Clopidogrel and CYP2C19 in Acute Coronary Syndrome
Should Pharmacogenetic Testing be Standard of Care?

September 22, 2017

Kelsey Melloy, PharmD
PGY1 Pharmacy Resident
Seton Healthcare Family
Kelsey.Melloy@ascension.org
ASCENSION TEXAS

Clopidogrel and CYP2C19 in Acute Coronary Syndrome
Should pharmacogenetic testing be standard of care?

Kelsey Melloy, PharmD
PGY1 Pharmacy Resident
Seton Healthcare Family
September 22, 2017

Conflict of Interest

• The author of this presentation has no conflicts of interest to disclose

Objectives

• Review oral antiplatelet agents

• Explain the FDA black box warning for clopidogrel pharmacogenetics

• Analyze the clinical impact of CYP2C19 polymorphisms on clopidogrel efficacy

• Evaluate the evidence for genotype-guided antiplatelet therapy

Meet the patient…

• A 75 year old Chinese female weighing 55 kg presents with an NSTEMI and is scheduled to undergo PCI

• Of note, the patient is taking St. John’s Wort

Antiplatelet Therapy in ACS

• 2013 ACCF/AHA STEMI Guidelines
 - P2Y12 inhibitor load for PCI with stenting, then continued for at least 12 months
 • Clopidogrel, prasugrel, or ticagrelor (LOE B)

• 2014 AHA/ACC NSTEMI Guidelines
 - P2Y12 inhibitor for at least 12 months for PCI with stenting
 • Clopidogrel, prasugrel, or ticagrelor (class I, LOE B)
 - Ticagrelor over clopidogrel in for early invasive or ischemia-guided strategy (class IIa, LOE B)

Acute Coronary Syndrome (ACS)

• Life-threatening situation from destabilization of atherosclerotic plaque
 - Includes STEMI, NSTEMI, and UA

• ACS occurs every 25 seconds in the United States

• 1.4 million patients hospitalized for ACS each year in the United States
 - 810,000 for MI

Meet the patient…

• Life-threatening situation from destabilization of atherosclerotic plaque

• ACS occurs every 25 seconds in the United States

• 1.4 million patients hospitalized for ACS each year in the United States
 - 810,000 for MI

Antiplatelet Therapy in ACS

• 2013 ACCF/AHA STEMI Guidelines
 - P2Y12 inhibitor load for PCI with stenting, then continued for at least 12 months
 • Clopidogrel, prasugrel, or ticagrelor (LOE B)

• 2014 AHA/ACC NSTEMI Guidelines
 - P2Y12 inhibitor for at least 12 months for PCI with stenting
 • Clopidogrel, prasugrel, or ticagrelor (class I, LOE B)
 - Ticagrelor over clopidogrel in for early invasive or ischemia-guided strategy (class IIa, LOE B)
Comparison of Oral Antiplatelet Agents

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel (Plavix)</th>
<th>Prasugrel (Effient)</th>
<th>Ticagrelor (Brilinta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>LD: 300 or 600 mg MD: 75 mg/d</td>
<td>LD: 60 mg MD: 10 mg/d (5 mg in < 60 kg)</td>
<td>LD: 180 mg MD: 90 mg bid</td>
</tr>
<tr>
<td>Cost</td>
<td>$</td>
<td>$$$</td>
<td>$$$</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Prodrug; CYP2C19 (major), CYP3A4 (minor)</td>
<td>Prodrug; CYP2B6 (major), CYP3A4 (minor)</td>
<td>CYP3A4 (major)</td>
</tr>
<tr>
<td>Contraindications</td>
<td>Active bleeding, prior stroke or TIA</td>
<td>Active bleeding, prior stroke or TIA</td>
<td>Active bleeding, prior intracranial hemorrhage</td>
</tr>
</tbody>
</table>

Clopidogrel FDA Warning

WARNING: DIMINISHED EFFECTIVENESS IN POOR METABOLIZERS

See full prescribing information for complete based warning.

