Integrated Systems Modeling of Energy, the Economy, and the Environment

Growing Energy Research Partnerships
UT Austin and Sandia National Laboratories
May 17, 2017

Dr. Benjamin D. Leibowicz
Assistant Professor
Graduate Program in Operations Research and Industrial Engineering
The University of Texas at Austin
Integrated Systems Modeling

• The traditional modeling approach is to analyze a particular energy system in isolation.

• Through integrated systems modeling (ISM), we represent many energy supply and end-use sectors, as well as broader socioeconomic and natural systems, within a rigorous and cohesive framework.
 - Captures interactions and feedbacks across systems.
 - Highlights valuable synergies.
 - Evaluates full policy and strategy impacts.
Integrated Systems Modeling

Natural systems
- Climate
- Land Use
- Water
- Air Quality

Energy systems
- Extraction
- Electricity
- Refining
- Distribution

Economic systems
- Buildings
- Transportation
- Industry
- Agriculture
Example: Gasoline Tax

Natural systems
- Climate
 - Atmospheric CO₂ down
- Land Use
 - Agricultural land area up
- Water
- Air Quality
 - Air pollution down

Energy systems
- Extraction
 - Crude oil demand down
- Electricity
 - Electricity demand up
- Refining
 - Gasoline demand down
- Distribution

Economic systems
- Buildings
- Transportation
 - Driving down Fuel switching
- Industry
- Agriculture
 - Biofuels demand up
ISM Development at UT Austin

1) Energy supply and end-use sectors
2) Energy and the economy
3) Energy and climate
4) Energy and strategic competition
5) Energy and land use
Energy Supply and End-Use Sectors

- Electric sector capacity planning model
- Stochastic optimization considers uncertainty
- Applied to ERCOT area
- Flexible and modular structure
Energy Supply and End-Use Sectors

• Model is expanded to include hydrogen
• Production via electrolysis or gas reforming
• Electricity generation via fuel cells
• Optimal solution may not feature hydrogen
Energy Supply and End-Use Sectors

- Model is expanded to include transportation
- Highlights the advantages of a modular model structure
- Diverse uses of hydrogen and its complementarity with electricity constitute a potentially valuable synergy across sectors
- ISMs are uniquely capable of capturing such synergies
Energy Supply and End-Use Sectors

- We are continuing to develop this framework and will apply it to assess optimal pathways for achieving Austin’s adopted goal of net-zero emissions by 2050.
Energy and the Economy

• The ideal framework for evaluating the full economic impacts of energy policies and strategies is a computable general equilibrium (CGE) model.
• Multiple regions and many economic sectors.
• Firms maximize profit, consumers maximize utility.
• Compute prices that equilibrate supply and demand in all markets simultaneously.
• Flexible production and utility functions allow for price-induced input substitutions that reflect price-elastic demand and technological change.
Energy and the Economy

- A gasoline tax induces substitution
- … away from gasoline, fuels, private autos, transportation, consumption.
- … toward biofuel, electricity, vehicles, purchased transportation, all other goods, and savings.
Energy and Climate

• Suppose we want to analyze a carbon tax.
• We can use an energy-economy model to perform cost-effectiveness analysis and project the impacts of various tax levels.
• But, to determine the optimal tax level, we must perform cost-benefit analysis.
• What tax level best balances the costs of reducing GHG emissions and the benefits of doing so?
• The appropriate tool is an integrated assessment model (IAM) that captures interactions between the energy-economy and climate systems.
Energy and Climate

Objective: Maximize welfare (present discounted utility of consumption)

Policy interventions: Adaptation

Energy-Economy

Climate

Climate change damages
GHG emissions

Policy interventions: Mitigation

- We have uniquely extensive experience with the most prominent American (GCAM, MERGE, EPPA) and international (MESSAGE) IAMs.
Energy and Strategic Competition

- Market structure and strategic competition strongly influence prices (and therefore adoption) of rapidly evolving technologies such as wind and solar PV.
- Policy stimuli may cause producers to raise prices.
Energy and Strategic Competition

- Incorporated strategic renewable energy technology producers into an energy and climate policy ISM.

- Optimize the design of an online platform where residential solar PV installers offer competing price quotes to potential customers.
Energy and Land Use

- There are multiple mechanisms that could induce meaningful changes in land use on a global scale.
 - Expansion of urbanized land area
 - Deforestation and conversion to agriculture
 - Crop switching as climate change adaptation
 - Growing demand for bioenergy
- Some IAMs now incorporate endogenous changes in land use, and associated emissions impacts.
Energy and Land Use

• We have an innovative model to assess the impacts of urban land-use regulations on GHG emissions, a critical interaction in an increasingly urbanized world.

Traditional zoning: FAR restriction

Smart growth control: UGB
Advantages of ISM

• Primary advantages of ISM
 - Captures interactions and feedbacks across systems
 - Highlights valuable synergies
 - Evaluates full policy and strategy impacts

• Through ISM, we can find an overall solution which is superior to the combination of solutions which are optimal for each individual component system.

System 1
Solution s_1

System 2
Solution s_2

s_{ISM} will be superior to combining s_1 and s_2

Systems 1 and 2
Solution s_{ISM}
Thank you for inviting us!