Gabapentin for Alcohol Withdrawal: Gaba-gaba-doo, yet another use? We've got some work to do now.

Nina Vadiei, PharmD
PGY2 Psychiatric Pharmacy Resident
The University of Texas at Austin College of Pharmacy
Seton Healthcare Family
Clinical Instructor

Objectives
• Discuss the importance of classifying alcohol withdrawal severity
• Identify treatment gaps of current treatment options for alcohol withdrawal
• Evaluate existing literature on gabapentin use in alcohol withdrawal disorder

Alcohol Use Disorder
• 5-10% of world’s population affected by alcohol use disorder
 – Problematic pattern of alcohol use
 – Tolerance
 – Withdrawal

Alcohol Withdrawal Syndrome (AWS)
• Cluster of symptoms occurring in individuals with alcohol dependence
 – Mild to severe
 • Tremor, tachycardia, nausea/vomiting, seizures, hallucinations, agitation, delirium tremens

Severity

Conflict of Interest
• The author of this presentation has no conflicts of interest to disclose
Severity

- Tremor
- Tachycardia

Mild
Moderate
Severe

Nausea/
Vomiting
Agitation

Seizures
Delirium Tremens (DTs)

Symptom Timeline

- Insomnia, tremors, anxiety, GI upset, headache, diaphoresis, palpitations, nausea, tachycardia, hypertension

Diagnosis

- Amount and frequency of alcohol ingestion
- History of previous hospitalizations
 - Prior seizures?
 - Prior DTs?
- Relation between cessation of alcohol intake and onset of symptoms

Symptom Timeline

- Insomnia, tremors, anxiety, GI upset, headache, diaphoresis, palpitations, nausea, tachycardia, hypertension

Diagnosis

- Amount and frequency of alcohol ingestion
- Relation between cessation of alcohol intake and onset of symptoms
- History of previous hospitalizations
- Severity assessment: Clinical Institute Withdrawal Assessment for Alcohol (CIWA)

CIWA Scale

- Anxiety
- Confusion
- Restlessness
- Mood
- Memory
- Nausea
- Heart Rate
- Sleep Quality
- Diaphoresis

Symptom Assessment

- None (0 points)
- Mild (1 point)
- Moderate (2 points)
- Severe (3 points)

Severity Assessment

- ≤ 8 points: Mild
- 9-15 points: Moderate
- ≥ 15 points: Severe

Treatment Plan

Goal:
1. Provide safe withdrawal
2. Use least amount of medicine possible to achieve rapid detoxification (CIWA)
3. Prepare patient for on-going treatment of alcohol dependence

Pathophysiology

- Nutritional deficiencies
- Interruption of constant CNS exposure to alcohol
 - Decrease in GABA levels and GABA-receptor sensitivity
 - Nervous system hyperactivity in absence of alcohol

Pharmacotherapy

- Benzodiazepines (gold standard)
 - Diazepam, lorazepam, chlordiazepoxide
- Barbiturates
 - Phenobarbital
- Anticonvulsants
 - Carbamazepine (CBZ), valproic acid (VPA), gabapentin
- Adrenergic medicines
 - Clonidine, propranolol

Clinical Dilemma with Benzodiazepines

- Increased craving
- Early relapse
- Increased alcohol consumption
- Memory deficits
- Respiratory depression
- Drug-drug interactions
- ABUSE

Pharmacotherapy Goals

- No seizures
- Reduces craving
- Relapse risk
- Low abuse potential
- Lacks DDIs
- ↓ AW symptoms

BZDs

Ideal Agent

Minimal SE’s

Pharmacotherapy

↑ Dopamine
 Hallucinations

↑ NM达
 Delirium Tremens

↑ Glutamate
 Seizures

↑ Noradrenaline
 Adrenergic Storm

↓ GABA
Pharmacotherapy Goals

BARBITURATES
- Minimal SE's
- No seizures or DTs
- Reduces craving
- Lacks DDIs
- ↓ Relapse risk
- ↓ AW symptoms

ADRENERGICS
- Minimal SE’s
- No seizures or DTs
- Reduces craving
- Lacks DDIs
- ↓ Relapse risk
- ↓ AW symptoms

ANTI-CONVULSANTS
- Minimal SE’s
- No seizures or DTs
- Reduces craving
- Lacks DDIs
- ↓ Relapse risk
- ↓ AW symptoms

