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A novel covariance matching technique is proposed for estimating the states and unknown

entries of the process and measurement noise covariance matrices for additive white Gaus-

sian noise elements in a linear Kalman filter. Under this assumption of detectability (i.e.,

unobservable modes remain stable), the stability and convergence properties of the covariance

matching Kalman filter are established. It is shown that the measurement covariance matrix

cannot be unambiguously estimated if the measurement model contains linearly dependent

measurements. Monte Carlo simulations evaluate the numerical properties of the proposed

algorithm.

I. Introduction

The Kalman filter is an optimal estimation algorithm in the mean squared sense for a linear system with additive

white Gaussian noises in the process and measurement channels [1, 2]. However, optimality is lost when one or

more of the underlying assumptions are violated as the case with: (a) nonlinearities in state or measurement model;

(b) non-Gaussian or correlated noise sequences; and (c) white Gaussian noise with inaccurate covariance matrices.

Accordingly, nonlinear filtering and estimation algorithms have been extensively studied in the literature [3–6]. The

issue of non-Gaussian noises has traditionally been handled by artificially inflating the covariance matrices. Instead of

these ad hoc inflation techniques, more sophisticated algorithms have also been developed [7–9]. The case when the

noise covariance matrices are unknown has been shown to cause filter divergence [10–15]. These challenges associated

with filter divergence provided motivation for the development of adaptive filtering algorithms that simultaneously

estimate the system states along with the covariance matrices. Although several of these adaptive formulations have

found their application in many individual settings, rigorous theoretical foundations are usually absent and if present, are

accompanied by restrictive assumptions such as steady state conditions, invertibility of the state transition and observation

matrix or availability of the true state estimate. Addressing this gap in the existing literature, this paper presents an

adaptive covariance matching technique for detectable linear time-invariant (LTI) systems based on correlation methods

to recursively estimate the state vector and certain number of unknown elements within both the noise covariance
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matrices.

An early study of adaptive algorithms to estimate noise covariance matrices is summarized in [16]. Broadly

speaking, there exist four approaches to adaptive filtering, namely, Bayesian methods, maximum likelihood estimation,

correlation methods, and covariance matching techniques. The algorithm presented in this paper adopts concepts based

on correlation methods, specifically in terms of forming a linear time series using the measurement sequence. We also

embrace certain ideas from covariance matching techniques by way of formally enforcing covariance consistency. It

should be noted that for LTI systems, steady state convergence of an adaptive filter using the innovation sequence for

estimation of the noise covariance matrix was originally reported in [17]. However, the relaxation of certain assumptions

central to [17] such as steady-state conditions, observability, and invertibility of the state transition matrix makes our

result much stronger. Moreover, technical insufficiencies concerning the whiteness condition in [17] as clearly pointed

out in [10, 18] play no role whatsoever in our formulation and its underlying convergence analysis. Specific differences

between [17] and our work are described in further detail in the sequel. An approach to estimate only the process noise

covariance using a backward shift operator is presented in [19]. This method uses a left co-prime factorization which is

either not guaranteed to exist or can be difficult to analytically calculate. H∞ filtering is used to estimate the statistics

of the noises in [20]. This approach can be classified as offline since it uses the H∞ filter estimate at future times to

calculate the estimate of covariance matrices. The approach given in [21] uses linear regression to derive a robust

Kalman filter. Our proposed algorithm significantly extends the work of [22] by way of providing rigorous convergence

guarantees for both the state and covariance estimates subject to satisfaction of the detectability condition. Moreover,

our result provides the explicit characterization of necessary conditions for estimability of the process and measurement

noise covariance matrices.

A recent survey of covariance estimation results for LTI systems using correlation methods can be found in [23].

Standing out from among the various methods surveyed in [23] is the measurement averaging correlation method

(MACM) which forms a stacked measurement model wherein the observability matrix is referred to as the observation

matrix. This paper shares some of the algebraic features of the MACM approach wherein we too construct a measurement

stack as part of our overall formulation. Another approach to estimate the process noise covariance matrix of LTI

systems assuming a left-invertible observation matrix is presented in [24]. In this case, a linear stationary time series is

formed by inverting the observation matrix and the covariance is estimated by squaring the sequence. A similar method

which assumes full column rank of the observation matrix is presented in [25].