- Effectiveness of Plavix depends on activation to an active metabolite by the cytochrome P450 (CYP) system, principally CYP2C19. (5.1)
- Poor metabolizers treated with Plavix at recommended doses exhibit higher cardiovascular event rates following acute coronary syndrome (ACS) or percutaneous coronary intervention (PCI) than patients with normal CYP2C19 function. (12.5)
- Tests are available to identify a patient’s CYP2C19 genotype and can be used as an aid in determining therapeutic strategy. (12.5)
- Consider alternative treatment or treatment strategies in patients identified as CYP2C19 poor metabolizers. (2.3, 5.1)

Clopidogrel Metabolism and Mechanism of Action

- **Clopidogrel**
 - CYP1A2, CYP2B6, CYP2C19
 - 2-oxo-clopidogrel
 - Active metabolite
 - Inhibits P2RY12 on platelet

 - CYP2C9, CYP2B6, CYP3A4, CYP3A5, CYP2C19, PON1

CYP2C19 Variant Alleles and Frequencies

<table>
<thead>
<tr>
<th>Functional Status</th>
<th>Activity Level</th>
<th>Alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional (wild-type)</td>
<td>Normal</td>
<td>*1</td>
</tr>
<tr>
<td>Increased function</td>
<td>Increased</td>
<td>*17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allele</th>
<th>Caucasians</th>
<th>Africans</th>
<th>Asians</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2</td>
<td>15%</td>
<td>15%</td>
<td>29-35%</td>
</tr>
<tr>
<td>*3</td>
<td><1%</td>
<td><1%</td>
<td>2-9%</td>
</tr>
</tbody>
</table>

Clopidogrel Polymorphisms and Clopidogrel

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype</th>
<th>Clopidogrel Implication</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrarapid metabolizer (UM)</td>
<td>Homozygous or heterozygous increased function (not loss of function carrier)</td>
<td>Increased active metabolite</td>
<td>5-30%</td>
</tr>
<tr>
<td>Extensive metabolizer (EM)</td>
<td>Homozygous normal function</td>
<td>Normal active metabolite</td>
<td>35-50%</td>
</tr>
<tr>
<td>Intermediate metabolizer (IM)</td>
<td>Heterozygous loss of function + normal or increased function</td>
<td>Reduced active metabolite</td>
<td>18-45%</td>
</tr>
<tr>
<td>Poor metabolizer (PM)</td>
<td>Homozygous loss of function</td>
<td>Significantly reduced active metabolite</td>
<td>2-15%</td>
</tr>
</tbody>
</table>

Pharmacokinetic Response to Clopidogrel Based on CYP2C19 Phenotype

Clopidogrel active metabolite formation

- **Pharmacokinetic Response**
 - **Clopidogrel, 100 mg**
 - **Clopidogrel, 75 mg**
Pharmacodynamic Response to Clopidogrel Based on CYP2C19 Phenotype

Reduction in platelet aggregation 24 hours after clopidogrel

CYP2C19 Genotype and Outcomes

Composite: death from cardiovascular causes, MI, or stroke

HR 1.53 (p = 0.01)

CYP2C19 Genotype and Stent Thrombosis

LOF Carriers (IMs + PMs)
Noncarriers

12.1%
8.0%

HR 1.53 (p = 0.01)

How does clopidogrel compare to other antiplatelet agents?

Clopidogrel vs. Prasugrel – TRITON-TIMI 38

13,608 patients with moderate-to-high-risk ACS with scheduled PCI

Prasugrel 60 mg load then 10 mg/day
Clopidogrel 300 mg load then 75 mg/day

Primary: composite death from CV causes, MI, or stroke

9.9%
12.1%
HR 0.81 (p < 0.001)

Safety: non-CABG related major hemorrhage

2.4%
1.8%
HR 1.32 (p = 0.03)

