OFF-LABEL USES OF DONEPEZIL:
A FOCUS ON SAFETY AND EFFICACY IN TRAUMATIC BRAIN INJURY AND POST STROKE APHASIA

Lindsay Shelledy, Pharm.D.
PGY1 Pharmacy Resident
Seton Healthcare Family
September 11th, 2015

OBJECTIVES

- Review the use of donepezil in traumatic brain injury and post stroke aphasia.
- Summarize the epidemiology, pathophysiology, and treatment recommendations.
- Analyze several clinical trials for the efficacy and safety of using donepezil for traumatic brain injury and post stroke aphasia.
- Identify potential areas for future research.
- Evaluate the clinical benefit versus risk.

DONEPEZIL

- Approved in December 1996
- Indications
 - Mild, moderate, and severe Alzheimer’s dementia
- Adverse effects
 - Insomnia (2-14%)
 - Nausea (3-19%)
 - Diarrhea (5-15%)

DONEPEZIL OFF-LABEL USES

- Traumatic Brain Injury (TBI)
- Post Stroke Aphasia
- Dementia associated with Parkinson’s Disease
- Lewy Body Dementia
- Mood Disorders
- Autism Spectrum Disorder

OFF-LABEL MEDICATIONS

- No approved medications for the specific populations
- Similar medication has been approved for the indication
- Pathologic or physiologic features of conditions are similar
- Health care professionals should weigh the risks and benefits of using an off-label medication
TRAUMATIC BRAIN INJURY

Approximately 2.5 million people sustained a TBI in 2010

Causes of TBI
- Falls: 40%
- Unintentional Blunt Trauma: 19%
- Motor Vehicle Accidents: 14%
- Assaults: 11%
- Other: 16%

EPIDEMIOLOGY

Injury Prevention & Control Traumatic Brain Injury, CDC.

Comparison of a normal brain, Alzheimer’s brain, and brain 4 years after TBI

ATROPHY IN THE BRAIN

http://www.nature.com/nrneurol/journal/v9/n4/fig_tab/nrneurol.2013.29_F1.html

TBI severity classification
- Glasgow Coma Scale

<table>
<thead>
<tr>
<th>Severity</th>
<th>Glasgow Coma Scale Score</th>
<th>Post-traumatic amnesia</th>
<th>Loss of consciousness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>13-15</td>
<td>< 1 hour</td>
<td>< 30 minutes</td>
</tr>
<tr>
<td>Moderate</td>
<td>9-12</td>
<td>1-24 hours</td>
<td>1-24 hours</td>
</tr>
<tr>
<td>Severe</td>
<td>< 8</td>
<td>> 24 hours</td>
<td>> 24 hours</td>
</tr>
</tbody>
</table>

SEVERITY OF TRAUMATIC BRAIN INJURY

Up to 70% of TBI patients

COGNITIVE IMPAIRMENT

CURRENT RECOMMENDATIONS

- No approved medications to treat cognitive impairment associated with TBI
- Treatment should be symptom-based

<table>
<thead>
<tr>
<th>Impairment</th>
<th>First Line Medication</th>
<th>Side Effects</th>
<th>Other treatment options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive function</td>
<td>Amantadine 200-400 mg/day</td>
<td>CNS depression, peripheral edema, hypotension, anorexia</td>
<td>Bromocriptine, pramipexole, carbidopa/levodopa</td>
</tr>
<tr>
<td>Processing speed</td>
<td>Methylphenidate 0.3 mg/kg twice daily</td>
<td>Tachycardia, insomnia, decreased appetite, nausea, anxiety</td>
<td>Dextroamphetamine</td>
</tr>
<tr>
<td>Memory</td>
<td>Donepezil 5-10 mg/day</td>
<td>Nausea, insomnia, diarrhea, fatigue</td>
<td>Rivastigmine, galantamine, physostigmine</td>
</tr>
</tbody>
</table>

CURRENT RECOMMENDATIONS

EARLY LITERATURE

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Population</th>
<th>Dose</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whelen et al. 2000</td>
<td>Retrospective case series Cognitive dysfunction</td>
<td>N=53</td>
<td>5 mg daily titrated to 10 mg if tolerated</td>
<td>Improvement: daily functioning</td>
</tr>
<tr>
<td>Masanic et al. 2001</td>
<td>Open label retrospective study Memory, behavior, global function</td>
<td>N=4</td>
<td>5 mg daily x 8 wk 10 mg daily x 4 wk Washout x 4 wk</td>
<td>Improvements: verbal/visual memory, behavior</td>
</tr>
<tr>
<td>Morey et al. 2003</td>
<td>Single-subject retrospective study Memory</td>
<td>N=7</td>
<td>5 mg daily x 4 wk 10 mg daily x 5 mo Washout x 6 wk 5 mg daily x 6 mo</td>
<td>Improvement: visual memory Only seen with 10 mg</td>
</tr>
</tbody>
</table>

