What’s in your fluid? Does it matter?

Lauren Hernandez, PharmD
PGY1 Pharmacy Resident
Department of Pharmacy, University Health System, San Antonio, Texas
Division of Pharmacotherapy, The University of Texas at Austin College of Pharmacy
Pharmacotherapy Education and Research Center,
University of Texas Health Science Center at San Antonio

May 3, 2013

Learning Objectives

1. Discuss the current use and indications for fluid therapy
2. Describe the distribution and composition of fluids
3. Identify potential complications of different types of fluids
4. Evaluate the clinical significance of adverse outcomes associated with fluid therapy
Why are fluids used?

I. Intravenous fluid therapy one of the most common interventions in medicine
   A. Use began in 1830s after being the first successful treatment for cholera
   B. Estimated 10 million liters of 0.9% sodium chloride (0.9% NaCl) infused annually
   C. Commonly used for critically ill patients presenting with shock

   1. Shock: inadequate oxygen and blood supply to meet tissue metabolic demand
      a. Can progress to multi-organ failure and death if not treated immediately
      b. Present with hypotension and/or hypoperfusion
   c. Four types of shock
      i. Cardiogenic
      ii. Hypovolemic
      iii. Distributive
      iv. Obstructive

   2. Management of shock
      a. Initial therapy: fluid resuscitation
      b. Additional therapy dependent on response and etiology
         i. Vasopressors
         ii. Inotropes
      c. Address underlying cause

II. Fluid resuscitation
   A. Increases intravascular volume to restore blood pressure and tissue perfusion
   B. Large volumes of fluids infused over 10 to 15 minutes followed by assessment
      1. Crystalloids (i.e. 0.9% NaCl) 20-30 ml/kg
      2. Colloids
         a. Albumin 5% 0.5-1 g/kg
         b. Hydroxyethyl starch (HES) 6% up to 20 ml/kg/day

III. Common areas fluid resuscitation prescribed
   A. Emergency department (ED)
   B. Intensive care units (ICUs)
      1. Administered in approximately 40% of patients
      2. Prompted by impaired perfusion/low cardiac output (CO) and abnormal vital signs
   C. Operating room
      1. Surgical patients at risk for hypovolemia and reduced tissue perfusion
      2. Risks
         a. Preoperative dehydration
         b. Anesthesia-induced hypotension
         c. Hemorrhage due to surgical procedure

How do fluids work?

I. Total body water (TBW) distribution
   A. Total body water (TBW) approximately 60% of body weight in adults
   B. Divided into two major compartments
      1. Intracellular fluid (ICF) and extracellular fluid (ECF)
      2. ECF further divided
         a. Intravascular fluid (IVF) and interstitial fluid (ISF)
         b. Adequate IVF needed to maintain blood pressure and tissue perfusion
C. Factors influencing fluid distribution and management\textsuperscript{2,9}
   1. Osmolarity
      a. Measurement of solutes per liter of solvent (mOsm/L)
      b. Blood osmolarity: 285-295 mOsm/L
   2. Tonicity
      a. Compares osmolarity between two solutions separated by semipermeable membrane (i.e. extracellular and intracellular space)
      b. Movement of water dependent on tonicity
      c. Classifications
         i. Hypertonic: Greater solute concentration
         ii. Isotonic: Equal solute concentration
         iii. Hypotonic: Lesser solute concentration
   3. Plasma oncotic pressure
      a. Driving force for movement of water into intravascular space
      b. Decrease in oncotic pressure can cause fluid to accumulate in the tissues

II. Types of fluids\textsuperscript{9}
   A. Crystalloids
      1. Composed of water, electrolytes, and/or sugars
      2. Composition of crystalloids

| Table 1. Crystalloids\textsuperscript{9,10} |
|-----------------|-------|-------|-------|-------|-------|-------|-------|------|
|                | mEq/L | g/100 ml | mOsm/L |
| 0.9% NaCl       | 154   | 0      | 0     | 0     | 0     | 0     | 0     | 0    |
| Lactated Ringer's (LR) | 131   | 5      | 65    | 0     | 29    | 0     | 0     | 0    | 273  |
| Hartmann's\textsuperscript{a} | 129   | 5      | 111   | 2.7   | 0     | 29    | 0     | 0    | 278  |
| Ringer's Acetate\textsuperscript{a} (RA) | 130   | 5.4    | 112   | 0.9   | 1     | 0     | 27    | 0    | 276  |
| Plasma-Lyte\textsuperscript{a}/Normosol-R\textsuperscript{a} | 140   | 5      | 98    | 0     | 3     | 0     | 27    | 23   | 280  |
| Dextrose 5% in water | 0     | 0      | 0     | 0     | 0     | 0     | 0     | 5    | 250  |
3. Differences between crystalloids\(^2\)
   a. Tonicity
      i. Hypotonic solutions: No role for intravascular replacement
      ii. Isotonic solutions: Useful for intravascular volume expansion
      iii. Hypertonic solutions: Utilized for traumatic brain injury patients
   b. Non-balanced and balanced\(^{11,12}\)
      i. Determined by electrolyte composition
      ii. Non-balanced fluids
         a. Characterized by high chloride (Cl\(^-\)) content
         b. 0.9% NaCl or “normal” saline contains 40% higher chloride content than plasma
            1. Normal in terms of similar tonicity
            2. “Supra” physiological when referring to chloride
      iii. Balanced fluids
         a. Similar chloride concentration to plasma
         b. Contain additional electrolytes relative to plasma (i.e. K\(^+\), Mg\(^+\), Ca\(^{2+}\))
         c. Examples: LR, Hartmann’s, RA, Plasma-Lyte\(^*\), Normosol-R\(^*\)
      iv. Acid-base disturbances more associated with non-balanced fluids

