

Human Centered Robotics Laboratory

Safety Control Synthesis with Input Limits A Hybrid Approach

Gray Thomas, Binghan He and Luis Sentis American Control Conference June 28, 2018

Introduction

A system Σ_{\circ} : $\dot{x} = f(x) + g(x)u$

- state constraint $x \in \mathcal{X}$
- input constraint $u \in \mathcal{U}$

We develop a controlled safe region \mathcal{X}_0 with a backup controller $\mathbf{k}(x)$ which provides

- ► a safety guarantee for all initial states in a region $X_0 \subseteq X_s$,
- a close approximation of the exact safe region \mathcal{X}_s .

Hybrid Safety Controller

A hybrid safety controller **K** in feedback with the original system Σ_0 produces a safe system Σ_s .

Hybrid Safety Controller K

► chooses either to be completely transparent ($u = \hat{u}$) or apply the backup controller input $u = \mathbf{k}(x)$.

Hybrid Safety Controller

A hybrid safety controller **K** in feedback with the original system Σ_0 produces a safe system Σ_s .

Hybrid Safety Controller K

- ► chooses either to be completely transparent ($u = \hat{u}$) or apply the known-to-be-safe input $u = \mathbf{k}(x)$.
- is tuned by two thresholds $\overline{\epsilon}$ and $\underline{\epsilon}$.

Background

Verification	Stability	State Limits	Input Limits
Lyapunov Function	1	X	X
Barrier Certificate ^[1]	1	\checkmark	X
Synthesis	Stability	State Limits	Input Limits
Barrier Lyapunov Function ^[2]	1	\checkmark	X
Control Lyapunov Function ^[3]	1	X	X
Control Barrier Function ^[4]	1	\checkmark	¥
Barrier Pair	1	\checkmark	\checkmark

^[1] Stephen Praina and Ali Jadbabaie. Safety verification of hybrid systems using barrier certificates. In: Hybrid Systems: Computation and Control. Vol. 2993. Lecture Notes in Computer Science. 2004, pp. 477-492

^[2] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based guadratic programs for safety critical systems. In: IEEE Transactions on Automatic Control 62.8 (2017), pp. 3861-3876

^[3] Eduardo D Sontag. A 'universal' construction of Artstein's theorem on nonlinear stabilization. In: Systems & Control Letters 13.2 (1989), pp. 117-123

^[4] Yan-Jun Liu and Shaocheng Tong. Barrier Lyapunov functions-based adaptive control for a class of nonlinear pure-feedback systems with full state constraints. In: Automatica 64 (2016), pp. 70–75

Barrier Pair

Verification	Stability	State Limits	Input Limits
Lyapunov Function	1	X	X
Barrier Certificate	\checkmark	\checkmark	X
Synthesis	Stability	State Limits	Input Limits
Barrier Lyapunov Function	1	\checkmark	X
Control Lyapunov Function	1	X	X
Control Barrier Function	1	\checkmark	*
Barrier Pair	1	\checkmark	\checkmark

A *Barrier Pair* is a pair of functions (B, k) with two properties:

►
$$-1 < B(x) \le 0, u = k(x) \implies \dot{B}(x) < 0,$$

► $B(x) \leq 0 \implies x \in \mathcal{X}, \ k(x) \in \mathcal{U}.$

LMI Sub-problem

Consider a linear differential inclusion ^[5] (LDI) model which approximates Σ_0 near an equilibrium—a robust linearization.