LIMITATIONS

- Very few patients
- Adverse effects not reported in detail
- Placebo effect

Zhang, et al. 2004

- 24-week randomized, placebo-controlled, double-blind crossover trial
- Short-term memory and sustained attention
- Inclusion criteria:
 - Short-term memory impairment
 - Participants were 2-24 months post TBI

ASSESSMENT TOOLS

- Wechsler Memory Scale (WMS-III)
 - Auditory Immediate Index (All)
 - Visual Immediate Index (VII)
 - Indexes have a mean of 100 and a standard deviation of 15
- Paced Auditory Serial Addition Test (PASAT)
 - Sustained attention, working memory, and information-processing speed
 - Maximum of 60
Auditory Immediate Index

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>63.7 ± 2.5</td>
<td>62.3 ± 2.0</td>
<td>0.611</td>
</tr>
<tr>
<td>Week 10</td>
<td>95.4 ± 4.5</td>
<td>73.6 ± 4.5</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Week 24</td>
<td>105.9 ± 4.5</td>
<td>102.4 ± 4.5</td>
<td>0.588</td>
</tr>
</tbody>
</table>

Visual Immediate Index

<table>
<thead>
<tr>
<th></th>
<th>Group A</th>
<th>Group B</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>65.9 ± 2.6</td>
<td>63.3 ± 3.2</td>
<td>0.116</td>
</tr>
<tr>
<td>Week 10</td>
<td>93.5 ± 3.0</td>
<td>64.9 ± 3.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Week 24</td>
<td>91.3 ± 3.0</td>
<td>94.9 ± 3.0</td>
<td>0.397</td>
</tr>
</tbody>
</table>

Score of 100 defines average performance in a healthy population

WHAT ABOUT THE OTHER ACETYLCHOLINESTERASE INHIBITORS (AI)?

Retrospective, open cohort study with 3 arms

Treatment response between donepezil, galantamine, and rivastigmine

111 patients

1 year post injury, with symptoms of fatigue, poor memory, diminished attention, or initiation problems

CONCLUSION

Auditory and visual immediate memory and attention

Improvement continued after washout

Limitations

- Spontaneous recovery
- Small number of patients
- 1 patient dropped out due to adverse effects

TENOVUO, ET AL. 2004

Retrospective, open cohort study with 3 arms

Treatment response between donepezil, galantamine, and rivastigmine

111 patients

1 year post injury, with symptoms of fatigue, poor memory, diminished attention, or initiation problems
ASSESSMENT TOOLS

TENOVUO, 2004

- Response based on **subjective** assessment
 - Graded as none, modest, good, or excellent
- Glasgow Outcome Scale, extended (GOS-E) form was also determined
 - Functional outcome scale that rates patient status from 1-8

RESULTS

TENOVUO, 2004

- No difference between groups
- Increase in general functioning
- No wearing off of response
- Extra benefit with dose increase
- Response to one acetylcholinesterase inhibitor and not another
- Adverse effects were persisting in 26% of patients

LIMITATIONS

TENOVUO, 2004

- 39% of patients had a modest or no response
- Improvement was based on subjective assessment
- Difference in the number of patients in each arm
- Placebo effect

KHATEB, ET AL. 2005

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Dose</th>
<th>Endpoint</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khat et al.</td>
<td>N=10</td>
<td>5 mg daily + 1 mg daily</td>
<td>Behavior</td>
<td>Improved</td>
</tr>
<tr>
<td>Prospective</td>
<td>Mod/severe, > 6 months post injury</td>
<td>10 mg daily + 2 months</td>
<td>Executive functioning</td>
<td>Not significant</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Learning/Memory</td>
<td>Improved</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Attention</td>
<td>Improved</td>
</tr>
</tbody>
</table>

SAFETY

KHATEB, 2005

- Side effects:
 - Nausea, sleep disorders, anxiety, excitability, cramps, dizziness
 - 4/15 patients stopped the drug
 - Side effects subsided in 2-3 weeks for some patients
Acute and late phases of memory and attention improved