4. Cost-effective and readily available

B. Colloids\(^2,9\)
   1. Composed of non-crystalline substances suspended in water-based diluents
   2. Natural colloids
      a. Blood products
         i. Fresh frozen plasma
         ii. Packed red blood cells
         iii. Cryoprecipitate
      b. Albumin
         i. Major serum protein
         ii. Effective volume expander
         iii. Costly and limited resource
   3. Synthetic colloids
      a. HES\(^ {13}\)
         i. Concentration
            a. 6% only available
         ii. Molecular weight (MW)
            a. High > 450 kiloDaltons (kDa)
            b. Medium ~200 kDa
            c. Low 70-130 kDa
         iii. Molar substitution (MS)
            a. Average number of hydroxyethyl residues per glucose subunit
            b. Value indicates starch name
               1. 0.7 = hetastarch
               2. 0.4 = tetrastarch
            c. Higher MS accumulates in plasma and tissue
         iv. Efficacy of volume expansion can vary by molecular weight
         v. More costly than crystalloids and less costly than albumin
      b. Dextrans used infrequently due to toxicities
      c. Gelatins not available in United States
4. Composition of colloids

<table>
<thead>
<tr>
<th>MW/MS</th>
<th>Na⁺</th>
<th>K⁺</th>
<th>Cl⁻</th>
<th>Ca²⁺</th>
<th>Mg²⁺</th>
<th>Cl⁻</th>
<th>Lactate</th>
<th>Octanoate</th>
<th>Osmolarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>0</td>
<td>140</td>
<td>5</td>
<td>100</td>
<td>2.2</td>
<td>1</td>
<td>24</td>
<td>1</td>
<td>6.4</td>
</tr>
<tr>
<td>Albumin 4%</td>
<td>66</td>
<td>140</td>
<td>0</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6.4</td>
</tr>
<tr>
<td>Albumin 5%</td>
<td>66</td>
<td>130-160</td>
<td>&lt;1</td>
<td>130-160</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Albumin 20%</td>
<td>66</td>
<td>48-100</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>Albumin 25%</td>
<td>66</td>
<td>130-160</td>
<td>&lt;1</td>
<td>130-160</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Voluven® HES 6%</td>
<td>130/0.4</td>
<td>154</td>
<td>0</td>
<td>154</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volulyte® HES 6%</td>
<td>130/0.4</td>
<td>137</td>
<td>4</td>
<td>110</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Hextend® HES 6%</td>
<td>670/0.7</td>
<td>143</td>
<td>3</td>
<td>124</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Hespan® HES 6%</td>
<td>670/0.7</td>
<td>154</td>
<td>0</td>
<td>154</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kDa</th>
<th>mEq/L</th>
<th>mOsm/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>66</td>
<td>140</td>
<td>5</td>
</tr>
<tr>
<td>66</td>
<td>130-160</td>
<td>&lt;1</td>
</tr>
<tr>
<td>66</td>
<td>48-100</td>
<td>0</td>
</tr>
<tr>
<td>66</td>
<td>130-160</td>
<td>&lt;1</td>
</tr>
<tr>
<td>130/0.4</td>
<td>154</td>
<td>0</td>
</tr>
<tr>
<td>130/0.4</td>
<td>137</td>
<td>4</td>
</tr>
<tr>
<td>670/0.7</td>
<td>143</td>
<td>3</td>
</tr>
<tr>
<td>670/0.7</td>
<td>154</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Differences between colloids
   a. MW and MS for HES 6% products
   b. Non-balanced and balanced
      i. Non-balanced fluids
         a. Albumin 4%, 5%, 25% in high-chloride content fluid
         b. HES 6% products: Voluven®, Hespan®
      ii. Balanced fluids
         a. Albumin 20% in low-chloride content fluid
         b. HES 6% products: Volulyte®, Hextend®