TRITON-TIMI 38 Genetic Substudy

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Prasugrel</th>
<th>Clopidogrel</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular death, MI, and stroke</td>
<td>9.5%</td>
<td>9.8%</td>
<td>0.98 (0.80-1.20)</td>
</tr>
<tr>
<td>LOF carrier</td>
<td>8.5%</td>
<td>15.0%</td>
<td>0.57 (0.39-0.83)</td>
</tr>
<tr>
<td>Major or minor bleeding</td>
<td>4.7%</td>
<td>3.4%</td>
<td>1.38 (1.00-1.93)</td>
</tr>
<tr>
<td>LOF carrier</td>
<td>5.5%</td>
<td>3.5%</td>
<td>1.60 (0.80-3.10)</td>
</tr>
</tbody>
</table>

Conclusion

CYP2C19 genotype can distinguish which patients will receive extensive benefit from prasugrel over clopidogrel

*Estimates of outcome risks over 15 months for patients with UA or NSTEMI scheduled for PCI (excluded STEMI patients)
What do guidelines say about testing?

- 2011 ACCF/AHA/SCAI PCI Guidelines
 - Testing might be considered to identify patients at high risk for poor clinical outcomes
 - If PM status identified, consider alternate P2Y12 therapy
 - Routine genetic testing not recommended

- 2013 ACCF/AHA STEMI Guidelines
 - Acknowledges possibility of relationship between CYP2C19 polymorphisms and clopidogrel
 - No mention of pharmacogenetic testing

- 2014 AHA/ACC NSTEMI Guidelines
 - Routine genetic testing not recommended

What We Know

- CYP2C19 intermediate and poor metabolizer status associated worse outcomes with clopidogrel
 - Black box warning / FDA safety alert

- Prasugrel and ticagrelor are much more expensive and cannot be used in certain patients

- Guidelines still do not recommend testing

Does pharmacogenetic testing improve outcomes?

RAPID Gene Study

Study Design
- Single-center, prospective, randomized, blinded, N=200
- Rapid genotyping vs. standard treatment

Patient Population
- Inclusion: age 18-75 undergoing PCI for NSTEMI or stable ACS
- Exclusion: warfarin or dabigatran use, history of stroke or TIA, weight < 60 kg, platelets < 100,000, known bleeding diathesis, Hct < 30%, severe liver dysfunction, or CrCl < 30 ml/min

Primary Outcome
- Proportion of CYP2C19*2 carriers with high on-treatment platelet reactivity (P2Y12 reactivity units (PRU) > 234) after 1 week of dual antiplatelet therapy
RAPID Gene Study

Authors’ Conclusions

• Point-of-care genetic testing after PCI can be done effectively at the bedside
• Treatment of CYP2C19*2 carriers with prasugrel can reduce high on-treatment platelet reactivity

Strengths

• Prospective
• Genotype-guided vs. traditional selection
• Compared LOF carriers to LOF carriers

Weaknesses

• Universal clopidogrel load
• Only tested for CYP2C19*2
• Surrogate endpoint
• Primary outcome timing
• 95% of study population of western European ancestry

Genotyping-Approach vs. Conventional Approach in Chinese Patients

Study Design

• Single-center, prospective, randomized, open-label, N=132
• CYP2C19 genotype-guided P2Y12 antiplatelet therapy in ACS

Patient Population

• Inclusion: ACS (STEMI, UA/NSTEMI) +/- PCI, Chinese
• Exclusion: P2Y12 blocker w/in 6 months, chronic renal failure on HD or plan for HD, serious hepatic disease, CI to clopidogrel or ticagrelor, pregnant

Primary Outcome

• Platelet reactivity at 24 hours and 1 month after first loading dose of clopidogrel
Genotyping-Approach vs. Conventional Approach in Chinese Patients