More recently, a covariance estimation result is presented in [26] for linear time-varying (LTV) systems using the

linear time series construction. Specifically, in [26], a stacked measurement model is formed to estimate the N-step

predicted measurement and the measurement prediction error is shown to form a linear time series. The sample

covariance of the linear time series is used to calculate estimates of the covariance matrices. Our paper also formulates

a time series with the important distinction that it uses minimal number of measurements required. Moreover, compared
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to [26], we take a significant next step – that of simultaneously estimating the state of the system. A major contribution

of this work is a proof of convergence for the state estimator. For purposes of calculating the covariance estimate using

the covariance of the time series, full column rank of a certain coefficient matrix in assumed in [26]. In this paper, we

mathematically characterize how this full column rank condition corresponds to certain intrinsic physical properties of

the system pertaining to estimability.

A preliminary version of the filter derived here was reported earlier by the authors as a conference paper in [27].

In that prior work, full observability for the system was assumed and only one of either the process or measurement

noise covariance matrix was to be estimated given the other covariance matrix. In this paper, we estimate a set of

unknown elements which can be from either the process or measurement noise covariance matrices while also relaxing

the observability requirement to uniform detectability. Weakening the observability assumption to detectability allows

for applicability of our results to a larger class of systems since some states of a detectable system are not observable

while remaining stable.

The paper is organized as follows. The baseline Kalman filter, the problem statement, and the various technical

assumptions are listed in section II. A linear stationary time series is then derived using the modified stacked measurement

model. The filter is subsequently formulated in section III. In section IV, we present stability results and the stochastic

convergence analysis. The estimability of noise covariance matrices is analyzed in section V. Having presented our

main result, further discussion on the significance of our result and its contrast with related past literature is presented

in section VI. A simulated example is described in section VII to study the effectiveness of the proposed algorithm.

Finally, section VIII presents some concluding remarks to motivate fruitful directions for future research.

II. Problem Statement
An LTI system is considered of the form

xk+1 = F̃ xk + w̃k

yk = H̃ xk + vk




(1)
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wherein w̃k and vk are the process and measurement noises. We assume that the pair (F̃, H̃) is uniformly detectable.

Hence, there exists an invertible state transformation matrix W such that the system can be transformed into

zk+1 =



F11 0l×s

F21 F22





zO
k

zUO
k



+W w̃k

yk =

[
H1 0p×s

] 

zO
k

zUO
k



+ vk




(2)

wherein, the state and the transformed state at time tk are respectively denoted by xk and zk ∈ Rn. The integers l and s

are the dimensions of the observable (O) and unobservable (UO) subspace of the state respectively such that s + l = n.

Accordingly, the observable state zO
k
∈ Rl and the unobservable state zUO

k
∈ Rs . The measurement at time tk is given

by yk ∈ R
p. The pair (F11, H1) is uniformly observable and F22 is stable (i.e. all eigenvalues within the unit sphere).

The matrix W is such that zk = W xk and we define wk = W w̃k =

[
wO
k

T
wUO
k

T

]T
to be the transformed process noise.

The transformed state transition matrix is given by

F , W F̃W−1 =



F11 0l×s

F21 F22



(3)

and the observation matrix is defined as

H , H̃W−1 =

[
H1 0p×s

]
. (4)

The process noise wk ∈ R
n and the measurement noise vk ∈ Rp are white Gaussian and uncorrelated with each other.

The transformed state at time t0 is denoted by z0. Hence, wk ∼ N (0n×1,Q) and vk ∼ N (0p×1, R), wherein Q can be

partitioned into observable and unobservable subspaces as Q =



QO QO,UO

QUO,O QUO



.
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The baseline Kalman filter equations for known Q and R matrices are given by [28]:

ẑO
k |k−1 = F11 ẑO

k−1 |k−1

ẑO
k |k

= ẑO
k |k−1 + Kk (yk − H1 ẑO

k |k−1)

Pk |k−1 = F11Pk−1 |k−1FT
11 +QO

Kk = Pk |k−1HT
1 (H1Pk |k−1HT

1 + R)−1

Pk |k = Pk |k−1 − KkH1Pk |k−1




(5)

wherein Kk is the Kalman gain, Pk |k−1 and Pk |k are the state error covariance matrices after the prediction and update step

respectively. The baseline Kalman filter equations contain the observable part of the Q matrix only. The unobservable

state zUO
k

cannot be estimated as the system is not fully observable. The noise covariance matrices Q and R are constant

for all time tk . If the process and measurement noises are white Gaussian, the baseline Kalman filter in (5) is optimal in

the mean squared error sense and the state error covariance Pk |k converges to a steady-state value [29].