III. Distribution of crystalloids and colloids

1. Crystalloids
   a. Dextrose solutions distribute into extracellular and intracellular spaces
   b. 0.9% NaCl, Normosol-R distribute into extracellular space only (25% remains in intravascular space)

2. Colloids
   a. Distribute to extracellular space (~100% remains in intravascular space)
   b. Increase plasma oncotic pressure

3. Ideal solutions for fluid resuscitation
   a. Isotonic crystalloids
   b. Colloids

Figure 2. Distribution of 1 L Fluid

Intravascular 1000ml
  Intracellular 750ml
    Interstitial 250ml
      Extracellular 83ml
        Intracellular 667ml

5% Dextrose 250ml 0.9% NaCl 1000ml

Goal fluid resuscitation = ↑ Intravascular volume

Hernandez 5
I. Crystalloids vs Colloids: Is the debate settled?
   A. Efficacy for resuscitation in critically ill has been an ongoing controversy\textsuperscript{14}
   B. Colloids more effective plasma expanders than crystalloids\textsuperscript{2}
      1. Increase plasma volume and oncotic pressure to restore intravascular volume
      2. Conflicting literature on safety and efficacy of albumin compared to crystalloids\textsuperscript{14}
   C. Saline vs albumin fluid evaluation (SAFE) Trial 2004\textsuperscript{15}
      1. Objective: To evaluate 28-day mortality from any cause with 4% albumin vs 0.9% NaCl for intravascular-fluid resuscitation
      2. Methods
         a. Randomized, double-blind, multi-center trial
         b. ICU patients who required fluid administration to maintain or increase intravascular volume
         c. Randomized to receive 4% albumin or 0.9% NaCl
      3. Primary outcome: Death from any cause within 28-days after randomization
      4. Results
         a. Albumin: n = 3497; 0.9% NaCl: n = 3500
         b. No difference in mortality at 28 days: 20.9% (albumin group) vs 21.1% (0.9% NaCl group) (0.99 RR 95% CI 0.91 to 1.09), \( p = 0.87 \)
         c. No difference in new single-organ and multiple-organ failure or ICU, hospital, mechanical ventilation or renal-replacement therapy days
      5. Conclusion: Albumin showed equal safety and efficacy compared to 0.9% NaCl
   D. Current perspective for this ongoing debate\textsuperscript{4,17}
      1. No direct survival benefit with colloids compared to crystalloids
      2. Crystalloids more cost-effective and preferred
      3. Albumin can be alternative when large volumes of crystalloids anticipated

II. Safety concerns with fluid choice
   A. Adverse outcomes associated with certain crystalloids and colloids

\textbf{Figure 3. Adverse Outcomes with Crystalloids and Colloids}\textsuperscript{11,19}
B. HMA\textsuperscript{9,18,19}

1. Acid-base disturbance classified as a non-anion gap metabolic acidosis\textsuperscript{20}
2. Result of large quantities of saline-based infusions with high chloride content\textsuperscript{18}
3. Explanations behind HMA and 0.9% NaCl administration
   a. Dilutional acidosis\textsuperscript{20}
      i. Excessive plasma volume expansion with fluids containing no bicarbonate
      ii. Causes relative decrease in bicarbonate (HCO\textsubscript{3}-) concentration
   b. Stewart’s physiochemical approach\textsuperscript{21}
      i. Acidosis due to significant increase in Cl\textsuperscript{-} concentration
         a. Adding 0.9% NaCl (154 mEq/L each) to water produces net balance of acid and base, with no effect on pH
         
            \[ \text{NaCl} + \text{H}_2\text{O} \leftrightharpoons \text{HCl} + \text{NaOH} \]
         b. 0.9% NaCl added to plasma increases Cl\textsuperscript{-} concentration more than Na\textsuperscript{+}
         c. Increased Cl\textsuperscript{-} shifts acid-base balance toward HCl leading to metabolic acidosis
      ii. Strong ion difference (SID)\textsuperscript{18}
         a. SID calculation: 
            \[ [\text{Na}^+] + [\text{K}^+] + [\text{Ca}^{2+}] + [\text{Mg}^{2+}] - [\text{Cl}^-] - [\text{lactate}] \]
         b. Cl\textsuperscript{-} major strong anion affecting SID
         c. ↓ SID = metabolic acidosis; ↑SID = metabolic alkalosis
         d. Normal plasma SID = 40-42 mEq/L
4. Expected changes after infusions of non-balanced fluids\textsuperscript{9,12,18}
   a. Chloride concentration increases
      i. Strong anion causes decrease in SID
      ii. Normal range: 95-106 mmol/L
   b. Bicarbonate concentration decreases
      i. Weak anion
      ii. Normal range: 20-29 mmol/L
   c. Base excess decreases
      i. Deviation of base from its normal value
         a. Positive value represents an excess
         b. Negative value represents a deficit (base deficit)
      ii. Normal range: -2 to +2
   d. pH decreases
      i. Measurement of H\textsuperscript{+} ion activity
      ii. Plasma pH: 7.35-7.45 (< 7.35 = acidosis; > 7.45 = alkalosis)
5. Hypothesized HMA-related adverse outcomes\textsuperscript{11}
   a. Acute kidney injury
   b. Bleeding abnormalities
C. Acute kidney injury (AKI)\textsuperscript{22}

