EPIDIOLEX®:
CASHING IN THE CANNABIS RAIN CHECK?

Leila Petok
PGY-1 Community Pharmacy Resident
H-E-B Pharmacy/UT Austin
Disclosures

• No conflicts of interest to disclose
Objectives

At the conclusion of this presentation, the learner should be better able to:

• Describe the difference between seizures and epilepsy
• Describe clinical trials which gained Epidiolex® FDA-approval
• Comment on the side effects, drug-drug interactions, and clinical pearls of cannabidiol therapy
• Educate patients and address questions regarding differences between Epidiolex® and OTC cannabidiol products
To show this poll

1. Install the app from pollev.com/app
2. Start the presentation

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
Seizures

- **Seizure** - transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain

- Requires both neuronal
 1. Hyperexcitability
 2. Hypersynchronization

- Inhibitory synaptic currents break down and the excitability spreads, locally (focal seizures) or widely (generalized seizures)

Seizures

- Seizure ≠ epilepsy

<table>
<thead>
<tr>
<th>Provoked Seizures</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drug overdose</td>
<td>Cocaine, TCA’s</td>
</tr>
<tr>
<td>Drug withdrawals</td>
<td>Alcohol, benzodiazepines</td>
</tr>
<tr>
<td>Acute neurologic events</td>
<td>Trauma, hemorrhage</td>
</tr>
<tr>
<td>Systemic illness</td>
<td>Hypoglycemia, eclampsia</td>
</tr>
<tr>
<td>Fever</td>
<td>Febrile seizures</td>
</tr>
</tbody>
</table>
Seizures – Terminology

• **Tonic** – muscles become tense or rigid
• **Atonic** – muscles become weak or limp
• **Clonic** – jerking movements
• **Myoclonus** – brief muscle twitches

• **Nonmotor symptoms** – symptoms that don’t affect movement
 • Changes in sensation, emotion, thinking
 • Changes in autonomic function (goosebumps, tachycardia)
 • Behavioral arrest (staring spells)
Seizures – Current Classifications

“NEW” CLASSIFICATION OF SEIZURE TYPES
International League Against Epilepsy, 2017

FOCAL ONSET
Aware | Impaired Awareness

GENERALIZED ONSET
Impaired Awareness

UNKNOWN ONSET

MOTOR
- Tonic-clonic
- Epileptic spasms (Generalized)
- Repeated automations (Focal)

NON-MOTOR
- Absence
- Autonomic function changes
- Change in emotions

Epilepsy

A disease of the brain defined by any of the following:

1. At least two unprovoked seizures occurring >24 h apart

2. One unprovoked seizure and probability of at least 60% for further seizures occurring over the next 10 years

3. Diagnosis of an epilepsy syndrome

Resolved epilepsy – seizure-free for 10 years with no seizure medications for the last 5 years
Classifications

Epilepsy Syndromes

- Benign Rolandic Epilepsy
- Doose Syndrome
- Juvenile Myoclonic Epilepsy
- West Syndrome
 - Lennox-Gastaut Syndrome
 - Dravet Syndrome
Lennox Gastaut Syndrome (LGS)

- Severe form of epileptic encephalopathy
- 2 cases out of 100,000 population
- Manifests by 8 years old, peak incidence at 3-5 years
 - Multiple seizure types – tonic, atonic, atypical absence; “drop attacks” common
 - Slow spike-and-wave activity on EEGs
 - Typically life-long with cognitive impairment
- 20-60% of patients have delayed cognitive development at disease onset, 75-95% become cognitively impaired with increasing age
Dravet Syndrome (DS)

- Genetic form of epileptic encephalopathy
- > 80% of cases due to mutations in the SCN1A gene
- 1 out of 20,000 – 40,000 population
- Seizures start within first year of life, with developmental slowing or regression at 1-2 years
 - Multiple seizure types – tonic, atonic, atypical absence
 - Nonspecific EEG features
 - Lifelong with developmental disabilities
Treatment Options