A. Problem Description

Given full knowledge of the system matrices (F11, F21, F22, H1, Q and R), the Kalman filter is the best estimator of

the system given by (1). However, most practical applications approximate the values of Q and R. Thus, the problem

addressed in this paper can be stated as follows: given F11, F21, F22, H1, and measurements yk , we formulate an adaptive

algorithm to estimate both the state xk and unknown elements of R and Q matrices subject to certain restrictions on the

number of elements that can be estimated as stated through the following assumptions.

B. Assumptions

The following assumptions are made.

Assumption 1 The matrices forming the transformed state transition matrix, i.e., F11, F21, and F22, and the observation

matrix H1 are assumed to be completely known. The measurement sequence yk is also assumed to be accessible.

Assumption 2 It is assumed that the matrices F and H, the process noise covariance matrix Qk = Q � 0, and the

measurement covariance matrix Rk = R � 0 are constant with time.

Assumption 3 The pair (F̃, H̃) is assumed completely uniformly detectable, i.e., the pair (F11, H1) is uniformly

observable and the matrix F22 has all its eigenvalues inside the unit circle in the complex plane. The pair (F,Q
1
2 ) is

assumed to be stabilizable.

Remark 1 The preceding assumption ensures that the baseline Kalman filter given in (5) converges to a steady

state [30].
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Assumption 4 The pair (F,Q
1
2 ) has no unreachable nodes on the unit circle in the complex plane.

Remark 2 This assumption along with the others stated above ensure the existence of a stabilizing solution for the

algebraic Riccati equation [10, 31].

There is an additional assumption that is required for our proposed result to hold which is stated in the sequel.

III. Filter Derivation
The filter is derived in 3 subsections, namely, formulating modified stacked measurement model, forming a linear

strictly stationary time series and finally, estimating the covariance to calculate the unknown elements.

A. Modified measurement model

For the n-dimensional discrete-time stochastic linear system given by (1), the observability matrix is defined by

O =



HFn−1

HFn−2

...

HF

H



(6)

Since the (F, H) pair is detectable, it follows from assumption 3 that O is column-rank deficient. However, since every

system given by (1) can be transformed into one given by (2), the observability matrix for the transformed system is

given by

O =



H1Fn−1
11 0p×s

...
...

H1F11 0p×s

H1 0p×s



=

[
O1 0np×s

]
(7)
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where the O1 corresponds to the observability matrix of the pair (F11, H1). In this paper, 0a×b is matrix of zeros with

size a × b for some positive integers a and b. Without loss of generality, we can state that

∃ m ∈ N, 1 ≤ m ≤ n : Mo =



H1Fm−1
11

...

H1F11

H1



: rank (Mo) = l (8)

wherein Mo ∈ R
mp×l . This follows from the definition of detectability for LTI systems. The value of m corresponds to

the buffer size, i.e., the number of past measurements that are stored in memory at each time step. In order to minimize

the memory storage, a smallest such m which satisfies the rank condition. However, one may choose a larger value of m

so that the matrix M0 is well conditioned. Using this result, a stacked measurement model is formulated by stacking

precisely m measurements,

zk+1 = Fzk + wk (9)

zk+2 = F2zk + Fwk + wk+1 (10)

zk+i = Fi zk +
j=i−1∑
j=0

F jwk+i−1−j (11)

Now, the measurement equations for the corresponding times are given by

yk = Hzk + vk (12)

yk+1 = HFzk + Hwk + vk+1 (13)

yk+2 = HF2zk + HFwk + Hwk+1 + vk+2 (14)

yk+i = HFi zk +
j=i−1∑
j=0

HFk+i−1−jwk+j + vk+i (15)
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wherein i = 0, 1, . . . ,m − 1. Coagulating all the equations and the measurements for m time steps, we get



yk+m−1

yk+m−2

...

yk

︸     ︷︷     ︸
,Yk

=



HFm−1

HFm−2

...