1. Variety of causes can lead to kidney’s inability to maintain function
2. Ranges in severity and may cause permanent and complete loss of renal function
3. Defined by Risk, Injury, Failure, Loss, End-stage (RIFLE) Criteria\textsuperscript{23} (See Appendix A, page 16)
   a. Changes in serum creatinine (SCr) from baseline
   b. Urine output (UO) per hour
4. Incidence in ICUs\textsuperscript{24}
   a. Overall: 20-50%
   b. Greater incidence in septic patients compared to surgical patients
5. Renal replacement therapy (RRT) and mortality with AKI in ICUs\textsuperscript{24} 
   a. \textasciitilde12\% of patients with AKI require RRT 
   b. Mortality dependent on severity according to RIFLE criteria 
      i. Risk: 20.9\% 
      ii. Injury: 45.6\% 
      iii. Failure: 56.8\% 

6. Non-balanced crystalloids\textsuperscript{11} 
   a. Primarily linked with HMA 
   b. Proposed by animal studies\textsuperscript{25} 

7. Synthetic colloids (HES 6\%)\textsuperscript{17} 
   a. Shown with high MW and greater MS [i.e. HES 6\% (>200/0.5)] 
      i. Increased risk of AKI 
      ii. Increased RRT requirement 
   b. Possible mechanisms 
      i. Uptake of starch into proximal renal epithelial cells 
      ii. Tubular obstruction 
      iii. Renal interstitial inflammation 

D. Bleeding abnormalities\textsuperscript{11,17} 
   1. Hypocoagulation with increased bleeding tendency 
   2. Non-balanced crystalloids linked with HMA 
   3. Synthetic colloids (HES 6\%) associated with 
      a. Increased blood product transfusions 
      b. Platelet dysfunction 
      c. Interaction with coagulation cascade 
      d. Decreased factor VIII and von Willebrand factor levels
Clinical Questions: Clinical significance of proposed safety concerns

I. Are the adverse outcomes with non-balanced vs balanced fluids clinically significant?
II. Is there an increased safety risk with low MW and MS HES 6% when used for fluid resuscitation?

Question I. Are adverse outcomes with non-balanced fluids clinically significant?

I. Adverse outcomes of HMA
   A. Decreased renal function\textsuperscript{11,12}
      1. Animal studies linked HMA with associated effects\textsuperscript{25}
         a. Renal vasoconstriction
         b. Increased renal responsiveness to vasoconstrictive agents
         c. Decreased glomerular filtration rate
      2. Human studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Design</th>
<th>Intervention</th>
<th>Outcome in non-balanced group*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilkes et al. 2001\textsuperscript{26}</td>
<td>Elderly surgical patients (n=47)</td>
<td>RCT</td>
<td>HES 6% in balanced fluid + Hartmann’s vs HES 6% in 0.9% NaCl + 0.9% NaCl</td>
<td>↓ Urine output</td>
</tr>
<tr>
<td>Chowdhury et al. 2012\textsuperscript{27}</td>
<td>Healthy volunteers (n=12)</td>
<td>RCT, double-blinded, crossover</td>
<td>2 L IV over 1 hr Plasma-Lyte or 0.9% NaCl 7 – 10 days apart</td>
<td>Cl: ↑ 6 mmol/L SID: ↓ by 4 mmol/L Renal artery blood flow velocity: ↓ 9% from baseline Renal cortical tissue perfusion: ↓ 11% from baseline</td>
</tr>
</tbody>
</table>

*Significantly different compared to balanced group (p <0.05)

RCT: Randomized control trial

B. Abnormalities in coagulation and bleeding\textsuperscript{11,12}
   1. In-vitro studies
      a. Balanced fluids have fewer negative coagulation parameters
      b. Significant limitations with in-vitro
   2. Human studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Fluid</th>
<th>Outcome in unbalanced group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gan et al. 1999\textsuperscript{28}</td>
<td>Major surgery (n=120)</td>
<td>HES 6% in balanced fluid vs HES 6% in 0.9% NaCl</td>
<td>↑ time to onset of clot ↑ mean estimated blood loss</td>
</tr>
<tr>
<td>Waters et al. 2001\textsuperscript{29}</td>
<td>Abdominal aortic aneurysm repair (n=66)</td>
<td>LR vs 0.9% NaCl</td>
<td>↑ volume of platelet transfusion ↑ blood products No difference in blood loss</td>
</tr>
</tbody>
</table>
II. Literature review


