This appendix sets up a discrete version of the model where both WTP for quality and WTP for status utility are independently distributed. This model is briefly discussed towards the end of section 6 (footnote 18) in body of the paper.

Let \(\nu^i \) reflect WTP for quality, distributed by pmf \(f_\nu (0) = f_\nu (1) = \frac{1}{2} \). Individuals, unlike the baseline scenario, also vary in their valuation of social status, where this preference is formally denoted as \(w^i \in \{ \frac{1}{2}, \frac{1}{2} \} \). \(w^i \) is distributed by pmf \(f_w (w) = f_w (\frac{1}{2}) = \frac{1}{2} \) and is independent of \(\nu^i \), implying that \(f_{\nu,w} (\nu^i, w^i) = \frac{1}{4} \) \(\forall \{ \nu^i, w^i \} \in \{ \{0, 1\} \times \{\frac{1}{2}, \frac{1}{2}\} \} \).

To fully characterize each consumer’s purchase timing problem, we first denote each \(\{\nu^i, w^i\} \) pair type: \(\{\nu^1, w^1\} = \{0, \frac{1}{2}\} \), \(\{\nu^2, w^2\} = \{0, \frac{1}{2}\} \), \(\{\nu^3, w^3\} = \{1, \frac{1}{2}\} \), and \(\{\nu^4, w^4\} = \{1, \frac{1}{2}\} \). Here, each consumer \(i = 1, \ldots, 4 \) optimizes the following:

\[
\begin{align*}
(1a) & \quad \max_{x_1^i, x_2^i} x_1^i [U(\nu^i, w^i, 1)] + x_2^i [U(\nu^i, w^i, 2)] + (1 - x_1^i - x_2^i) [U(\nu^i, w^i, N)] \\
(1b) & \quad \text{s.t. } x_1^i + x_2^i \leq 1
\end{align*}
\]

where

\[
\begin{align*}
(2a) & \quad U(\nu^i, w^i, 1) = \nu^i + (1 - \delta) \lambda w^i \left(\frac{\nu^i + \sum_{j \in C_{1}^{-i}} \nu^j}{1 + \sum_{j \in C_{1}^{-i}} 1} \right) + \delta \lambda w^i \left(\frac{\nu^i + \sum_{j \in C_{2}^{-i}} \nu^j}{1 + \sum_{j \in C_{2}^{-i}} 1} \right) - P_1 \\
(2b) & \quad U(\nu^i, w^i, 2) = \delta \nu^i + (1 - \delta) \lambda w^i \left(\frac{\nu^i + \sum_{j \in C_{1}^{-i}} \nu^j}{1 + \sum_{j \in C_{1}^{-i}} 1} \right) + \delta \lambda w^i \left(\frac{\nu^i + \sum_{j \in C_{2}^{-i}} \nu^j}{1 + \sum_{j \in C_{2}^{-i}} 1} \right) - P_2 \\
(2c) & \quad U(\nu^i, w^i, N) = (1 - \delta) \lambda w^i \left(\frac{\nu^i + \sum_{j \in C_{1}^{-i}} \nu^j}{1 + \sum_{j \in C_{1}^{-i}} 1} \right) + \delta \lambda w^i \left(\frac{\nu^i + \sum_{j \in C_{2}^{-i}} \nu^j}{1 + \sum_{j \in C_{2}^{-i}} 1} \right)
\end{align*}
\]
and

\[(3a) \quad C_{k}^{-i} = \{ j \neq i : x_{t}^{j} = 1 \text{ for some } t \leq k \} \]

\[(3b) \quad C_{-k}^{-i} = \{ j \neq i : x_{t}^{j} = 0 \text{ for all } t \leq k \} \]

The producer optimally responds to the above preferences with price-skimming sequence \(\{P_{1}^{*}, P_{2}^{*} (P_{1}^{*})\} \):

\[(4a) \quad \max_{P_{1}} \left(P_{1} - \frac{k}{2}Q^{2} \right) \sum_{i=1}^{4} x_{1}^{i} + \delta \left[\left(P_{2}^{*} (P_{1}) - \frac{k}{2}Q^{2} \right) \sum_{i=1}^{4} x_{2}^{i} \right] \]

\[(4b) \quad \text{s.t.} \quad P_{2}^{*} (P_{1}) = \arg \max_{P_{2}} \left(P_{2} (P_{1}) - \frac{k}{2}Q^{2} \right) \sum_{i=1}^{4} x_{2}^{i} \]

A full characterization of the producer’s pricing solution proved intractable. We instead chose four values of cost parameter \(k \) which allow, but do not necessarily guarantee, sales to occur in both periods. Pricing sequences are listed below for each sampled value of \(k \).

Proposition 1 does not hold over the entire domain, as \(\frac{\partial}{\partial \lambda} P_{2}^{*} (P_{1}^{*}) > 0 \) for the pricing sequences \(\{P_{1}^{*} = \frac{3Q(1-\delta)+2\lambda(1-\overline{\mu})(1-\delta)+2\delta\overline{\mu}}{3}, P_{2}^{*} (P_{1}^{*}) = \frac{2\lambda\overline{\mu}}{3} \} \) and \(\{P_{1}^{*} = \frac{2Q(1-\delta)+\lambda\overline{\mu}(1-\delta)+\lambda \delta(1-\overline{\mu})}{2}, P_{2}^{*} (P_{1}^{*}) = \frac{\lambda(1-\overline{\mu})}{2} \} \). Notably, the producer sells to \(\{\nu^{2}, w^{3} \} = \{1, \overline{\mu} \} \) and \(\{\nu^{4}, w^{4} \} = \{1, \overline{\mu} \} \) in \(t = 1 \) under both price schemes. In the final period, the firm sells to \(\{\nu^{2}, w^{2} \} = \{0, \overline{\mu} \} \) when \(\{P_{1}^{*} = \frac{3Q(1-\delta)+2\lambda(1-\overline{\mu})(1-\delta)+2\delta\overline{\mu}}{3}, P_{2}^{*} (P_{1}^{*}) = \frac{2\lambda\overline{\mu}}{3} \} \) and both \(\{\nu^{1}, w^{1} \} = \{0, \overline{\mu} \} \) and \(\{\nu^{2}, w^{2} \} = \{0, \overline{\mu} \} \) for \(\{P_{1}^{*} = \frac{2Q(1-\delta)+\lambda\overline{\mu}(1-\delta)+\lambda \delta(1-\overline{\mu})}{2}, P_{2}^{*} (P_{1}^{*}) = \frac{\lambda(1-\overline{\mu})}{2} \} \). While neither \(i = 1, 2 \) place a premium on quality, \(\{\nu^{2}, w^{2} \} \) greatly cares about social status; here, the second period cohort values status at least as much, if not more than, the early buyer cohort. This drives the result that \(\frac{\partial}{\partial \lambda} P_{2}^{*} (P_{1}^{*}) > 0 \), although it is not clear whether this occurs in equilibrium when both \(\nu^{i} \) and \(w^{i} \) are continuously distributed.