H

︸     ︷︷     ︸
O

zk +



H HF HF2 · · · HFm−2

0p×n H HF · · · HFm−3

...
...

. . .
...

...

0p×n 0p×n 0p×n 0p×n H

0p×n 0p×n 0p×n 0p×n 0p×n





wk+m−2

wk+m−3

...

wk



+



vk+m−1

vk+m−2

...

vk

︸     ︷︷     ︸
,Vk

(16)

Rewriting (16) using the detectability definition and eliminating the unobservable states, we get

Yk =



H1Fm−1
11 0p×s

H1Fm−2
11 0p×s

... 0p×s

H1 0p×s

︸                ︷︷                ︸
O



zO
k

zUO
k



+



[
H1 0p×s

] [
H1F11 0p×s

]
· · ·

[
H1Fm−2

11 0p×s

]

0p×n

[
H1 0p×s

]
· · ·

[
H1Fm−3

11 0p×s

]

...
...

. . .
...

0p×n 0p×n 0p×n

[
H1 0p×s

]

0p×n 0p×n 0p×n 0p×n





wO
k+m−2

wUO
k+m−2

wO
k+m−3

...

wUO
k



+ Vk (17)

Yk = MozOk +



H1 H1F11 · · · H1Fm−2
11

0p×l H1 · · · H1Fm−3
11

...
...

. . .
...

0p×l 0p×l 0p×l H1

0p×l 0p×l 0p×l 0p×l

︸                                      ︷︷                                      ︸
,Mw



wO
k+m−2

wO
k+m−3

...

wO
k

︸     ︷︷     ︸
,WO

k

+Vk . (18)

Writing the modified measurement equation at the next time step, we get

Yk = MozOk + MwWO
k + Vk (19)

Yk+1 = MozOk+1 + MwWO
k+1 + Vk+1 (20)
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B. Formulating linear stationary time series

Since, the system is detectable, the matrix Mo is full column rank and hence its pseudo-inverse is unique and is

defined by M†o = (MT
o Mo)−1(M)To . Projecting (19) and (20) onto the state space, we get

M†oYk = zOk + M†o MwWO
k + M†oVk (21)

M†oYk+1 = zOk+1 + M†o MwWO
k+1 + M†oVk+1 (22)

Eliminating the observable state zO
k
by subtracting (21) from (22), we form a time series given by

M†oYk+1 − F11 M†oYk︸                    ︷︷                    ︸
,Zk

= wO
k + M†o MwWO

k+1 − F11 M†o MwWO
k︸                                         ︷︷                                         ︸

,Wk

+M†oVk+1 − F11 M†oVk︸                   ︷︷                   ︸
,Vk

(23)

whereinZk ,Wk andVk are concatenated of the measurement sequence, the process noise and the measurement noise

respectively at different times. Although there is an abuse of notation in using the subscript k here, the actual time

histories of the noise and measurement sequences is clearly specified in (16).

We will now write theWk andVk as a co-efficient matrix multiplied by a concatenated vector of noise terms

Wk = wO
k + M†o MwWO

k+1 − F11 M†o MwWO
k (24)

Wk =
[ [

M†o Mw Il×l

]
−

[
0l×l F11 M†o Mw

] ]

︸                                                ︷︷                                                ︸
,A



wO
k+m−1

wO
k+m−2

...

wO
k



(25)

Let A =
[
Am Am−1 · · · A1

]
, (26)

wherein, the matrix Il×l is the identity matrix of dimension l . The sequenceWk and its covariance can be written as

follows.

Wk = A1wk + A2wk+1 + · · · + Amwk+m−1 (27)
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The sequenceVk and its covariance can be expressed in a similar way,

Vk = M†oVk+1 − F11 M†oVk (28)

Vk =
[ [

M†o 0l×p

]
−

[
0l×p F11 M†o

] ]

︸                                        ︷︷                                        ︸
,B ∈Rl×(m+1)p



vk+m

vk+m−1

...

vk



(29)

Let B =
[
Bm Bm−1 · · · B0

]
(30)

Vk = B0vk + B1vk+1 + · · · + Bmvk+m (31)

C. Estimating the covariance matrices

Since the white Gaussian noise sequences wO
k
and vk are both independent and identically distributed (i.i.d.), the

sequenceZk , which is a function of the measurements, is a zero mean strictly stationary time series with these noise

terms as inputs. Therefore, the covariance ofZk is given by

Cov(Zk ) = Cov(Wk ) + Cov(Vk ). (32)

Writing down the expressions for the covariances in (32) using (27) and (31), we get

Cov(Wk ) = A1QO AT
1 + · · · AmQO AT

m (33)

Cov(Vk ) = B0RBT
0 + · · · BmRBT

m (34)

Note that the covariance matrices are constant for all time. SinceZk is a function of the measurements, its covariance

can be estimated using the following unbiased estimator Λk .