<table>
<thead>
<tr>
<th>Lennox Gaustaut Syndrome</th>
<th>Dravet Syndrome*</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Felbamate (Felbatol®)</td>
<td>First Line</td>
</tr>
<tr>
<td>• Rufinamide (Banzel®)</td>
<td>• Clobazam (Onfi®)</td>
</tr>
<tr>
<td>• Clobazam (Onfi®)</td>
<td>• Valproate</td>
</tr>
<tr>
<td>• Clonazepam</td>
<td>Second Line</td>
</tr>
<tr>
<td>• Lamotrigine</td>
<td>• Stiripentol (Diacomit®)Δ</td>
</tr>
<tr>
<td>• Topiramate</td>
<td>• Topiramate</td>
</tr>
<tr>
<td>• Valproate^</td>
<td>Third Line</td>
</tr>
<tr>
<td></td>
<td>• Clonazepam</td>
</tr>
<tr>
<td></td>
<td>• Levetiracetam</td>
</tr>
<tr>
<td></td>
<td>• Zonisamide</td>
</tr>
<tr>
<td></td>
<td>• Ethosuximide</td>
</tr>
</tbody>
</table>

^Not FDA-approved for LGS, but commonly 1st line

*None are FDA-approved

Δ Available in Europe only
Treatment Options

- Treatment is aimed at controlling seizures
- Usually multiple medications are required
- Ketogenic diet or vagal nerve stimulation may be considered

LGS Prognosis

- 75% Survival
- 25% Mortality
- <10% seizure free

DS Prognosis

- 80% Survival
- 20% Mortality
- 11% seizure free

DRUG REVIEW
Epidiolex® (Cannabidiol)

- The first naturally derived, FDA-approved *Cannabis* drug product
- Indicated for treating LGS and DS in patients 2+ years of age
- Strawberry flavored, clear to yellow color
- Gluten free, but does contain sesame oil
Epidiolex® (Cannabidiol)

• 100 mg/mL oral solution
• 100 mL stock bottle (NDC 70127-100-10)
• Recommended starting dose:
 • 2.5 mg/kg twice daily (5 mg/kg total daily dose)
• Maximum recommended dose:
 • 10 mg/kg/dose or 20 mg/kg/day
• Packaged with two 5 mL calibrated oral dosing syringes and a bottle adapter
HOW DOES IT WORK?
Cannabis, a brief taxonomy

- 2 species of plant: *Cannabis indica* and *Cannabis sativa*
 - Produce **cannabinoids**, terpenophenolic compounds exclusive to *Cannabis*

![Chemical structures of THC and CBD]

- There is a greater amount of CBD found in *C. sativa* and a greater amount of THC found in *C. indica.*

Cannabidiol MOA

- Cannabinoids interact with CB1 and CB2 receptors in the body
 - CB1 – neurons and glial cells
 - CB2 – immune system
- THC causes euphoria via CB1 receptors.
- CBD has little affinity for CB1 receptors, and when it does bind produces little to no effect

- Note: “hemp” is a legal and agricultural term referring to *C. sativa* with low THC content grown for industrial purposes
Cannabidiol MOA

• Cannabidiol (Epidiolex®) is a cannabinoid that naturally occurs in the *Cannabis Sativa* L. plant.

• The precise mechanisms by which cannabidiol exerts its anticonvulsant effect in humans are unknown
 • Does not appear to be via human cannabinoid receptors
To show this poll

1. Install the app from pollev.com/app
2. Start the presentation

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser
CLINICAL TRIALS
Clinical Trials

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Study Design</th>
<th># of Patients</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Thiele et al. (2018)</td>
<td>LGS</td>
<td>Randomized, double-blind, placebo-controlled trial at 24 clinical sites in the USA, Netherlands, Poland</td>
<td>N = 171 • CBD = 86 • PBO = 85</td>
</tr>
<tr>
<td>II. Devinsky et al. (2018)</td>
<td>LGS</td>
<td>Randomized, double-blind, placebo-controlled trial at 30 sites in the USA, Spain, UK, and France</td>
<td>N = 225 • CBD 10mg = 73 • CBD 20mg = 76 • PBO = 76</td>
</tr>
<tr>
<td>III. Devinsky et al. (2017)</td>
<td>DS</td>
<td>Randomized, double-blind, placebo-controlled trial at 23 sites in the USA and Europe</td>
<td>N = 120 • CBD = 61 • PBO = 59</td>
</tr>
</tbody>
</table>

