with visual data from our motion capture
system. Nonetheless, the overall pose sensing system is far
less accurate and speedy than using the high end IMU. In the
future we plan on replacing our current IMU with the high end
version KVH IMU and also redesigning part of the leg joints
to increase mechanical rigidity. With those improvements we
believe that we will substantially increase the accuracy of the
foot positioning, enabling faster and more robust locomotion
behaviors.

APPENDIX A
WHOLE-BODY OPERATIONAL SPACE CONTROL

WBOSC was first laid out in [12] with a further exploration
of internal forces that was published later, in [13]. Interested
readers should refer to these sources for a description of the
theoretical background complete with proofs for the concepts
below, as space limits us to a cursory overview of WBOSC
as applied to bipedal robots.

Modeling biped robots entails representing not only the state
of each joint g1, ..., qn;o.» DUt also the states of the robot
as an object in space. We choose to parameterize the robot’s
base as a 6-dimensional floating joint between the world and
the robot’s hip coordinate system with state vector g, € RS.
Combining the robot and base states into a single vector we
arrive at ¢ € RS @ Rnieins = R™dofs| the generalized joint
vector. The joint torques can only directly affect the joints
themselves, and not the floating base dynamics, so we define

an underactuation matrix U € R("d"fs_ﬁ) XMdofe that maps the
global joint vector to the subspace of actuated joints.

GQact = U q, (26)

with gact € R™ents being the robot’s actuated joints. The
dynamics of the robot’s generalized joints can be described
by a single, linear, second order differential equation

Aq +b+g= UTTcontrol (27)

where {A,b, g} represent the inertia matrix, Coriolis / cen-
trifugal forces, and gravitational forces, respectively while
Teontrol 18 the desired control command applied to the output
joints of the robot. Without considering contacts, or the subtle
non-holonomic effect of angular momentum, joint torques
would have no effect on the geometrically uncontrollable six
dimensional subspace of the generalized joints: {z € R™dofs :
2TA='UT = 0}. However we can sometimes gain the ability
to control more of this space due to contact constraints.

We consider two contact cases for point-foot biped robots:
single support in which one foot is in contact, and dual
support where the robot is supported by both feet. In the single
support phase we describe the contact via a support Jacobian
Js € R3*maots which maps from generalized joint velocity
to the velocity of the constrained foot point in Cartesian
space. When considering dual contact, our support Jacobian

represents twice as many constraints. Since this generalized
point, either the single foot point in R? or the dual foot point
in R®, is constrained, we know its acceleration must be zero.
Substituting the constraint JsG + qu' = Zfoot(or feet) = 0
and adding the associated co-state of constraint space reaction

forces F,., the dynamics become
Aq + b + g + J;TFT - UTTcontrola (28)

and we can find § and F}. by solving the matrix equation

A JQT q _ UTTcontrql —b— g
Js 0 Fr o - sq '

Converting to upper diagonal form via Gaussian elimination
we find

(29)

<A JéT) ( q ) _ UTTcontrol -b- g
0 I FT 75T [UTTControl —-b— g} + Asjsq ?

(30)
with Ay = [J,A71JT]7! and J, & A=1JTA,. Substituting
NI' & [ — JTA,J,A™! to more conveniently express the
resulting constrained dynamic equation,

Aq—f—NST (b+g)+JSTA3qu: (UNS)TTcontroL (31)

This can be viewed as constraining the dynamics to the
dynamically consistent null-space of the constraint by defining
the dynamically consistent pseudo inversion operator

X2 AXT[ XA XT)! (32)

and observing that

Ny=1-JsJs (33)

is the null space projector of J; under dynamically consistent
inversion such that J;N; = 0, NJA~1JT = AZINTJT = 0,
and N,Ng = N,.

WBOSC for an operational task representation, piask, 1S
defined by the differential kinematic equation

ptask = Jt*ask Qacty (34)

where J L JiaskUNg € R™askXnact i the contact
consistent task Jacobian and Ji,q € R7taskXNdofs g the
unconstrained task Jacobian. The basic control structure for

the single support phase of the biped is thus
(35)

* T
Tcontrol = JtaskFtask7

with Fi.q being the entry point for feedback control laws to
govern trajectories, applied forces, or combinations of the two
in the operational space. For instance, when controlling an
operational space position trajectory, we use the model-based
control law

Fiask = AraskutaSk + Mrask + p;kask7 (36)

with u,sk being a desired acceleration for the operational ref-
erence. {A{, ., Miasi Prask ) are inertia, velocity-based forces,
and gravity based forces in the operational space that can be
found in the previous references.

In the case of dual support, there appear closed loop effects
between the legs of the robot in contact with the environment.
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Our previous work has thoroughly addressed this problem by
creating structures to control the internal forces. Internal forces
are defined as those that are orthogonal to joint accelerations.
As such, internal forces do not produce any movement and
only contribute to force generation within the closed-loop
formed by the contacts. Analyzing the right hand side of
Equation (31), those forces correspond to the manifold
T
(U Ns) Tcontrol = 07 (37)
which reflect the cancellation of acceleration effects. There-
fore, the torques that fulfill the above constraint belong to the
null space of (U Ny), which is defined by the projection
L2 (I—UNSUNS). (38)
The torques associated with internal forces are those that do
not contribute to net movement, i.e.,
e = L* T Tin, (39)
where Ty, is the set-point for the internal forces. Thus,
when simultaneously controlling operational space tasks and
internal forces we superimpose the orthogonal structures of
Equation (35) and (39) yielding the WBOSC command
Tcontrol = Jt*aZkFtask + L*TTint- (40)
Internal forces can be physically defined as linear forces
and mutually canceling reaction moments between pairs of
supporting contacts. As explained in our previous works, such
forces are expressed via the equation,
Ent = VVint Fr; (41)
where F,. is the set of all reaction forces on the environment
and Wi, is a matrix containing geometric transformations and
selection criteria to extract the internal forces (Equation (6)).
Using this mapping, we demonstrated that the dynamics of
internal forces correspond to
—\T * *
Fuw = (T01) T+ By =i —pf, (42)