Λk =
1
k

k∑
i=1
ZiZ

T
i (35)

In order to calculate the covariance recursively, the following recursive estimator is used with Λ0 = 0,

Λk =
k − 1

k
Λk−1 +

1
k
ZkZ

T
k (36)
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Note that first m measurements are used to get the first estimate of the covariance matrices. In order to estimate the

unknown elements of the covariance matrices, Cov(Zk ) is replaced with its estimator Λk . The entire equation is

then vectorized and the right hand side is split into a known part Θknown and a product of matrix S and a vector of

concatenated unknown elements to be estimated θ̂k .

vec(Λk ) = Θknown + Sθ̂k (37)

The S matrix here is constructed using the matrices Ai and Bi from (27) and (31). We are now ready to state our final

assumption.

Assumption 5 The matrix S used in (37) has full column rank.

This assumption ensures the estimability of the unknown elements in the noise covariance matrices Q and R. This is

well in line with a similar assumption was made about the number of unknown elements in the Q matrix by Mehra [17].

The implications of this assumptions are discussed in further detail in section V. Hence, the unknown elements are

calculated at each time using

θ̂k = S†(vec(Λk ) − Θknown) (38)

wherein S† = (ST S)−1ST is the unique pseudo-inverse. This is a generalization of the case handled in our previous

work [27]. It is clear that the estimability of the unknown elements depends on whether or not S is full column rank.

However, since S is a constant matrix depending only on the state transition matrix F and the observation matrix H,

it can be precalculated and the bounds on the number of unknown elements or the conditions for estimability of the

covariance matrices can be checked. This analysis is performed in section V.

It is noteworthy that this algorithm can incorporate linear constraints between the elements of the unknown matrix.

For example, if two of the elements of the unknown covariance matrix are known to be equal even though their value is

unknown, the two unknowns can be denoted by the same variable while splitting the equation into known and unknown

parts as in (37).

The special cases when only one of R or QO is unknown is given by

Λk − Cov(Wk ) = B0 R̂kBT
0 + · · · Bm R̂kBT

m. (39)
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Vectorizing the above equation (denoted vec(·)), let vec(Λk − Cov(Wk )) , Ur
k
, we get

Ur
k = vec(B0 R̂kBT

0 + · · · Bm R̂kBT
m) (40)

Ur
k = (B0 ⊗ B0 + · · · Bm ⊗ Bm)︸                           ︷︷                           ︸

,T1

vec(R̂k ) (41)

vec(R̂k ) = T†1 Ur
k (42)

wherein, ‘⊗’ is the Kronecker product. We assume that the matrix T1 has full column rank.

For unknown QO case, we formulate a similar equation,

Λk − Cov(Vk ) = A1Q̂O
k AT

1 + · · · AmQ̂O
k AT

m. (43)

Let vec(Λk − Cov(Vk )) , Uq
k
. Hence, vectorizing the above equation, we get

Uq
k
= vec(A1Q̂O

k AT
1 + · · · AmQ̂O

k AT
m) (44)

Uq
k
= (A1 ⊗ A1 + · · · Am ⊗ Am)︸                           ︷︷                           ︸

,T2

vec(Q̂O
k ) (45)

Assuming that T2 has full column rank, the estimate Q̂O
k
is given by

vec(Q̂O
k ) = T†vec(Uq

k
). (46)

D. Algorithm outline

The pseudo-code of the algorithm is summarized in Algorithm 1. Note that since the covariance matrices

estimated using the measurements use the vec(·) operation, they may not positive definite due to the randomness in the

measurements. A simple condition check is embedded into the algorithm which ensures positive definiteness of the

estimated covariance matrices.