Study Designs

Baseline
4 weeks

Treatment
2 week dose escalation*
12 week maintenance

Taper
10 days

Follow-Up
4 weeks

*Initial dose of 2.5 mg/kg in all 3 studies

Study I – Thiele et al. (2018)

“Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial”

Primary Endpoint

Percent change in monthly frequency of drop seizures from baseline

Secondary Endpoints

Proportion of patients with ≥ 50% ↓ in monthly frequency of drop seizures

Percent change in total seizure frequency from baseline

Patient or Caregiver Global Impression of Change from baseline (see Appendix B)
<table>
<thead>
<tr>
<th>Study I – Thiele et al. (2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion Criteria</td>
</tr>
<tr>
<td>• Age 2-55 years</td>
</tr>
<tr>
<td>• Clinical diagnosis of LGS</td>
</tr>
<tr>
<td>• Refractory</td>
</tr>
<tr>
<td>• Taking 1-4 AEDs</td>
</tr>
<tr>
<td>• > 1 type of generalized seizure, including drop seizures, for ≥ 6 months</td>
</tr>
<tr>
<td>Exclusion Criteria</td>
</tr>
<tr>
<td>• History of alcohol or substance abuse</td>
</tr>
<tr>
<td>• Recreational or medicinal cannabis users</td>
</tr>
<tr>
<td>• (+) urine THC screen</td>
</tr>
<tr>
<td>• Pregnant or lactating</td>
</tr>
<tr>
<td>• Significantly impaired hepatic function</td>
</tr>
<tr>
<td>• Felbamate within last year</td>
</tr>
<tr>
<td>• Corticotrophins in last 6 months</td>
</tr>
</tbody>
</table>
Study I – Thiele et al. (2018)

<table>
<thead>
<tr>
<th>Patient Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 171</td>
</tr>
<tr>
<td>CBD = 86</td>
</tr>
<tr>
<td>PBO = 85</td>
</tr>
<tr>
<td>• Similar at baseline</td>
</tr>
<tr>
<td>• Mean age = 15.4</td>
</tr>
<tr>
<td>• Median of 6 previous AEDs</td>
</tr>
<tr>
<td>• Median of 3 concomitant AEDs during trial</td>
</tr>
<tr>
<td>• Median monthly frequency of drop seizures = 73.8</td>
</tr>
</tbody>
</table>
Study I – Thiele et al. (2018)

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Endpoint</td>
</tr>
</tbody>
</table>
| CBD = 43.9% ↓ (p = 0.0135) \[
| • 71.4 to 31.4 drop seizures \]
| PBO = 21.8% ↓ \[
| • 74.7 to 56.3 drop seizures \] |
| **Secondary Endpoints** |
| ≥ 50% ↓ in drop seizure frequency |
| CBD = 38/86 (44%, p = 0.0043) \[
| PBO = 20/85 (24%) |
| % Δ in total seizure frequency |
| CBD = 41.2% ↓ (p = 0.0005) \[
| PBO = 13.7% ↓ \]
| Improvement in GIC scale |
| CBD = 49/84 (58%, p = 0.0012) \[
| PBO = 29/85 (34%) |
Study II – Devinsky et al. (2018)

“Effect of Cannabidiol on Drop Seizures in the Lennox–Gastaut Syndrome” (2 dose study)

Primary Endpoint
Percent change in monthly frequency of drop seizures from baseline

Secondary Endpoints
Proportion of patients with ≥ 50% ↓ in monthly frequency of drop seizures
Percent change in total seizure frequency from baseline
Patient or Caregiver Global Impression of Change from baseline

Study II – Devinsky et al. (2018)