<table>
<thead>
<tr>
<th></th>
<th>On-treatment platelet reactivity</th>
<th>Genotype-guided</th>
<th>Standard</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTPR at 24 hours</td>
<td>6/65 (9.2%)</td>
<td>27/67 (40.3%)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>HTPR at 1 month</td>
<td>4/62 (6.5%)</td>
<td>20/62 (32.3%)</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Intermediate metabolizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTPR at 24 hours</td>
<td>0/33 (0.0%)</td>
<td>12/27 (44.4%)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>HTPR at 1 month</td>
<td>0/31 (0.0%)</td>
<td>10/27 (37.0%)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>Poor metabolizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTPR at 24 hours</td>
<td>0/7 (0.0%)</td>
<td>5/8 (62.5%)</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>HTPR at 1 month</td>
<td>0/6 (0.0%)</td>
<td>5/7 (71.4%)</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

HTPR: high on-treatment platelet reactivity = P2Y12 reaction units > 208

NR: not reported

Authors’ conclusions

- Rapid genotyping-guided approach for selecting P2Y12 blockers is feasible
- Genotype-guided approach reduces the incidence of high on-treatment platelet reactivity

Strengths
- Prospective
- Use of genotype-guidance randomized
- High risk patient population

Weaknesses
- Surrogate endpoint
- PRU cutoff > 208
- Small sample size
- Patient population not generalizable
- LOF patients loaded with clopidogrel and ticagrelor

Study Design
- Prospective, multicenter
- CYP2C19 genotype-guided antiplatelet therapy post-PCI

Patient Population
- Average patient: early 60s, male, white, unstable ACS w/PCI
- 54 PMs + 518 IMs → 572 (31.5%) actionable genotypes

Primary Outcome
- Major adverse cardiac events (MACE): death, MI, or stroke within 12 months following index PCI

Prospective Clinical Implementation of CYP2C19 Genotype Guided Antiplatelet Therapy After PCI

* p<0.0001 for alternative therapy between LOF and NON-LOF groups

** APPENDIX K

Prospective Clinical Implementation of CYP2C19 Genotype Guided Antiplatelet Therapy After PCI

Authors’ conclusions

• Genotype-guided approach feasible
• Higher risk for MACE in CYP2C19 LOF treated with clopidogrel vs. alternative
• Genotyping can improve clinical outcomes after PCI

Strengths

• Genotype-guided antiplatelet selection
• Prospective
• Real world setting
• Antiplatelet selection up to physician

Limitations

• Use of genotype-guidance not randomized
• High dose clopidogrel
• Outcomes based on carrier status
• Limited study information available

Summary of Evidence

<table>
<thead>
<tr>
<th>Trial</th>
<th>Overall Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roberts, et al</td>
<td>Genotyping reduces high on-treatment platelet reactivity at day 7 in CYP2C19*2 carriers</td>
</tr>
<tr>
<td>Tam, et al</td>
<td>Genotyping reduces high on-treatment platelet reactivity at 24 hours and 1 month</td>
</tr>
<tr>
<td>Cavallari, et al</td>
<td>Genotyping reduces risk for MACE outcomes</td>
</tr>
</tbody>
</table>

Ongoing Trial

2700 STEMI patients undergoing PCI

CYP2C19 genotyping

2C19 LOF → prasugrel or ticagrelor

Wild-type → clopidogrel

Routine ticagrelor or prasugrel

POPular Genetics Study

POPular Genetics Study Endpoints

• Clinical benefit
 - Death, recurrent MI, definite stent thrombosis, stroke, platelet inhibition and patient outcomes
• Safety
 - Clinical benefit and major or minor bleeding
• Cost-effectiveness
• Quality of life
• A 75 year old Chinese female weighing 55 kg presents with an NSTEMI and is scheduled to undergo PCI
• Of note, the patient is taking St. John’s Wort
• Which antiplatelet option would you recommend?
 • A. Clopidogrel
 • B. Ticagrelor
 • C. Prasugrel
 • D. Order CYP2C19 genetic test

Back to the patient…

Recommendation
• Data not strong enough to support testing everyone
• Use genetic information when available
• Consider testing higher risk ethnicities