IV. Convergence Analysis for noise covariance matrices
This section analyzes the stability of the algorithm under the stated assumptions. The convergence of the covariance

estimates to their true values are investigated first. Then, the stability of the state error covariance matrix sequences is

evaluated and compared to the state error covariance of the baseline Kalman filter.

12



Algorithm 1 The adaptive Kalman filter

Initialization: F11, F21, F22, H1, ẑO0 , P0, Cov(Z)0 = 0
Input: measurement sequence {yk }
Output: state estimate { ẑO

k
}, {Q̂O

k
}, {R̂k }

for k = 1 to n do
Using {yk } calculate Yk {(16)}
Using Yk calculateZk{(23)}
UsingZk calculate Λk{(36)}
Using Λk calculate R̂k and Q̂O

k
{(38)}

if R̂k � 0 then
R̂k = R̂k−1

end if
if Q̂O

k
� 0 then

Q̂O
k
= Q̂O

k−1
end if
ẑO
k |k−1 = F11 ẑO

k−1 |k−1
ẑO
k |k
= ẑO

k |k−1 + Kk (yk − H1 ẑO
k |k−1)

Pk |k−1 = F11Pk−1 |k−1FT
11 + Q̂O

k

Kk = Pk |k−1HT
1 (H1Pk |k−1HT

1 + R̂k )−1

Pk |k = Pk |k−1 − KkH1Pk |k−1
end for

A. Convergence of noise covariance

Substituting the values ofWk andVk using (27) and (31), we get,

Zk =

m∑
i=1

Aiw
O
k+i−1 +

m∑
i=0

Bivk+i (47)

The above equation is a linear strictly stationary time series because of the zero mean, white Gaussian, and uncorrelated

noise assumptions in place. Consider the autocovariance function of zero mean time seriesZk given by

C(k, k + τ) B E[ZkZ
T
k+τ]. (48)

If |τ | > m, C(k, k + τ) = 0. Hence, the autocovariance function C(k1, k2) decays to 0 as k1 and k2 grow farther away

from each other. Hence, the central limit theorem for linear stationary time series applies here which uses the weak law

of large numbers [32]. This theorem ensures an element-wise convergence given by

√
k{Ĉ(k, k) − C(k, k)}i j

D
−→ N (0,Ωi j ) (49)

wherein, Ĉ(k, k) is equal to the Λk calculated recursively in (36), the subscript i j denotes the element corresponding

to the ith row and j th column of the matrix and the D signifies convergence in distribution. This result motivates the
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following convergence,

∀ε > 0, Pr (|{Ĉ(k, k) − C(k, k)}i j | > ε )
k→∞
−→ 0 (50)

The rate of convergence is directly proportional to k−
1
2 for all i and j . Using (38) and the existence of the pseudo-inverse

for S matrix, we conclude that

∀ε > 0, Pr (|{θ̂k − θ}i | > ε )
k→∞
−→ 0 (51)

wherein θ is the vector of true values of the unknown elements. Hence, the convergence of the covariance matrices is

given by

∀ε > 0, Pr (|{Q̂O
k −QO}i j | > ε )

k→∞
−→ 0, (52)

∀ε > 0, Pr (|{R̂k − R}i j | > ε )
k→∞
−→ 0 (53)

where i and j correspond to the unknown elements of the covariance matrix. A similar convergence holds for

autocovariance function with a lag τ , 0,

∀ε > 0, Pr ( |{Ĉ(k, k + τ) − C(k, k + τ)}i j > ε )
k→∞
−→ 0 (54)

wherein, Ĉ(k, k + τ) = 1
k

k∑
i=1
ZiZ

T
i+τ . Using additional autocovariance functions with non-zero τ augment and improve

the ability to estimate covariance matrices. However, more measurements will have to be stored in the memory

which might not be desirable. A trade off between the accuracy and memory may give the best performance. It is

important to note that the positive definiteness checks in the algorithm do not affect the convergence of the covariance

estimates. Retaining the previous estimate when positive definiteness is violated affects state estimation and the state

error covariance matrix. However, since the autocovariance estimate Ĉ(k, k) is independent of the state estimate and

is only dependent on the measurements, the convergence of Ĉ(k, k) to its true value is guaranteed. This causes the

covariance estimate to converge to its true value. Hence, our result holds regardless of the checks.