<table>
<thead>
<tr>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Age 2-55 years</td>
<td>• History of alcohol or substance abuse</td>
</tr>
<tr>
<td>• Clinical diagnosis of LGS</td>
<td>• Recreational or medicinal cannabis users</td>
</tr>
<tr>
<td>• ≥ 2 type of generalized seizure, including drop seizures, for ≥ 6 months</td>
<td>• (+) urine THC screen</td>
</tr>
<tr>
<td></td>
<td>• Pregnant or lactating</td>
</tr>
<tr>
<td></td>
<td>• Significantly impaired hepatic function</td>
</tr>
<tr>
<td></td>
<td>• Corticotropins in last 6 months</td>
</tr>
<tr>
<td></td>
<td>• Felbamate in last year</td>
</tr>
</tbody>
</table>
Study II – Devinsky et al. (2018)

<table>
<thead>
<tr>
<th>Patient characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 225</td>
</tr>
<tr>
<td>• CBD 10 mg = 73</td>
</tr>
<tr>
<td>• CBD 20 mg = 76</td>
</tr>
<tr>
<td>• PBO = 76</td>
</tr>
<tr>
<td>*mg/kg/day</td>
</tr>
<tr>
<td>• Similar at baseline</td>
</tr>
<tr>
<td>• Median of 6 previous AEDs</td>
</tr>
<tr>
<td>• Median of 3 concomitant AEDs during trial</td>
</tr>
<tr>
<td>• Most common AED was clobazam</td>
</tr>
<tr>
<td>• Median number of drop seizures = 85</td>
</tr>
</tbody>
</table>
Study II – Devinsky et al. (2018)

Results

<table>
<thead>
<tr>
<th>Primary Endpoint</th>
<th>Secondary Endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD 10mg = 37.2% ↓ ((p = 0.005))</td>
<td>(\geq 50% \downarrow \textit{in drop seizure frequency})</td>
</tr>
<tr>
<td>CBD 20mg = 41.9% ↓ ((p = 0.002))</td>
<td>CBD 10mg = 26/73 (36%, (p < 0.001))</td>
</tr>
<tr>
<td>PBO = 17.2% ↓</td>
<td>CBD 20mg = 30/76 (39%, (p = 0.003))</td>
</tr>
<tr>
<td></td>
<td>PBO = 11/76 (14%)</td>
</tr>
</tbody>
</table>

\(\% \Delta \textit{in total seizure frequency}\)

CBD 10mg = 36.4% ↓ (\(p = 0.002\))	\(\textbf{CBD 10mg} = 48/73 \ (66\%, \ p = 0.002)\)
CBD 20mg = 38.4% ↓ (\(p = 0.009\))	\(\textbf{CBD 20mg} = 43/75 \ (57\%, \ p = 0.04)\)
PBO = 18.5% ↓	**PBO** = 33/75 (44%)

\textit{Improvement in GIC scale}
Study III – Devinsky et al. (2017)

“Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome”

Primary Endpoint

Percentage change per 28 days from the 4-week baseline period in convulsive-seizure frequency

Secondary Endpoints

≥ 50% reduction in convulsive-seizure frequency per month

Reduction in total seizure frequency

Caregiver Global Impression of Change from baseline
Inclusion Criteria
- Age 2-18 years
- Established diagnosis of DS
- Taking 1 or more AEDs
- ≥ 4 convulsive seizures during baseline

Exclusion Criteria
- History of alcohol or substance abuse
- Recreational or medicinal cannabis users
- (+) urine THC screen
- Pregnant or lactating
- Significantly impaired hepatic function
Study III – Devinsky et al. (2017)

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 120</td>
<td></td>
</tr>
<tr>
<td>CBD = 61</td>
<td></td>
</tr>
<tr>
<td>PBO = 59</td>
<td></td>
</tr>
<tr>
<td>Similar at baseline</td>
<td></td>
</tr>
<tr>
<td>Mean age 9.8 years</td>
<td></td>
</tr>
<tr>
<td>Median of 4 previous AEDs</td>
<td></td>
</tr>
<tr>
<td>Median of 3 concomitant AEDs during trial</td>
<td></td>
</tr>
<tr>
<td>Median number of convulsive seizures/month = 13</td>
<td></td>
</tr>
</tbody>
</table>
Study III – Devinsky et al. (2017)