<table>
<thead>
<tr>
<th>Objective</th>
<th>To compare the effect on clinical outcomes between 0.9% saline infusion and Plasma-Lyte (a balanced solution) in patients undergoing major abdominal surgery</th>
</tr>
</thead>
</table>
| Design    | ▪ Retrospective cohort study  
▪ Inclusion  
  o 18 years and older  
  o Elective or emergency open general surgery  
  o Exclusively received 0.9% or Plasma-Lyte on day of surgery (500 ml or 1000 ml)  
▪ Exclusion  
  o Patients undergoing major abdominal operations for traumatic injuries |
| Outcomes  | ▪ Primary: Composite of one or more major complications  
  o Respiratory failure >24 hours postoperatively  
  o Cardiac complications requiring intervention  
  o Major gastrointestinal dysfunction (bleeding or perforated ulcer)  
  o Infectious complications  
  o Acute renal failure  
▪ Secondary: Electrolyte disturbances, physician orders related to acidosis evaluation or management, rehospitalization within 30 days |
| Statistical analysis | ▪ Baseline characteristics  
  o t-test – continuous variables  
  o Chi square – categorical variables  
▪ Outcome models  
  o (1) Ordinary logistic regression, (2) ordinary logistic regression including propensity score as model predictor and (3) ordinary logistic regression on sample of patients matched by propensity score 3:1, 0.9% saline to Plasma-Lyte  
  o Elixhauser’s algorithm – comorbidity score used to assess outcome |
| Results   | ▪ 271,189 patients received fluid on day of surgery  
  o 30,994 in 0.9% saline arm vs 926 in Plasma-Lyte arm  
▪ Baseline characteristics  
  o ~70% patients >50 years of age, ~65% elective admission, ~30% emergent admission  
  o Patients receiving 0.9% saline more likely to be minorities, ED admission, have presence of comorbidities such as heart failure, diabetes, and renal failure  
  o Groups well matched on comorbidity parameters after propensity score  
▪ Outcomes  
  o Association with major complication was in favor of balanced fluid group  
  o Developing major infection was significantly lower in the balanced fluid group  
  o After multivariate analysis, emergency surgery group had adjusted odds of death 50% lower in balanced group vs 0.9% saline (OR 0.51; 95% CI 0.28-0.95)  
  o After propensity matching, the 0.9% saline group had:  
    ▪ More fluid (1976 ml vs 1658 ml, p <0.001)  
    ▪ More buffer orders (6.3% vs 4.2%, p = 0.02)  
    ▪ More transfusions (11.5% vs 1.8%, p <0.001)  
    ▪ Increased ventilator days (3.0 days vs 2.5 days, p <0.001)  
    ▪ A 5-fold greater chance of receiving dialysis (1% vs 4.8%, p <0.001)  
    o Significantly more utilization of tests to evaluate acidosis in 0.9% saline group: arterial blood gases (22.3% vs 13.7%) and lactic acid (8% vs 3.3%); p < 0.001  
    o Balanced group had longer length of stay in the hospital (6.4 days vs 5.9, p < 0.001) |
| Authors’ Conclusions | ▪ Compared to physiologically balanced crystalloid solutions, saline associated with greater risk of complications and greater utilization of resources |
Limitations
- Retrospective, observational study
- Very small percentage of patients received only exclusively one fluid vs another
- Baseline comorbidities higher in non-matched cohort include congestive heart failure, renal failure, diabetes with complications, deficiency anemia
- Detecting major complications such as infection and renal failure by ICD-9 codes could provide some inaccuracies without objective patient data
- Increased arterial blood gas utilization could be attributed to increased ventilator days in 0.9% saline


<table>
<thead>
<tr>
<th>Objective</th>
<th>To determine the association between incidence and severity of acute kidney injury with a chloride-restrictive IV fluids strategy in critically ill patients compared to a chloride-liberal IV strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Prospective, open label, before and after pilot study in the ICU at a university-affiliated hospital in Australia</td>
</tr>
<tr>
<td></td>
<td>Three sequential six month periods</td>
</tr>
<tr>
<td></td>
<td>o Control period: Chloride-liberal strategy with clinician preference for IV fluids</td>
</tr>
<tr>
<td></td>
<td>o Phase-out period: Education and preparation of all ICU staff</td>
</tr>
<tr>
<td></td>
<td>o Intervention period: Chloride-restrictive strategy allowing chloride-rich fluids only when prescribed by attending for specific conditions (hyponatremia, traumatic brain injury [TBI], cerebral edema)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fluid options</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Chloride Liberal</strong></td>
</tr>
<tr>
<td>Fluid</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0.9% saline</td>
</tr>
<tr>
<td>4% succinylated gelatin</td>
</tr>
<tr>
<td>4% albumin in NaCl</td>
</tr>
</tbody>
</table>