Contrained Polytopic LDIs

Linearized Dynamics

$$\dot{x} \in \mathbf{Co}\{A_{l}(x-x_{e})+B_{l}(u-u_{e}), \ l=1,\ldots,L\}.$$

Region of Validity

$$\forall \quad x \in \{x : |a_i^T(x - x_e)| \le \alpha_i, i = 1, \dots, n_a\} \subseteq \mathcal{X}, \\ u \in \{u : |b_i^T(u - u_e)| \le \beta_i, i = 1, \dots, n_b\} \subseteq \mathcal{U}.$$

^[5] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear Matrix Inequalities in System and Control Theory. SIAM, 1994

Res NASA

LMI Sub-problem

A set of LMI constraints determine a positive definite matrix *Q* and full state feedback matrix *K* such that—defining

•
$$B(x) \triangleq V(x) - 1 = (x - x_e)^T Q^{-1}(x - x_e) - 1$$

$$\blacktriangleright k(x) \triangleq u_e + K(x - x_e)$$

LMIs:

- Lyapunov Stability
- State and Input Constraints

Cost Function:

▶ log(det(Q))

Composition of Barrier Pairs

Proposition

For any list of barrier pairs $(B_1, k_1), (B_2, k_2), \ldots, (B_N, k_N)$, the pair comprising the min-barrier function

$$\mathbf{B}(x) \triangleq \min_{n=1,\ldots,N} B_n(x)$$

and (occasionally ambiguous) control input

$$\mathbf{k}(x) \triangleq k_n(x) \mid n \in \underset{n=1,...,N}{\operatorname{arg\,min}} B_n(x),$$

(**B**, **k**), is also a barrier pair.

Inverted Pendulum Example

An inverted pendulum (m = 1 kg, l = 1.213 m, $g = 9.8 \text{ m/s}^2$)

Dynamics

$$ml^2\ddot{ heta} = au + mgl \cdot \sin(heta)$$

Safe Region

•
$$\mathcal{X} = \left\{ \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix} : |\theta| \le \theta_c = 1 \text{ rad}, |\dot{\theta}| \le 1 \text{ rad/s} \right\},$$

• $\mathcal{U} = \{\tau : |\tau| \le \bar{\tau} = 10 \text{ N} \cdot \text{m} \}.$

Inverted Pendulum Example

Inverted Pendulum Example

The inverted pendulum system protected by the safety controller is placed in feedback.

Dual Spring-Mass Example

A dual spring-mass system ($M_1 = M_2 = 1, K = 1$)

Dynamics

$$M_1\ddot{y}_1 = K(y_2 - y_1) + u, \quad M_2\ddot{y}_2 = K(y_1 - y_2).$$

Safe Region

$$\mathcal{X} = \{ (y_1, \dot{y}_1, y_2, \dot{y}_2)^T : |y_1 - y_2| \le 1, |y_i| \le 1, |\dot{y}_i| \le 1, i = 1, 2 \}, \\ \mathcal{U} = \{ u : |u| \le 10 \}.$$

Dual Spring-Mass Example

Thank you for listening!

This work was supported by NASA Space Technology Research Fellowship NNX15AQ33H (G.C.T), and a Longhorn Innovation Fund For Technology grant (B.H.).

Gray C. Thomas (512)-366-0230 gray.c.thomas@utexas.edu

Binghan He (765)-404-5159 binghan@utexas.edu

Luis Sentis (512)-471-5987 lsentis@austin.utexas.edu

LMI Sub-problem

A set of LMI constraints determine a positive definite matrix Q and full state feedback matrix $K = YQ^{-1}$ such that—defining

$$B(x) \triangleq (x - x_e)^T Q^{-1} (x - x_e) - 1$$

$$\blacktriangleright k(x) \triangleq u_e + K(x - x_e)$$

LMI Sub-problem

```
maximize \log(\det(Q))
      0.Y
subject to Q \succeq \varepsilon I
                        a_i^T Q a_i < \alpha_i^2, \forall i = 1, \ldots, n_q
                         \begin{pmatrix} Q & Y^T b_i \\ b_i^T Y & \beta_i^2 \end{pmatrix} \succeq 0, \forall i = 1, \dots, n_b
                        A_{I}Q + QA_{I}^{T} + B_{I}Y + Y^{T}B_{I}^{T} + \varepsilon I + \lambda Q \preceq 0, \forall I = 1, \dots, L
```