Conclusion
• Antiplatelet agents are not one size fits all
• Clopidogrel response variation can be partly explained by CYP2C19 polymorphisms
• CYP2C19 LOF carriers at higher risk for poor outcomes
• Evidence to support genotyping all patients is still limited - surrogate endpoints, small sample size, focused on feasibility
• Watch for results of the POPular Genetics Study

Acknowledgements

ASCENSION TEXAS
Clopidogrel and CYP2C19 in Acute Coronary Syndrome
Should pharmacogenetic testing be standard of care?
Kelsi Malloy, PharmD
PGY1 Pharmacy Resident
Seton Healthcare Family
September 22, 2017

Evan J. Peterson, PharmD, BCPS
Clinical Pharmacy Specialist – Cardiology
Seton Medical Center Austin

Tamara B. Knight, PharmD, BCPS
Clinical Pharmacy Specialist – Internal Medicine
Seton Northwest Hospital

Kelsey Melloy, PharmD
PGY1 Pharmacy Resident
Seton Healthcare Family
September 22, 2017

Appendix A: Abbreviations

Appendix B: Comparison of Oral Antiplatelet Agents

Appendix C: Clopidogrel FDA Warning

Appendix D: Clopidogrel Metabolism and Mechanism of Action

Appendix E: CYP2C19 Variant Alleles and Frequencies

Appendix F: CYP2C19 Polymorphisms and Clopidogrel

Appendix G: Pharmacokinetic Response to Clopidogrel Based on CYP2C19 Phenotype

Appendix H: Pharmacodynamic Response to Clopidogrel Based on CYP2C19 Phenotype

Appendix I: CYP2C19 Genotype and Outcomes

Appendix J: CYP2C19 Genotype and Stent Thrombosis

Appendix K: Cumulative MACE Rate Based on CYP2C19 Phenotype
Appendix A: Abbreviations

- ACCF: American College of Cardiology Foundation
- ACS: acute coronary syndrome
- AHA: American Heart Association
- ALT: alternative
- CABG: coronary artery bypass grafting
- CLOP: clopidogrel
- CV: cardiovascular
- CYP: cytochrome P450
- EM: extensive metabolizer (normal metabolizer)
- FDA: Federal Drug Administration
- HD: hemodialysis
- HR: hazard ratio
- HTPR: high on-treatment platelet reactivity
- IM: intermediate metabolizer
- LD: loading dose
- LOE: level of evidence
- LOF: loss of function
- MACE: major adverse cardiac events
- MD: maintenance dose
- MI: myocardial infarction
- MPA: maximal platelet aggregation
- NR: not reported
- NSTEMI non-ST elevated myocardial infarction
- PCI: percutaneous coronary intervention
- PM: poor metabolizer
- PRU: P2Y12 reactivity units
- STEMI: ST elevated myocardial infarction
- TIA: transient ischemic attack
- UA: unstable angina
- UM: ultra-rapid metabolizer
Appendix B: Comparison of Oral Antiplatelet Agents

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel (Plavix)</th>
<th>Prasugrel (Effient)</th>
<th>Ticagrelor (Brilinta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>LD: 300 or 600 mg</td>
<td>LD: 60 mg</td>
<td>LD: 180 mg</td>
</tr>
<tr>
<td></td>
<td>MD: 75 mg/d</td>
<td>MD: 10 mg/d</td>
<td>MD: 90 mg bid</td>
</tr>
<tr>
<td>(5 mg in < 60 kg)</td>
<td></td>
<td>(5 mg in < 60 kg)</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>$</td>
<td>$$</td>
<td>$$$</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Prodrug;</td>
<td>Prodrug;</td>
<td>CYP3A4 (major)</td>
</tr>
<tr>
<td></td>
<td>CYP2C19 (major),</td>
<td>CYP2B6 (major),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CYP3A4 (minor)</td>
<td>CYP3A4 (minor)</td>
<td></td>
</tr>
<tr>
<td>Contraindications</td>
<td>Active bleeding</td>
<td>Active bleeding,</td>
<td>Active bleeding,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prior stroke or</td>
<td>prior intracranial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TIA</td>
<td>hemorrhage</td>
</tr>
</tbody>
</table>
Appendix C: Clopidogrel FDA Warning

WARNING: DIMINISHED EFFECTIVENESS IN POOR METABOLIZERS

See full prescribing information for complete boxed warning.