Baseline collection data: age, sex, acute physiology and chronic health evaluation (APACHE) II and III, simplified acute physiology score (SAPS) II (Appendix B), multiple clinical characteristics
- o Serum Creatinine (Scr): pre admission and daily
- o RRT data

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Primary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o Increase in Scr from baseline to peak ICU level</td>
</tr>
<tr>
<td></td>
<td>o Incidence of AKI defined by the RIFLE criteria</td>
</tr>
</tbody>
</table>

Secondary post-hoc analysis
- o RRT needed
- o Length of ICU and hospital stay
- o Survival

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Baseline characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o Chi square, t-tests, Wilcoxon rank sum tests</td>
</tr>
</tbody>
</table>

Primary outcomes
- o Logistic regression: Report OR with 95% CI for AKI and need for RRT
- o Cox proportional hazards & Kaplan Meier curve: Time-to-event analysis

Multivariate sensitivity analysis: Sex, APACHE III scores, diagnosis, operative status, admission type (elective or emergency) and baseline Scr

Nested cohort (n=100): Detail fluid data was collected to assess the relationship between chloride intake and changes in Scr

Subgroup: time in ICU, APACHE score, risk of death, presence of sepsis and cardiac surgery

2-sided p value of 0.01 was used to indicate statistical significance
Results
N = 1644 admissions in 1533 patients (n=760 in control, n=773 in intervention)

Table I: Baseline Characteristics: None were significantly different
- Majority of patients were male, mean age was 60, post-operative admission, and had cardiovascular comorbidities

Changes in solute therapy
- Chloride: 694 to 496 mmol/patient
- Sodium: 750 to 623 mmol/patient
- Potassium: 3.5 to 22 mmol/patient
- Lactate: 18 to 220 mmol/patient

Primary Outcome

<table>
<thead>
<tr>
<th></th>
<th>Control (n=760)</th>
<th>Intervention (n=773)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCr increase from baseline</td>
<td>0.26 mg/dL</td>
<td>0.17 mg/dL</td>
<td>p = 0.03, p adj = 0.007</td>
</tr>
</tbody>
</table>

Incidence of AKI by RIFLE

<table>
<thead>
<tr>
<th>Rifle Class</th>
<th>Control (n=760) No. (%)</th>
<th>Intervention (n=773) No. (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>71 (9)</td>
<td>67 (7.4)</td>
<td>0.16</td>
</tr>
<tr>
<td>Injury</td>
<td>48 (5.3)</td>
<td>23 (3)</td>
<td>0.002</td>
</tr>
<tr>
<td>Failure</td>
<td>57 (7.5)</td>
<td>42 (5.4)</td>
<td>0.10</td>
</tr>
<tr>
<td>Injury and failure</td>
<td>105 (14)</td>
<td>65 (8.4)</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

Secondary Post-Hoc

<table>
<thead>
<tr>
<th></th>
<th>Control (n=760) No. (%)</th>
<th>Intervention (n=773) No. (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRT</td>
<td>78 (10%)</td>
<td>49 (6.3%)</td>
<td>p = 0.005</td>
</tr>
</tbody>
</table>

Authors’ Conclusions
- Chloride restrictive fluid strategy compared to chloride liberal strategy led to significant reduction in increase of mean creatinine level from baseline, incidence of AKI and use of RRT
- Similar findings after adjusting for baseline variables, subgroup analysis and nested cohort

Discussion
Strengths
- Evaluated clinical outcomes (SCr, RIFLE criteria, RRT)
- Attempted to control for temporal bias

Weaknesses
- Unable to evaluate the primary factor causing difference in SCr increase, injury and failure AKI, and RRT because different use of fluids
- Not randomized or blinded
- Education and intervention period may have influenced outcomes seen in phase-out period
- Volume use of fluid was not separated by indication (fluid replacement, resuscitation)
- Lack of information on other medications/IV solutions that could affect outcomes

III. Take home points: non-balanced vs balanced
A. HMA associated with decreased renal function and abnormalities with coagulation and bleeding
B. Balanced solutions resulted in decreased use of blood products after surgery and RRT in ICU patients
C. No difference in mortality or length of ICU or hospital stay
Question II. Is there an increased safety risk with low MW and MS HES when used for fluid resuscitation?