<table>
<thead>
<tr>
<th>Primary Endpoint</th>
<th>Secondary Endpoints</th>
</tr>
</thead>
</table>
| CBD = 38.9% ↓ \(p = 0.01\)
 • 12.4 to 5.9 seizures
 PBO = 13.3% ↓
 • 14.9 to 14.1 seizures | \(\geq 50\% \downarrow\) *in convulsive seizure freq.*
 CBD = 43% \(p = 0.08\)
 PBO = 27%
 \(\% \Delta \) *in total seizure frequency*
 CBD = 28.6% ↓ \(p = 0.03\)
 PBO = 9.0% ↓
 Improvement in GIC scale
 CBD = 37/60, 62%, \(p = 0.02\)
 PBO = 20/58, 34% |

Treatment-Related Adverse Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD = 53/86 (62%)</td>
<td>CBD 10 mg = 56/67 (84%)</td>
<td>CBD = 57/61 (93%)</td>
</tr>
<tr>
<td>PBO = 29/85 (34%)</td>
<td>CBD 20 mg = 77/82 (94%)</td>
<td>PBO = 44/59 (75%)</td>
</tr>
<tr>
<td></td>
<td>PBO = 55/76 (72%)</td>
<td></td>
</tr>
<tr>
<td>Common AE</td>
<td>Common AE</td>
<td>Common AE</td>
</tr>
<tr>
<td>• Diarrhea, vomiting</td>
<td>• Diarrhea, vomiting</td>
<td>• Diarrhea, vomiting</td>
</tr>
<tr>
<td>• ↓ appetite</td>
<td>• ↓ appetite</td>
<td>• ↓ appetite</td>
</tr>
<tr>
<td>• Somnolence</td>
<td>• Somnolence</td>
<td>• Fatigue, lethargy</td>
</tr>
<tr>
<td>• Pyrexia</td>
<td>• Pyrexia</td>
<td>• URTI</td>
</tr>
<tr>
<td>AE leading to withdrawal</td>
<td>AE leading to withdrawal</td>
<td>AE leading to withdrawal</td>
</tr>
<tr>
<td>CBD = 12</td>
<td>CBD 10 mg = 1</td>
<td>CBD = 8</td>
</tr>
<tr>
<td>PBO = 1</td>
<td>CBD 20 mg = 6</td>
<td>PBO = 1</td>
</tr>
<tr>
<td></td>
<td>PBO = 1</td>
<td></td>
</tr>
</tbody>
</table>

- Somnolence was greater with concomitant clobazam; higher incidence of ↑ liver enzymes occurred with concomitant valproate

Study Evaluations

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Adequate power achieved</td>
<td>• The sponsor (GW Pharmaceuticals) funded the study, supplied the drug and placebo; and assisted in data collection and writing of the studies</td>
</tr>
<tr>
<td>• Patient characteristics matching at baseline</td>
<td>• Poor ethnic diversity</td>
</tr>
<tr>
<td>• Sensitivity analyses of endpoints</td>
<td>• CBD was used as an add-on therapy, not stand-alone</td>
</tr>
<tr>
<td></td>
<td>• Patients or caregivers recorded #/type of seizures</td>
</tr>
<tr>
<td></td>
<td>• Small sample size</td>
</tr>
<tr>
<td></td>
<td>• Single dose of CBD was investigated in studies I/III</td>
</tr>
</tbody>
</table>

Pearls and Implications

• Patients in CBD groups were more likely to experience ↑ liver transaminases, esp. if taking valproate concurrently (in Study II, 20 mg/kg > 10 mg/kg)

• CBD inhibits CYP2C19 and ↑ levels of the N-desmethyl metabolite of clobazam, which may have contributed to CBD efficacy and somnolence

Package Insert

- Side effects include somnolence, ↓ appetite, diarrhea, transaminase elevations, fatigue, insomnia, infections
- Dosage adjustment recommended for hepatic impairment or concomitant valproate use
- Transaminase elevations are dose-dependent

