Techniques for Robustness & Threats to Inference: Inverse Probability Weighted Regression Adjustment

Selena Caldera
March 12, 2019

Using Inverse Probability Weighted Regression Adjustment to Estimate Unbiased Treatment Effects

IPWRA is one approach to estimate unbiased treatment effects when we have confounding.

We find this often with observational data – we observe some treatment but no randomization of assignment to treatment.

- Confounding due to selection bias
- Are selection characteristics observed in the data? If so, we can condition treatment on those characteristics to get an unbiased estimate of treatment effect

Conceptually, IP weighting:

1. Estimates selection to treatment (treatment model)
2. Predicts treatment for all observations
3. Assigns the inverse of probability of treatment for treated individuals AND the inverse probability of not being treated for control individuals
4. Re-estimates the outcome model using these new weights

The IP weights magnify treatment individuals who otherwise look like they would not have selected treatment and magnify control individuals who otherwise look like they would have selected treatment. We create counterfactuals where they are not observed in the data.

One important feature of IPWRA is **double robustness**. Even if one of the models (treatment or outcome) is mis-specified, the estimator is still consistent. You can get one wrong and still be right!

We look at how mother’s smoking affects a baby’s birth weight. Theory tells us that the following covariates are also associated with birth weight:

- mother’s age
- whether mother had a prenatal visit in the 1st trimester
- marital status of mother
- whether this is her first baby

We include these as covariates in the model of smoking status on baby’s birth weight.

```
. set more off
. global homedir  "C:\Users\selem\OneDrive\2018_19 PRC Stats Consulting"
. global logdir   "$homedir\log files"
. global datadir  "$homedir\data"
. global output   "$homedir\output"
. use "$datadir\cattaneo2.dta", clear
```

Our descriptive analysis of the data shows that mothers who smoke tend to be:

- younger
- have lower levels of educational attainment
- a smaller share of the mother’s who smoke are having their first baby
- a smaller share of the mother’s who smoke are married

Many of these selection characteristics might also influence baby’s weight at birth (confounding).
Estimate treatment model, generate predicted conditional probabilities, and generate IP weights separately (based on code from Hernan & Robins)

In this example we use a probit model that includes all the covariates in our outcome model plus mother’s age squared & mother’s education. Mother’s smoking status is the outcome.

```
. probit mbsmoke i.mmarried c.mage##c.mage i.fbaby medu
Iteration 0:   log likelihood =  -2230.7484
Iteration 1:   log likelihood =  -2042.6734
Iteration 2:   log likelihood =  -2040.5088
Iteration 3:   log likelihood =  -2040.5061
Iteration 4:   log likelihood =  -2040.5061

Probit regression                       Number of obs      =       4,642
                                           LR chi2(5)        =       380.48
                                           Prob > chi2       =       0.0000
                                           Log likelihood    =  -2040.5061
                                           Pseudo R2         =       0.0853

-------------------------------------------------------------------------------
     mbsmoke |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------|-----------------------------|-----------------------------|-----------------------------
    mmarried  |    -0.6485     .0527    -12.31   0.000    -0.7518    -0.5452
     married  |    -0.1744     .0352     4.95    0.000    -0.2435    -0.1054
        mage  |    -0.0033     .0006    -5.04    0.000    -0.0045    -0.0020
     c.mage#c.mage  |    -0.0033     .0006    -5.04    0.000    -0.0045    -0.0020
     fbaby  |    -0.2176     .0491     -4.43    0.000     -0.3138    -0.1213
     medu  |    -0.0864     .0099     -8.75    0.000    -0.1058    -0.0671
     _cons  |    -1.5583     .4512     -3.45    0.001    -2.4425    -0.6741
-------------------------------------------------------------------------------
```

Predict the conditional probability of smoking for each mother in the sample

```
. predict p_mbsmoke, pr
```