Gabapentin
- GABA analogue
- Anti-convulsive and anxiolytic properties
- Good tolerability and favorable safety profile
- Pure renal elimination
- Reduces craving and relapse risk
- Inexpensive

Bonnet, et al. (1999)
- Four inpatients with moderate AWS and alcohol dependence for over five years
- Received gabapentin 400 mg QID
- Compared as-needed clomethiazole (CLO) requirements to previous admission
- Gabapentin led to reduced CLO requirements, no documented seizure occurrences

Bonnet, et al. (2003)
- Objective: To assess efficacy of gabapentin in the treatment of AWS
- Design: 2-center, double-blind, placebo-controlled
- Population: Moderate-Severe AWS according to MAWS Scale (57 total patients)
- Interventions: Gabapentin 400 mg QID vs. placebo • Patients received as needed clomethiazole (CLO)
- Outcomes: Primary: Amount of rescue CLO needed • Secondary: Course of MAWS scores within first 48 hours of AWS

MAWS = Mainz Alcohol Withdrawal Score

Bonnet, et al. (2003)

Results
- No difference in number of CLO taken in initial 24 hours (P=0.96)
- MAWS in first 48 hours not significantly different (P=0.39)
- No seizures or delirium throughout treatment

Limitations
- Gabapentin dose may have been too low
- Design quickly led to “rescue”
- Clomethiazole may mask delayed effect of gabapentin

Conclusion
- Gabapentin 400 mg qid no better than placebo in reducing need for rescue clomethiazole for treatment of AWS

Mariani et al. (2006)

Objective
- To assess efficacy of gabapentin in the management of AWS

Design
- Open-label, randomized, controlled trial

Population
- Inpatient detoxification patients with CIWA score > 10 and DSM—IV criteria for alcohol dependence (n=27)

Interventions
- Gabapentin taper (2400 mg first 24 hours, daily dose reduction 600 mg)
- Phenobarbital taper (60 mg QID, daily dose reduction 60 mg)

Outcomes
- Primary: Proportion of treatment failures (need for ≥ 3 doses of breakthrough phenobarbital)

Mariani et al. (2006)

Results
- No difference in proportion of treatment failures
- No difference in AWS symptoms (craving, mood, anxiety)

Limitations
- Open-label (bias), small sample size
- PRN phenobarbital could confound gabapentin effect
- Dosing schedule of gabapentin potentially suboptimal

Conclusion
- Gabapentin may be equivalent to phenobarbital in the treatment of alcohol withdrawal

Myrick, et al. (2009)

Objective
- To evaluate alcohol use and symptom reduction of gabapentin compared to lorazepam in the treatment of AWS

Design
- Double-blind, randomized, dose-response trial

Population
- Outpatient detoxification patients with CIWA scores ≥ 10 (n=100)

Interventions
- Lorazepam 6 mg tapering to 4 mg over 4 days
- Gabapentin (either 900 mg tapering to 600 mg or 1200 mg to 800 mg)

Outcomes
- Severity of alcohol withdrawal (CIWA scores) days 1-4 and days 5, 7, 12
- Alcohol use, measured via verbal report and alcohol breath levels

Myrick, et al. (2009)

Results
- CIWA score reduction superior in gabapentin group
- Lorazepam group higher probability of relapse
- Less craving, anxiety, and sedation in gabapentin group

Limitations
- Only moderate AWS severity
- Participants in better general health
- Small sample size

Conclusion
- Gabapentin was superior to lorazepam in the treatment of outpatients in moderate AWS (lower probability of drinking and clinically similar symptom reduction)

Bonnet, et al. (2010)

Objective
- To test a higher gabapentin entry dose in treating AWS

Design
- Open-label trial

Population
- Patients with CIWA scores ≥ 15 (n=37)

Interventions
- Entry dose 800 mg gabapentin given at baseline
- Early-responders: 600 mg QID taper; Non-early responders: usual tx

Outcomes
- CIWA, HAMA, HAMD score trend over four-day treatment course
- Adverse clinical effects throughout treatment course
Bonnet, et al. (2010)

Results
- CIWA < 15 in 27 (73%) patients after gabapentin load
- Two "early-responders" developed seizures
- "Non-responders": more severe AWS (P<0.026), longer treatment duration (P<0.001)