I. Renal injury effects are associated with HES\textsuperscript{10,17}
   A. High MW (> 200 kD) and greater MS (> 0.4)
   B. HES dose administration exceeded recommendations
   C. Higher risk in septic patients

II. Conflicting literature on adverse renal effects\textsuperscript{21}
   A. Low MW (≤ 130 kD)
   B. Lesser MS (0.4)

III. Literature review

<table>
<thead>
<tr>
<th>Table 7. Safety of HES 6% for Fluid Resuscitation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Trial</strong></td>
</tr>
<tr>
<td>Patient Population</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Primary Outcome</td>
</tr>
<tr>
<td>Secondary Outcomes</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Results

**HES (n = 398) vs RA (n = 400)**

Baseline Characteristics: No differences

- Source of ICU admission
  - 44-49% general ward
- SAPS II – median: 50-51
- SOFA – median: 7
- Shock: 84%
- MV: 60-61%

**HES (n = 3358) vs 0.9% saline (n = 3384)**

Baseline Characteristics: No differences

- Source of ICU admission
  - 27% ED & 23% elective surgery
- APACHE II – median: 17
- Sepsis subgroup: 28.4-29.2%
- Use of vasopressor: 45.5 – 46.1%
- MV: 64%

*Figure 1. Primary & Secondary Outcomes*

- Severe bleeding: ↑ with HES vs RA

*Figure 2. Primary & Secondary Outcomes*

- RIFLE-R,I: ↑ in saline vs HES (p <0.05)
- Post hoc analyzed Scr & UO separately: RIFLE ↑ in HES vs saline

Hernandez 13
IV. Take home points: safety of low MW and MS HES 6%
   A. Both low and high molecular weight HES solutions result in increased use of RRT and mortality in severe sepsis
   B. Renal replacement therapy is increased when low molecular weight HES solutions are used in an ICU population

Summary and Recommendations

III. Question I. Are the adverse outcomes with non-balanced vs balanced fluids clinically significant?
   A. Summary of safety
      1. Balanced fluids have better safety profile compared to non-balanced fluids due to decreased chloride intake
      2. Large observational and open-label pilot studies showed increased use of resources in a specified surgery population as well as mixed ICU population with non-balanced crystalloid use
         a. Surgical patients only: increased blood product transfusions
         b. Both surgical and ICU patients: increased RRT

   Figure 5. Rates of renal replacement therapy

<table>
<thead>
<tr>
<th>% RRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Non-balanced</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shaw et al. (Surgical)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yunos et al. (ICU)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

   3. Hospital length of stay significantly longer in surgical patients with balanced crystalloids, but study design renders interpretation difficult
   4. Overall ICU length of stay and mortality similar between groups

B. Other considerations
   1. The perfectly balanced solution
      a. Experimentally, the SID needed to have neutral effect on acid-base balance after fluid administration is 24 mEq/L
      b. Currently available solutions do not have this specific SID
      c. Closest SID found with Hartmann’s and Lactated Ringer’s at ~27 mEq/L

6S: Scandinavian Starch for Severe Sepsis/Septic Shock trial; CHEST: Crystalloid versus Hydroxyethyl Starch Trial; RA: Ringer’s acetate; RRT: renal replacement therapy; MV: mechanical ventilation; SOFA: Sequential Organ Failure Assessment score; APACHE II: Acute Physiology and Chronic Health Evaluation II; SAPS II: Simplified Acute Physiology Score. Reference Appendix B for SOFA, APACHE II, SAPS II.
2. Cost

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Cost (Dollars/1 L)</th>
<th>Cost (Dollars/10 million L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9% NaCl</td>
<td>1.03</td>
<td>10.3 million</td>
</tr>
<tr>
<td>Normosol-R</td>
<td>2.21</td>
<td>22.1 million</td>
</tr>
<tr>
<td>Lactated Ringers</td>
<td>0.94</td>
<td>9.4 million</td>
</tr>
</tbody>
</table>

C. Final recommendation

1. Balanced or non-balanced crystalloids for volume resuscitation are acceptable
   a. Data does not support one fluid over another for this indication since length of study follow up ranged from immediately post-operatively to days and weeks
   b. Preliminary data shows HMA occurs after large volume infusions
      i. Need randomized, controlled trial data to evaluate the clinical significance when used for volume resuscitation
      ii. Determine effects of maintenance replacement fluids separately
   c. Studies lacked evaluation of confounding variables in the ICU on acute kidney injury events (i.e. nephrotoxic agents)

2. Due to study design, differences in length of stay, and no difference in mortality, the cost increase that may result when switching to balanced solutions is not justified