Now we generate the inverse probability weights as $P(T=1|\text{covariates})$ if $T = 1$ (mother is a smoker), and $1-P(T=1|\text{covariates})$ if $T = 0$ (mother is a nonsmoker)

```
. gen w=.
(4,642 missing values generated)
. replace w=1/p_mbsmoke if mbsmoke==1
   (864 real changes made)
. replace w=1/(1-p_mbsmoke) if mbsmoke==0
   (3,778 real changes made)
```

Check the balance of the covariates after weighting:

Check the mean of the weights; we expect it to be close to 2.0:

```
. summarize w
   Variable |       Obs        Mean    Std. Dev.   Min    Max
-------------|------------------|------------------|------------------|------------------|------------------|
            w |      4,642    1.980605     2.11765    1.007511    29.91177
```
Fit the outcome model using the inverse probability weights:

This creates a pseudo-population by averaging individual heterogeneity across the treatment and control groups.

We want heteroskedasticity-consistent SEs for our weighted estimators. Stata automatically calls the robust option when pweights are specified.

```
. regress bweight mbsmoke mage prenatal1 mmarried fbaby [pweight=w]
  (sum of wgt is  9.1940e+03)
Linear regression
  Number of obs      =      4,642
  F(5, 4636)        =      51.29
  Prob > F          =     0.0000
  R-squared         =     0.0549
  Root MSE          =     568.81

  ------------------------------------------------------------------------------
  |               Robust
  bweight |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
  -------------
  mbsmoke |  -228.3259   26.22851  -8.71   0.000     -279.7462   -176.9055
  mage    |  -1.167128   3.298776  -0.35   0.724     -7.634299    5.300043
  prenatal1 |  53.68661   26.84983   2.00   0.046     1.048178    106.3255
  mmarried |  143.6948   24.83004   5.79   0.000     95.01612    192.3735
  fbaby   |   -18.1539  30.27812  -0.60   0.549    -77.51345   41.20559
  _cons   |   3298.67  90.18191  36.58   0.000     3121.871    3475.47
  ------------------------------------------------------------------------------
```

```
. regress bweight mbsmoke mage prenatal1 mmarried fbaby
  Source |       SS           df       MS      Number of obs   =     4,642
  -------------
  Model |  89487999.5         5  17897599.9   Prob > F        =    0.0000
  Residual |  1.4654e+09     4,636  316090.646   R-squared       =    0.0576
  Total |  1.5549e+09     4,641  335032.156   Root MSE        =    562.22

  ------------------------------------------------------------------------------
  bweight |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
  -------------
  mbsmoke |  -226.9851   21.95345  -10.34   0.000     -270.0243   -183.9459
  mage    |  1.018963   1.736228   0.59   0.557     -2.38487    4.422796
  prenatal1 |  57.59001   22.48852   2.59   0.010     13.97169    101.2083
  mmarried |  154.4452   21.14817   7.30   0.000     112.9848    195.9057
  fbaby   |  -52.07058  17.68560  -2.94   0.003     -86.74277   -17.39839
  _cons   |   3245.509  46.50306   69.79   0.000     3154.341    3336.677
  ------------------------------------------------------------------------------
```
Use Stata’s teffects

Stata’s teffects ipwra command makes all this even easier and the post-estimation command, tebalance, includes several easy checks for balance for IP weighted estimators. Here’s the syntax:

teffects ipwra (ovar omvarlist [, omodel noconstant]) /// (tvar tmvarlist [, tmodel noconstant]) [if] [in] [weight] [, stat options]

Outcome models may be linear (default), logit, probit, poisson, heteroskedastic probit, or fractional logit/probit. Treatment models may be logit, probit, heteroskedastic probit.

```
. teffects ipwra (bweight mage prenatal1 mmarried fbaby) ///
   (mbsmoke mmarried c.mage#c.mage fbaby medu, probit), aequations ate
```

| Iteration 0: | EE criterion = 9.416e-21 |
| Iteration 1: | EE criterion = 6.706e-26 |