- Effectiveness of Plavix depends on activation to an active metabolite by the cytochrome P450 (CYP) system, principally CYP2C19. (5.1)
- Poor metabolizers treated with Plavix at recommended doses exhibit higher cardiovascular event rates following acute coronary syndrome (ACS) or percutaneous coronary intervention (PCI) than patients with normal CYP2C19 function. (12.5)
- Tests are available to identify a patient's CYP2C19 genotype and can be used as an aid in determining therapeutic strategy. (12.5)
- Consider alternative treatment or treatment strategies in patients identified as CYP2C19 poor metabolizers. (2.3, 5.1)
Appendix D: Clopidogrel Metabolism and Mechanism of Action

Clopidogrel
- CYP1A2, CYP2B6, CYP2C19

2-oxo-clopidogrel
- CYP2C9, CYP2B6, CYP3A4, CYP3A5, CYP2C19, PON1

Active metabolite
- Inhibits P2RY12 on platelet

Sangkuhl Katrin, Klein Teri E, Altman Russ B. Pharmacogenetics and genomics (2010).
Appendix E: CYP2C19 Variant Alleles and Frequencies

<table>
<thead>
<tr>
<th>Functional Status</th>
<th>Activity Level</th>
<th>Alleles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional (wild-type)</td>
<td>Normal</td>
<td>*1</td>
</tr>
<tr>
<td>Increased function</td>
<td>Increased</td>
<td>*17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allele</th>
<th>Caucasians</th>
<th>Africans</th>
<th>Asians</th>
</tr>
</thead>
<tbody>
<tr>
<td>*2</td>
<td>15%</td>
<td>15%</td>
<td>29-35%</td>
</tr>
<tr>
<td>*3</td>
<td><1%</td>
<td><1%</td>
<td>2-9%</td>
</tr>
</tbody>
</table>
Appendix F: CYP2C19 Polymorphisms and Clopidogrel

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype</th>
<th>Clopidogrel Implication</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultrarapid metabolizer (UM)</td>
<td>Homozygous or heterozygous increased function (not loss of function carrier)</td>
<td>Increased active metabolite</td>
<td>5-30%</td>
</tr>
<tr>
<td>Extensive metabolizer (EM)</td>
<td>Homozygous normal function</td>
<td>Normal active metabolite</td>
<td>35-50%</td>
</tr>
<tr>
<td>Intermediate metabolizer (IM)</td>
<td>Heterozygous loss of function + normal or increased function</td>
<td>Reduced active metabolite</td>
<td>18-45%</td>
</tr>
<tr>
<td>Poor metabolizer (PM)</td>
<td>Homozygous loss of function</td>
<td>Significantly reduced active metabolite</td>
<td>2-15%</td>
</tr>
</tbody>
</table>

Appendix G: Pharmacokinetic Response to Clopidogrel Based on CYP2C19 Phenotype

Clopidogrel active metabolite formation

Appendix H: Pharmacodynamic Response to Clopidogrel Based on CYP2C19 Phenotype

Reduction in platelet aggregation 24 hours after clopidogrel

Appendix I: CYP2C19 Genotype and Outcomes

Composite: death from cardiovascular causes, MI, or stroke

LOF Carriers (IMs + PMs) 12.1%
Noncarriers 8.0%

HR 1.53 (p = 0.01)

Appendix J: CYP2C19 Genotype and Stent Thrombosis

LOF Carriers (IMs + PMs) 2.6%
Noncarriers 0.8%
HR 3.09 (p = 0.02)
Appendix K: Prospective Clinical Implementation of CYP2C19 Genotype Guided Antiplatelet Therapy After PCI

LOF = loss of function carrier
CLOP = clopidogrel
ALT = alternative