<table>
<thead>
<tr>
<th>Hepatic Impairment</th>
<th>Starting Dosage</th>
<th>Maintenance Dosage</th>
<th>Maximum Recommended Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild</td>
<td>2.5 mg/kg twice daily</td>
<td>5 mg/kg twice daily</td>
<td>10 mg/kg twice daily</td>
</tr>
<tr>
<td></td>
<td>(5 mg/kg/day)</td>
<td>(10 mg/kg/day)</td>
<td>(20 mg/kg/day)</td>
</tr>
<tr>
<td>Moderate</td>
<td>1.25 mg/kg twice daily</td>
<td>2.5 mg/kg twice daily</td>
<td>5 mg/kg twice daily</td>
</tr>
<tr>
<td></td>
<td>(2.5 mg/kg/day)</td>
<td>(5 mg/kg/day)</td>
<td>(10 mg/kg/day)</td>
</tr>
<tr>
<td>Severe</td>
<td>0.5 mg/kg twice daily</td>
<td>1 mg/kg twice daily</td>
<td>2 mg/kg twice daily</td>
</tr>
<tr>
<td></td>
<td>(1 mg/kg/day)</td>
<td>(2 mg/kg/day)</td>
<td>(4 mg/kg/day)</td>
</tr>
</tbody>
</table>
Concomitant Use of

<table>
<thead>
<tr>
<th>Inhibitors of CYP3A4, CYP2C19</th>
<th>Employ This Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>↓ Dose of Epidiolex</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inducers of CYP3A4, CYP2C19</th>
<th>Employ This Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ Dose of Epidiolex</td>
<td></td>
</tr>
</tbody>
</table>

| Substrates of UGT1A9, UGT2B7, CYP2C8, CYP2C9, CYP2C19 (Clobazam) | Consider dose reduction of substrate |

- Also note: based on animal data, may cause fetal harm
WHAT ABOUT OTC CBD?
Legal Issues – The DEA

• September 28, 2018 – DEA placed Epidiolex® into Schedule V
 o Specifically, FDA-approved drugs that contain CBD derived from *cannabis* and ≤ 0.1% THC

• All other cannabis/cannabis derivatives are still Schedule I
 • Loop-hole: Agricultural Act of 2014, AKA “The Farm Bill”
 • Very gray area, lots of confusion

Kux, L. Schedules of Controlled Substances. DEA. Federal Register: Vol. 83, No. 189; 48950-48953
The 2014 Farm Bill

- Hemp and its derivatives (CBD) are legal (?) to sell in all 50 states if grown under a licensed state pilot program
 - Hemp – cannabis with < 0.3% THC
 - License requires partnership with state department of agriculture or university
 - Texas does not have a license to grow hemp
 - DEA currently states that parts of hemp plant (not the entire plant itself) are legal to extract and sell from, but impractical due to negligible amounts of cannabinoids
- 2018 Farm Bill – hoping to clear up discrepancies
Products on the Market

• Most CBD products on the market are not isolates
 • “Full spectrum CBD”, “Hemp extracts”
• There is no regulatory body that enforces quality assurance
• Miller et al. (2017) analyzed 87 CBD products from 31 companies available for online purchase

21.43% Of samples had detectable THC levels
 • Mean of 0.45 mg/mL

26.19% Over
42.85% Under

Bonn-Miller et al. JAMA. 2017. 318 (17): 1708-1709
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Epidiolex®</th>
<th>OTC Cannabidiol*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>100 mg/mL</td>
<td>66.66 mg/mL</td>
</tr>
<tr>
<td>Cost</td>
<td>~ $32,500/year</td>
<td>~ $13,650/year</td>
</tr>
<tr>
<td>Efficacy established?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Potency/purity guaranteed?</td>
<td>Yes, per FDA</td>
<td>No, private testing</td>
</tr>
<tr>
<td>Need a prescription?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Patents?</td>
<td>Yes, 5 “method of use”</td>
<td>No</td>
</tr>
</tbody>
</table>

*Online seller, $60 for 1000 mg (15 mL) bottle. Calculated using FDA-recommended maximum dosing of Epidiolex® for a 34-kg child.