T* A *TT T T s 1
where J;; £ (L*UJ Wi,). Additionally, Fi 4} are in-
ternal forces induced by task behavior, i.e. Fin (4} &

=T - .
WintJ Jt*asztaSk, and p7 and p; are Coriolis / centrifugal
and gravitational effects on the internal forces. Inverting the
above equation, we derive the torques needed to accomplish
a desired internal force,

Tint — JiTlT <Ent,rcf - Ellt,{t} + /'L;,k + p:)» (43)
where J, is the Moore-Penrose left-pseudoinverse of 7;[l,
also referred to as the reduced Jacobian of internal forces
acting on the contact closed loops, and Fi, ref is the vector

of desired internal forces which we use as an entry point to
control internal forces.

APPENDIX B
PRISMATIC INVERTED PENDULUM MODEL
In the proposed planner, numerical integration starts with
Z(x(n), ,y(n)) as described in Fig. 4. The PIP model can be
expressed as the differential equation

‘;t: = (m_xp)a
. +3
= gzz(y—yp)« (44)

Accounting for z being a function of x, y, the height surface,

dz 0z 0z
dz _ 0z . 0z, 4
at oz 8yy’ 45)
d*>2 d 0z 0z d 0z
d°z _d0z\.  0Oz. d0z\. 46
=l gt dt(@y)y’ (46)
0%z 5 0z 02z o, 0z
._ 0%z ., Oz, 072., 0z 4
T 0a2” +8xx+8y2y +8yy “7)
By plugging Equation (44) into Equation (47), we obtain,
. 0%z, 0zg+iZ 0% 5, 0Ozg+:Z
) o (x—xp)—f—a—yzy +87y : (y —
(48)
g, 0z 0z .
(1= SGa—m)+ g - w))E = (49)
0%z dz g 0%z . 0z g
FrAiR R DR et A wisl (A I CY
g:ﬁ:&z + 29z —a,) + giyéy'z +229(y —y,)

.. oy z
5= g _ (51)
L= 2(Z (@ —2,) + Z(y— )

APPENDIX C
STATE ESTIMATION

The controller needs a body orientation estimate every servo
cycle, 0.667 ms, yet the motion capture system updates at only
480 Hz, occasionally fails to track a subset of the markers,
and has a processing delay. An IMU is used to mitigate this
problem. When the motion capture position update arrives,
the new best estimate of the orientation at the instant in the
past corresponding to the delayed sensor data is found. We
maintain a list of recent IMU measurements, and calculate a
new estimate of the current robots orientation by integrating
the angular velocities.

We use least squares to minimize the distance between
motion capture LED positions 7 € R? and predicted motion
capture LED position ¥ € R3 for i = 1,...,n, where n is
typically 7, but decreases when LEDs are blocked, and where
k represents the time in the past associated with the delayed
motion capture data. Our model predicts motion capture LED
locations based on an affine transformation of a default pattern
g = 2% + A*zF where TF = {2F € R3, A € R3*3} is the
affine transform at time k and the default pattern, z; € R?,
represents the LEDs in a known frame. The pattern origin
is the geometric center of the LED position, ¥7_;e;z; = 0
for j = x,y, z. Each affine transform includes both a linear
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translation and rotation term. Our estimation problem is linear
in the individual components of this affine transform, which is
why we use it. However, this linearity comes at a disadvantage:
an affine transform can represent both physically realistic
rotation and non-physical skewing and scaling of the pattern.
Since the physical reality will always bias the estimation
problem towards valid rigid body transforms, we can safely
assume that these transforms can be converted to a physical
one later. We find the best fit affine transform as follows:

gt
k z® a = RO*, (52
= \vec(4¥) ) o B ’
~k
Y7
Isxs epz] eyz] 2]
P R s Bl IS
Isxs epzd ey2d ezl
el if LED 1 was found
e] if LED 2 was found
K, e R = . (59
el if LED 7 was found
_ I3n><3n 0
W= ( 0 AMoxo )’ (55)
Ko ® IS S)R
R, £ ( x 56
( 0 Igxo (56)

kA (pT -1pT (Ko ® I3X3>yk)
0 (RTWR,.)""RITW ( A(klk — p) . (57
Here (52) describes affine transforms in vector form, and
demonstrates the linearity of prediction. The base regressor
(53) incorporates the default pattern data, but assumes all the
LEDs are visible. We use a knockout vector (54) of variable
size to define which LEDs are to be used in each update.
We also employ a regularization term, and a weighting matrix
(55) parameterized by a variable A that controls the tradeoff
between new rotational information and old data. This results
in the full, regularized regressor (56), and the best affine
transform estimate (57).
Note that the regularization to 6(k|k—p) in (57) accounts for
dynamics using the IMU data history, starting p steps before
k at k — p—the index of the last LED position sensor update,

b 0
3
:zk; (Vec(@fMUX)> At 8

p

Finally, to attain a valid rigid body transform 6% from the
general affine 0%, we convert the direction cosine matrix A*
into the closest fit quaternion using the method of [44], and
then use that quaternion to generate a new direction cosine
matrix A* which is guaranteed to be a rigid body rotation.
The original z* and this new AF form the rigid body transform
0%. The algorithm returns 0(t, k) as the best estimate of the

O(k|k —p) = 0" 7 +

t

orientation until a new motion capture LED position message
is received.
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