Treatment-effects estimation

Coef.	Std. Err.	z	P>	z		[95% Conf. Interval]	
ATE	mbsmoke	-229.9671	26.62668	-8.64	0.000	-282.1544	-177.7798
POmean	mbsmoke	3403.336	9.57126	355.58	0.000	3384.576	3422.095
OME0	mage	2.893051	2.134788	1.36	0.175	-1.291056	7.077158
	prenatal1	67.98549	28.78428	2.36	0.018	11.56933	124.4017
	mmarried	155.5893	26.46903	5.88	0.000	103.711	207.4677
	fbaby	-71.9215	28.39317	-3.53	0.000	-111.8914	-31.95162
	_cons	3194.808	55.04911	58.04	0.000	3086.913	3302.702
OME1	mage	-5.068833	5.954425	-0.85	0.395	-16.73929	6.601626
	prenatal1	34.76923	43.18534	0.81	0.421	-49.87248	119.4109
	mmarried	124.0941	48.29775	2.58	0.002	45.11193	203.0762
	fbaby	39.89692	56.82072	0.70	0.483	-71.46966	151.2635
	_cons	3175.551	153.8312	20.64	0.000	2874.047	3477.054

These results are close but differ slightly from the ones obtained above using Hernan & Robins’s code. Why? Teffects estimates treatment-specific predicted outcomes (POs) for each subject then computes the means of these POs. These are contrasted to estimate the average treatment effect and average treatment effect on the treated.
Let's make sure the treatment model balanced the covariates. Our treatment effects are only accurate if balance is achieved.

. tebalance summarize

Covariate balance summary

<table>
<thead>
<tr>
<th></th>
<th>Raw</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of obs</td>
<td>4,642</td>
<td>4,642.0</td>
</tr>
<tr>
<td>Treated obs</td>
<td>864</td>
<td>2,290.8</td>
</tr>
<tr>
<td>Control obs</td>
<td>3,778</td>
<td>2,351.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Raw</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized differences</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raw</td>
<td>Weighted</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>mmmarried</td>
<td>-.5953009</td>
<td>-.0073683</td>
</tr>
<tr>
<td>mage</td>
<td>-.300179</td>
<td>.0363272</td>
</tr>
<tr>
<td>mage#mage</td>
<td>-.3028275</td>
<td>-.0300786</td>
</tr>
<tr>
<td>fbaby</td>
<td>-.1663271</td>
<td>.0027075</td>
</tr>
<tr>
<td>medu</td>
<td>-.5474357</td>
<td>-.1042143</td>
</tr>
</tbody>
</table>

. foreach var of varlist mmmarried mage fbaby medu {
 . tebalance density `var', saving("$output\balance_`var'.gph", replace)
 .}

(file C:\Users\selen\OneDrive\2018_19 PRC Stats Consulting\output\balance_mmarried.gph saved)
(file C:\Users\selen\OneDrive\2018_19 PRC Stats Consulting\output\balance_mage.gph saved)
(file C:\Users\selen\OneDrive\2018_19 PRC Stats Consulting\output\balance_fbaby.gph saved)
(file C:\Users\selen\OneDrive\2018_19 PRC Stats Consulting\output\balance_medu.gph saved)
Finally, we can run an overidentification test to check our findings from the diagnostics above.

```
.tebalance overid, nolog
```

Overidentification test for covariate balance
H0: Covariates are balanced:

```
    chi2(6)  =  43.3799
Prob > chi2 =  0.0000
```

It looks like we need to revisit our treatment model. There are options for using stabilized and trimmed IP weights that can account for the influence of outlier observations in your data. This should, however, get you started with exploring IPWRA.

Resources: A pre-publication version of *Causal Inference* plus SAS, Stata, R, and Python code for all the examples can be found here: https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/. This on-line version is just generally an amazing methods resource!

See Morgan & Winship, *Counterfactuals and Causal Inference*, Ch. 6 for a more detailed discussion of double robustness and IPWRA.