Pipeline

- Epidiolex® for Tuberous Sclerosis (Phase 3)
- CBDV for Epilepsy (Phase 2)
- CBDV for Autism Spectrum Disorders (Phase 2)
- IV CBD for Neonatal Hypoxic-Ischemic Encephalopathy (Phase 1)
- THC + CBD for Glioblastoma (Phase 2)
- CBD for schizophrenia (Phase 2)
- THC + CBD (Sativex®) for MS Spasticity (Phase 3 in the U.S.)
Conclusions

• Cannabidiol (Epidiolex®) is the first naturally derived, FDA-approved Cannabis product available in the U.S., indicated for severe epileptic syndromes: LGS and DS

• Pharmacists should emphasize FDA approval of Epidiolex®

• Be able to counsel on Epidiolex®
 • GI upset – nausea, vomiting, diarrhea
 • Increased LFT’s – with valproate
 • Somnolence and sedation – especially with concomitant clobazam
 • DDI’s – inducers, inhibitors, and substrates of CYP enzymes and UGTs

• Pharmacists should additionally be able to address patient questions between OTC cannabidiol products and Epidiolex®
Acknowledgements

• Nathan D. Pope, Pharm.D., BCACP, FACA
• Collin Hovinga, PharmD, MS, FCCP
QUESTIONS?
EPI DIOLEX®:
CASHING IN THE CANNABIS RAIN CHECK?

Leila Petok
PGY-1 Community Pharmacy Resident
H-E-B Pharmacy/UT Austin
References

Appendices

Appendix A: Abbreviations

Appendix B: Patient and Caregiver Global Impression of Change Scale

Appendix C: Types of Epilepsy from the International League Against Epilepsy
Appendix A: Abbreviations

OTC = over-the-counter
TCA = tricyclic antidepressant
LGS = Lennox Gastaut Syndrome
DS = Dravet Syndrome
EEG = electroencephalogram
SCN1A = sodium channel, voltage gated, type I alpha subunit (gene)
FDA = (United States) Food and Drug Administration
mg = milligram
mL = milliliter
kg = kilogram
CBD = cannabidiol
THC = tetrahydrocannabinol
CB1/2 = Cannabinoid receptor type ½
PBO = placebo
AED = antiepileptic drug
CGIC = Caregiver Global Impression of Change scale
PGIC = Patient Global Impression of Change scale
AE = adverse effects
URTI = upper respiratory tract infection
IV = intravenous
CBDV = cannabidivarin
GI = gastrointestinal
DDI = drug-drug interactions
CYP = cytochrome P450 enzymes
LFTs = liver function tests
UGT = UDP-glucuronosyltransferase
Appendix B: Patient and Caregiver Global Impression of Change Scale

CGIC:
- Since your child started treatment, please assess the status of your child’s overall condition (comparing their condition now to their condition before treatment) using the scale below.

SGIC:
- Since you started treatment, please assess the status of your overall condition (comparing your condition now to your condition before treatment) using the scale below.

TABLE 2. CGI-I guidelines

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Very much improved—nearly all better; good level of functioning; minimal symptoms; represents a very substantial change</td>
</tr>
<tr>
<td>2</td>
<td>Much improved—notably better with significant reduction of symptoms, increase in the level of functioning but some symptoms remain</td>
</tr>
<tr>
<td>3</td>
<td>Minimally improved—slightly better with little or no clinically meaningful reduction of symptoms. Represents very little change in basic clinical status, level of care, or functional capacity</td>
</tr>
<tr>
<td>4</td>
<td>No change—symptoms remain essentially unchanged</td>
</tr>
<tr>
<td>5</td>
<td>Minimally worse—slightly worse but may not be clinically meaningful, may represent very little change in basic clinical status or functional capacity</td>
</tr>
<tr>
<td>6</td>
<td>Much worse—clinically significant increase in symptoms and diminished functioning</td>
</tr>
<tr>
<td>7</td>
<td>Very much worse—severe exacerbation of symptoms and loss of functioning</td>
</tr>
</tbody>
</table>

Appendix C: Types of Epilepsy from the International League Against Epilepsy