Positive effects after treatment discontinuation

Possible improvement in processing speed and learning

No significant difference between donepezil and other acetylcholinesterase inhibitors

Adverse effects were often transient

Large scale randomized placebo-controlled trial

Effectiveness based on time since TBI, severity of TBI, and location of injury

Clinical observation

Loss or impairment of language due to brain damage

Affects about 20-40% of all stroke patients

Aphasia recovery tends to plateau by 1 year after onset

Nonfluent aphasia
- Speech production is halting

Fluent aphasia
- Comprehension is poor

Severe impairment of both expressive and receptive skills
PHARMACOLOGIC THERAPY

- Bromocriptine – no significant impact on aphasia
- Amphetamines – improved aphasia recovery when combined with language therapy
- Donepezil – positive effect on global language function during active treatment

MECHANISM OF EFFECT

- Vascular lesions interrupt cholinergic pathways
- Cerebral circulation is influenced by cholinergic mechanisms

ASSESSMENT TOOLS

- Tests used to assess aphasia
 - Communication, linguistic ability, comprehension
- Western Aphasia Battery (WAB)
- Psycholinguistic Assessment of Language Processing in Aphasia (PALPA)

BERTHIER, ET AL. 2006

- 20 week double-blind, randomized, placebo-controlled study
- Primary endpoint: aphasia severity
- Inclusion criteria:
 - < 70 years
 - Chronic aphasia (1 year since onset)
 - Unilateral stroke lesion

METHODS

<table>
<thead>
<tr>
<th>Baseline Assessment (N=26)</th>
<th>Placebo x 4 weeks (N=13)</th>
<th>Placebo x 12 weeks</th>
<th>Washout period x 4 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donepezil 5 mg/day x 4 weeks (N=13)</td>
<td>Placebo x 4 weeks (N=13)</td>
<td>Placebo x 12 weeks</td>
<td>Washout period x 4 weeks</td>
</tr>
<tr>
<td>Donepezil 10 mg/day x 12 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS

- Significant improvement
 - Aphasia severity (p = 0.037)
 - Picture naming subtest of PALPA (p = 0.025)
- Adverse events not significant
CONCLUSION
BERTHIER, 2006

- Between group differences no longer significant after washout period
- Only enhances language and communication performance during treatment

CHEN, ET AL. 2010

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Dose</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen, et al. 2010</td>
<td>N=60</td>
<td>5 mg daily x 12 wks</td>
<td>Western Aphasia Battery measured at baseline and 12 weeks</td>
</tr>
</tbody>
</table>

RESULTS
CHEN, 2010

- Aphasia Quotient was significantly greater (p = 0.004)
- Significant recovery in spontaneous speech, comprehension, repetition, and naming functions (p = 0.05)

FINAL CONCLUSION

- Speech and language therapy is the mainstay of treatment
- Recovery in spontaneous speech, comprehension, repetition, and naming functions
- Presents a good option for patients that require augmentation to speech and language therapy

FUTURE STUDIES

- Large scale randomized placebo-controlled trial
- Determine if aphasia type or severity is linked to effectiveness of donepezil to better target certain patient populations
- Compare donepezil with the other acetylcholinesterase inhibitors

DISCUSSION: TRAUMATIC BRAIN INJURY

- Use is controversial
- Available trials are limited by design
- Improvement in memory and attention for many patients
- Positive effects remained after discontinuation
- Adverse events may limit use
- Donepezil should be used to treat memory impairment following traumatic brain injury
 • 10 mg daily
DISCUSSION: POST STROKE APHASIA

- No pharmacological treatment for post stroke aphasia
- Few clinical trials
- Significant recovery in speech and comprehension
- Positive effects did not remain after discontinuation
- Donepezil should be used to treat post stroke aphasia
 - 5-10 mg both showed improvement

ACKNOWLEDGEMENTS

- Special thanks to:
 - Tamara Knight, Pharm.D., BCPS
 - Lyndsi Meyenburg, Pharm.D., BCPS

OFF-LABEL USES OF DONEPEZIL:
A FOCUS ON SAFETY AND EFFICACY IN TRAUMATIC BRAIN INJURY AND POST STROKE APHASIA

Lindsay Shelledy, Pharm.D.
Pgy1 Pharmacy Resident
Seton Healthcare Family
September 11th, 2015