Category Archives: LRS IIR

A VIRUS like instrument that will observe in the red part of the optical

Week of December 26th

It has been quiet during the day at the HET this week with day staff on holiday. If the weather clears the night staff will be plenty busy working through the queue. The current weather outlook for the week is cloudy with possible showers. Monday night we were able to do science through thin clouds and successfully collected data for many programs that do not require perfect seeing or zero cloud cover. The bulk of the science data collected in the beginning of the week has been with LRS2-B and LRS2-R. Fingers crossed the weather clears as we approach the new moon on Thursday.

The week of December 11

This week marks the first full week of the new trimester (December – March). During this period we will be observing for 2 weeks around the new moon with LRS2-B and LRS2-R and to a very limited extent the first 16 units of VIRUS for science projects from our partners. We have 27 separate projects from our 4 partners. During this first week of the new trimester we took data for 10 programs.

During the 2 weeks around the full moon we will be concentrating on engineering but we may if it does not impose any constraint on the engineering obtain a few science targets during grey and bright time.

It is good to be back online taking science data.

The week of May 23

In the previous week the HET Board of Directors met and were generally happy with the progress being made on the HET. They are very eager for science operations to begin and have authorized the start of Early Science Operations starting July 1st. This will mean that HET member institutions will be able to submit requests to their local Telescope Allocation Committee in the coming weeks. The amount of time available will grow with time but is likely to start with 1 week per dark period. The instrument that will be available for Early Science Operations will be the new Low Resolution Spectrograph (LRS2).

In this week the HET continued with VIRUS commissioning during bright time with the addition of 7 new VIRUS units. This brings the number of spectrographs units (and IFUs) to 16. We will use these during commissioning in the coming dark run but we can already see that several of them will need some further engineering while others are very good.

The mirror team continues to swap mirrors into the array this week they swapped out 4 mirrors. The array now has an average coating age of 454 days with a swap rate of 1.7 segments/week.

The week of April 4

We have had a very exciting couple of weeks. In the last blog post I had mentioned that we made some repairs and improvements to the top end of the telescope and that the LRS2 team had left the telescope in the hands of the night operations team to gain experience with the system. That is exactly what we did over the bright lunation. We had nights set aside with all of the telescope operators working together at night to make sure that we all know how to operate all of the new software the same way and to work out the kinks in the operations procedures. This was followed by a few nights with the resident astronomers all working at night to do the same. The result was that we had developed a few pieces of code that would allow us to determine the exact position of the LRS2 field of view and could setup any target that the Acquisition camera could see.

In the mean time, the day staff was prepping the right VIRUS enclosure for the delivery of the first 9 units (18 spectrographs). The spectrographs were brought out in two vans along with the VIRUS commissioning team for the dark run (where the moon is in the new phase). The fibers were strung, the units were vacuum pumped and finally cooled. Everything went ahead of schedule and on Saturday night we were able to make use of some very clear skies to get first light with the VIRUS spectrographs. On Sunday night we were able to get the first LRS2 science spectrum (a supernova for an astronomer at PSU) and a few long exposures for characterization of the VIRUS units.

The telescope is still occasionally fussy but generally performed well and the commissioning work continues on into the next week until quarter moon. At the present time the data reduction software is the thing that is lagging most behind.

The week of March 7

We have had a great couple of weeks at the HET. Last week we brought out down the focal plane assembly to work on the field calibration unit and replace the acquisition camera. Both went well although some further work on a few specific calibration lamps and changes to the acquisition power supply will still be required. This work took the telescope down for a few days. The telescope control software also went through a large upgrade during this period. With improvements to guiding and offsetting. One of the more complicated aspects that has been commissioned is the ability of offset the telescope and the guide probes so that we can move from one instrument to another while keeping the same guide star.

The LRS2 commissioning team came back out to West Texas from Austin and despite very poor weather they were able to train a few of the resident astronomers in the use of the LRS2 instrument and the calibration scripts. When the skies did finally clear they were able to determine the positions of the LRS2-B and LRS2-R on the acquisition camera. The LRS2 team has departed but the instrument has been left online for the resident astronomers to gain familiarity and perhaps start characterizing on-sky.

The week of February 8

This week saw the return of the LRS2 but in its full glory, ie. both the B and R components. The instrument cooled down quickly and we were ahead of schedule by the third day. We did have a few problems with calibrations lamps, communications with the TCS, and inexperienced operators but all of that is expected when you get FIRST LIGHT with a science instrument on an effectively brand new telescope.

One of the highlights of the observing was moving back and forth between LRS2-B and LRS2-R, an observing mode we hoped to achieve eventually but were able to take advantage of in this first official commissioning run. The Austin team will be back in the beginning of March. In the mean time the LRS2 instruments remain at the telescope pumped down and cold to test the stability of the cryogenic system.

The week of Dec 7

Two weeks ago was the HET Board of Director’s meeting in Penn State. The meeting lasted two days and the Board got status reports from HET operations and each of the instrument teams. The main news is that that LRS2 is expecting to reach first science in the first few months of 2016, HRS2 is going to start commissioning before Summer 2016 and VIRUS units are going to be coming in over the next 9 months. The Board was encouraged by the progress being made and hopes that we can continue the pace. They were also pleased to see the progress being made on HPF and were impressed with the clean room facility tour they were given. No major changes or action items were reported by the Board.

Once the commissioning team returned from Happy Valley, we went right back to work and were able to push along the closure of one of our major metrology loops, the guide probes. I am pleased to report that we are able to guide at any telescope Az for full trajectories with the probes at any position within their range.

The week of Nov 16

This week we had lots of visitors from Austin. We had new equipment to install on the tracker, for example, the field calibration unit. This is the device at the entrance aperture of the corrector which can shine light from flat lamps or from line lamps for calibration of our spectrographs.

We also had delivery of the LRS2-R spectrograph and a temporary installation of a VIRUS unit. The VIRUS unit was put in place mostly to test the mechanics of the enclosure cooling and control systems. We were able to get our first spectrum with both spectrographs. By the end of the week we were able to find a guide star with guide probes at one specific orientation and then hold a science target on a specific location of the LRS2-R and VIRUS IFUs. We then could move the target around the IFU to confirm the direction within the IFU. Even the weather cooperated finally, with some near photometric conditions we put a spectrophotometric standard on the LRS2-R. On the VIRUS unit we confirmed that the dither mechanism does work and we were able to move a target from one fiber to the adjacent fiber.

We will be moving back to guide probe commissioning in the coming week and may not get back to LRS2 instrument commissioning until January.

All in all a very exhausting, but good week!!!