Limitations
- Open-label, small sample size, lack of comparator
- Lack of generalizability

Conclusion
- Non-response to gabapentin can be predicted by more severe AWS (mean CIWA score >20) with greater anxiety/depressive symptoms

Clinical Trial Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Moderate AWS</td>
<td>Moderate AWS</td>
<td>Severe AWS</td>
<td>CIWA > 10</td>
<td>CIWA > 10</td>
</tr>
<tr>
<td>Intervention</td>
<td>Gabaa 400 mg</td>
<td>Gabaa 400 mg</td>
<td>CIWA + 30</td>
<td>CIWA + 30</td>
<td>CIWA + 30</td>
</tr>
<tr>
<td>Population</td>
<td>Inpatient</td>
<td>Inpatient</td>
<td>CIWA ≥ 10</td>
<td>CIWA ≥ 10</td>
<td>CIWA ≥ 10</td>
</tr>
<tr>
<td>Intervention</td>
<td>Gabaa vs. Placebo</td>
<td>Gabaa vs. Placebo</td>
<td>CIWA ≤ 10</td>
<td>CIWA ≤ 10</td>
<td>CIWA ≤ 10</td>
</tr>
<tr>
<td>Results</td>
<td>Reduced need for rescue medication</td>
<td>Reduced need for rescue medication</td>
<td>CIWA reduction</td>
<td>CIWA reduction</td>
<td>CIWA reduction</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Gabaa reduces need for rescue medication</td>
<td>Gabaa does not reduce need for rescue</td>
<td>Gabaa superior to phenobarb in AWS treatment</td>
<td>Gabaa load helpful only in reducing less severe AWS</td>
<td>Gabaa load helpful only in reducing less severe AWS</td>
</tr>
</tbody>
</table>

What do YOU think?

Dose?
- 400 mg QID?
- 600 mg TID?
- Loading strategy?

Population?
- Inpatient?
- Outpatient?

Outcomes?
- PRN requirements?
- MAWS reduction?
- CIWA reduction?
- Mood?

Pharmacotherapy Goals

- Reduces AW symptoms
- BZD
 - Seizure prevention: X
 - Low side-effect incidence
 - Few drug-drug interactions
 - Low potential for abuse
 - Decreases craving
 - Decreases relapse

- Reduces AW symptoms
- GABA
 - Seizure prevention: X
 - Low side-effect incidence
 - Few drug-drug interactions: X
 - Low potential for abuse: X
 - Decreases craving: X
 - Decreases relapse: X
Why not both?

<table>
<thead>
<tr>
<th>Reduces AW symptoms</th>
<th>BZD + GABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seizure prevention</td>
<td>X</td>
</tr>
<tr>
<td>Low side-effect incidence</td>
<td>X</td>
</tr>
<tr>
<td>Few drug-drug interactions</td>
<td>X</td>
</tr>
<tr>
<td>Low potential for abuse</td>
<td>X</td>
</tr>
<tr>
<td>Decreases craving</td>
<td>X</td>
</tr>
<tr>
<td>Decreases relapse</td>
<td>X</td>
</tr>
</tbody>
</table>

Future Direction

- Research Proposal
 - To investigate the use of adjunctive gabapentin with BZDs in the treatment of inpatient AWS
 - Primary Objective: determine whether adjunctive gabapentin leads to reduction in PRN BZD administration
 - Secondary Objective: evaluate whether adjunctive gabapentin leads to quicker, better treatment of AWS

Conclusion

- Gabapentin effectively treats mild-moderate AWS
- Gabapentin effectively treats alcohol dependence
- Gabapentin is safe, and well-tolerated
- BZDs are current gold standard, but possess several limitations
- Mixed results regarding gabapentin ability to reduce need for rescue medication in AWS

Acknowledgements

- Dr. Tawny Smith, PharmD, BCPP
- Dr. Amy Walton, M.D.
- Dr. Kimberly Kjome, M.D.

Gabapentin for Alcohol Withdrawal: Gaba-gaba-doo, yet another use? We’ve got some work to do now.

Nina Vadiei, PharmD
PGY2 Psychiatric Pharmacy Resident
The University of Texas at Austin College of Pharmacy
Seton Healthcare Family Clinical Instructor