II. Question II. Is there an increased safety risk with low MW and MS HES 6% when used for fluid resuscitation?

A. Summary

1. Low MW and low MS HES 6% products (MW 130, MS 0.4) showed adverse renal outcomes when compared to crystalloids for volume resuscitation

2. Patient population
   a. Severe sepsis patients have increased need for RRT, bleeding risk and mortality when HES 6% (MW 130/< 0.4) is used
      i. Surviving Sepsis Campaign Guidelines 2012 advise against HES 6% for volume resuscitation
   b. ICU patients
      i. Significant increase in need for RRT
      ii. No significant differences in mortality

B. Cost considerations

1. Albumin 5% in 500 ml: $198
2. HES 6% in 500 ml 0.9% NaCl: $61.06

C. Final recommendation

1. For volume resuscitation in critically ill patients, do not recommend HES 6% 130/<0.4
   a. Supported by well-designed randomized, controlled trial showing increased need for RRT
   b. Although mortality did not differ in the ICU population studied, mortality was increased in severe sepsis patients
   c. Maximum daily doses
      i. Increased adverse outcomes (i.e. AKI, bleeding abnormalities) when exceeded
      ii. Once reached, crystalloids are recommended for resuscitation; will reduce the true benefit of less volume when using HES 6%

2. Recommend albumin 5% as adequate alternative colloid
Appendices

Appendix A. RIFLE Criteria for AKI

<table>
<thead>
<tr>
<th>Risk</th>
<th>GFR criteria</th>
<th>Urine output criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ SCr X 1.5 or GFR ↓ &gt;25%</td>
<td>UO &lt; 0.5ml/kg/h X 6 hours</td>
<td></td>
</tr>
<tr>
<td>Injury</td>
<td>↑ SCr X 2 or GFR ↓ &gt;50%</td>
<td>UO &lt; 0.5ml/kg/h X 12 hours</td>
</tr>
<tr>
<td>Failure</td>
<td>↑ SCr X 3 or GFR ↓ &gt;75%, or SCr &gt; 4 mg/dL</td>
<td>UO &lt; 0.3ml/kg/h X 24 hours or anuria X 12 hours</td>
</tr>
<tr>
<td>Loss</td>
<td>Irreversible AKI or persistent AKI &gt;4 weeks</td>
<td></td>
</tr>
<tr>
<td>ESRD</td>
<td>ESRD &gt; 3 months</td>
<td></td>
</tr>
</tbody>
</table>

High sensitivity

High specificity

Appendix B. Severity scores

<table>
<thead>
<tr>
<th>Variables measured</th>
<th>Time Frame</th>
<th>Score range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute physiology and chronic health evaluation (APACHE II)</td>
<td>12 physiological variables (age, GCS, temperature, blood pressure, heart rate, respiratory rate, FiO2, PaO2, pH, sodium, potassium, creatinine, hematocrit, WBC)</td>
<td>Worst variables measured within 24 hours of ICU admission</td>
</tr>
<tr>
<td></td>
<td>2 disease related variables (acute renal failure and severe organ system insufficiency or immunocompromised)</td>
<td>Not calculated after 24 hours of admission</td>
</tr>
<tr>
<td></td>
<td>Similar to APACHE II</td>
<td>Worst variables measured within initial 24 hours in ICU</td>
</tr>
<tr>
<td></td>
<td>4 components: age, major disease category (reason for admission), acute physiology variables (added acid-base status and neurologic status) site prior to admission</td>
<td>Daily updates can be used to recalculate estimated mortality on daily basis</td>
</tr>
<tr>
<td></td>
<td>Simplified acute physiology score (SAPS II)</td>
<td>12 physiological variables (age, heart rate, systolic blood pressure, temperature, PaO2, FiO2, urine output, BUN, WBC, potassium, sodium, bicarbonate, bilirubin, GCS)</td>
</tr>
<tr>
<td></td>
<td>3 disease-related variables (mechanical ventilation, chronic diseases, types of admission)</td>
<td>Not calculated after 24 hours of admission</td>
</tr>
<tr>
<td></td>
<td>Sequential organ failure assessment (SOFA)</td>
<td>6 variables; each representing organ system (respiration: FiO2, PaO2, MV; coagulation: platelets; liver: bilirubin; neurological: GCS; cardiovascular: MAP, vasopressors; renal: creatinine, urine output)</td>
</tr>
<tr>
<td></td>
<td>Can calculate during ICU admission beyond 24 hours</td>
<td>0 to 71</td>
</tr>
<tr>
<td></td>
<td>No conversion available to determine mortality</td>
<td>Developed to determine organ dysfunction and morbidity</td>
</tr>
</tbody>
</table>

GCS: Glasgow coma scale; FiO2: fraction of inspired oxygen; PaO2: partial arterial oxygen; MAP: mean arterial pressure


