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Introduction

Asystem ¥, : x = f(x) +
» state constraintx € X
> input constraintu € U

We develop a controlled safe region X, with a backup controller
k(x) which provides
» a safety guarantee for all initial states in a region X, C A,
» a close approximation of the exact safe region As.
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Hybrid Safety Controller

A hybrid safety controller K in feedback with the original system
Y, produces a safe system ¥.

pa X

~ P K
u

X = £() + g(x)u

Hybrid Safety Controller K

~

» chooses either to be completely transparent (u = ) or
apply the backup controller input u = k(x).
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Hybrid Safety Controller

A hybrid safety controller K in feedback with the original system
¥, produces a safe system .

B(x) > ¢

B(x) <¢

Hybrid Safety Controller K

~

» chooses either to be completely transparent (u = ) or
apply the known-to-be-safe input u = k(x).
» is tuned by two thresholds € and e.
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Background

Verification Stability State Limits | Input Limits
Lyapunov Function v X X
Barrier Certificate ™ v/ v X
Synthesis Stability State Limits | Input Limits

Barrier Lyapunov Function 2!
Control Lyapunov Function 3!
Control Barrier Function @
Barrier Pair
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Barrier Pair
Verification Stability State Limits | Input Limits
Lyapunov Function 4 X X
Barrier Certificate v v X
Synthesis Stability State Limits | Input Limits

Barrier Lyapunov Function
Control Lyapunov Function
Control Barrier Function
Barrier Pair

ANNENENEN
ANENE N
N

A Barrier Pair is a pair of functions (B, k) with two properties:
» —1< B(x) <o,u=k(x) = B(x) <o,
» B(x) <o = xe X, k(x) elU.
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LMI Sub-problem

Consider a linear differential inclusion 5! (LDI) model which
approximates ¥, near an equilibrium—a robust linearization.

Contrained Polytopic LDIs
Linearized Dynamics

x € Co{Al(x —xe) + Bl(u—ue), I =1,...,L}.
Region of Validity

V oxe{x:lal(x—x)| <aj,i=1,....,n} CX,
ue{u: |bj(u—ue)l < B, i=1,....np} CU.

[s] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear Matrix Inequalities in
System and Control Theory. SIAM, 1994
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LMI Sub-problem

A set of LMI constraints determine a positive definite matrix Q
and full state feedback matrix K such that—defining

» B(x) 2 V(X) —1=(x —Xxe)" Q7" (X — x¢) —1
> k(x) £ ue + K(x — xe)

\\\\\\\\\\\

LMls:
» Lyapunov Stability
» State and Input Constraints
Cost Function: -
> log(det(Q))
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Composition of Barrier Pairs

Proposition

For any list of barrier pairs (B, k1), (Bs, k2), ...,

pair comprising the min-barrier function

B(x) 2 min Bp(x)

n=1,....N

and (occasionally ambiguous) control input

k(x) £ kq(x) | n € argminB,(x),

n=1,...,N

(B, k), is also a barrier pair.

(BN, kN), the
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Inverted Pendulum Example

An inverted pendulum (m = 1kg,/ =1.213m, g = 9.8 m/s?)
Dynamics

mP = 7 + mgl - sin()
Safe Region
» X = {[Z] 0] < 6. =1rad, |4 §1rad/s},

»U={7:|1|<T=10N-m}.
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Inverted Pendulum Example
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Inverted Pendulum Example

The inverted pendulum system protected by the safety
controller is placed in feedback.
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Dual Spring-Mass Example

A dual spring-mass system (M, = M, =1, K = 1)
Dynamics

My = K(y2 —y1) +u, Moy, = K(yy — y2).
Safe Region

» X = {(Y1;)71a}/27}72)r . \}/1 __y2| < 1, U’/‘ < 1, ’yI’ < 1, = 112}a
» U ={u: |ul <10}.
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LMI Sub-problem

A set of LMI constraints determine a positive definite matrix Q
and full state feedback matrix K = YQ~" such that—defining

> B(x) 2 (x —Xe)TQ (X — x¢) —1
> k(X) £ Ue + K(X — Xe)

LMI Sub-problem

maximize log(det(Q))

)

subjectto Q > e/

alQa;j < a?,Vi=1,...,ng
Q YTb;> .
=0, Vi=1,...,np
(b,TY 57

AQ+ QA +BY +Y'Bl +el+XQ=o0,VI=1,...,L
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