B. Convergence of the state error covariance

Three different error covariance matrix sequences are compared in this subsection. The matrix P̂k is the one-step

predictor error covariance of the filter which is calculated by propagating the initial covariance matrix P0 using the

estimated Kalman gain K̂k and the estimated Q̂O
k
and R̂k covariance matrices. The Pk matrix is the true error covariance

of the filter which propagates the covariance using the estimated Kalman gain K̂k and the true QO and R. Finally, Pk,opt

is the optimal error covariance matrix of the baseline Kalman filter given full knowledge of the noise statistics. Writing
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these matrix sequences down, we get the following

P̂k+1 =
ˆ̄Fk P̂k

ˆ̄FT
k + K̂k R̂k K̂T

k + Q̂O
k (55)

Pk+1 =
ˆ̄FkPk

ˆ̄FT
k + K̂kRK̂T

k +QO (56)

Pk+1,opt = F̄kPk,opt F̄T
k + KkRKT

k +QO (57)

wherein, K̂k = F11P̂kHT
1 (H1P̂kHT

1 + R̂k )−1, (58)

Kk = F11Pk,optHT
1 (H1Pk,optHT

1 + R)−1, (59)

ˆ̄Fk = F11 − K̂kH1, and F̄k = F11 − KkH1 (60)

and the initial error covariances are equal, P̂0 = P0 = P0,opt . Subtracting (56) from (55), the asymptotics of the matrix

sequence P̂k − Pk can be analyzed by

P̂k+1 − Pk+1 =
ˆ̄Fk (P̂k − Pk ) ˆ̄FT

k + K̂k (R̂k − R)K̂T
k + (Q̂O

k −QO) (61)

Since the initial error covariance is the same, the matrix sequence can be expanded as

P̂k+1 − Pk+1 =

k∑
i=0
{φ̂i K̂i (R̂i − R)K̂T

i φ̂
T
i + φ̂i (Q̂

O
i −QO)φ̂Ti } (62)

where φ̂i = ˆ̄Fi
ˆ̄Fi−1 · · ·

ˆ̄F0 is the state transition matrix corresponding to ˆ̄Fk from initial time to the ith time. Consider the

partial sum ∆Pm,n from m to n defined as

∆Pm,n = (P̂n+1 − Pn+1) − (P̂m − Pm) (63)

∆Pm,n =

n∑
i=m

{φ̂i K̂i (R̂i − R)K̂T
i φ̂

T
i + φ̂i (Q̂

O
i −QO)φ̂Ti } (64)

Each element of ∆Pm,n is a function of the elements of R̂i − R and Q̂O
i −QO . Since, φ̂i and K̂i are bounded from above,

there exist εri j , ε
q
ij , δ

r
i j , δ

q
ij and corresponding Nr

i j and Nq
ij such that

∀k > Nq
ij,Pr ( |{Q̂O

k −QO}i j | < ε
q
ij ) > 1 − δqij (65)

∀k > Nr
i j,Pr ( |{R̂k − R}i j | < εri j ) > 1 − δri j (66)

∀m, n > max
i, j

(Nq
ij, Nr

i j ), Pr (|{∆Pm,n}i j | < ε
p
ij ) > 1 − δpij (67)
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Here each of ε pij and δ
p
ij are functions of all the ε

q
ij and ε

r
i j , and δ

q
ij and δ

r
i j respectively for all i and j . Using (67) we

can conclude that

∀i, j ∀ε pij > 0 lim
m,n→∞

Pr ( |{∆Pm,n}i j | > ε
p
ij ) −→ 0 (68)

Hence, using the Cauchy criterion for random sequences [33], we conclude that

∀i, j ∀ε pij > 0 lim
k→∞

Pr (|{P̂k − Pk }i j | > ε
p
ij ) −→ 0 (69)

Hence, we further infer that

P̂k − Pk
P
−→ 0l×l (70)

Now consider the matrices defined in (58) and (60). The gain matrix K̂k which is a continuous function of P̂k , Q̂O
k
, and

R̂k . Hence using the continuous mapping theorem [33], we get

K̂k − Kk
P
−→ 0l×p (71)

K̂k − Kk
P
−→ 0l×p =⇒ ˆ̄Fk − F̄k

P
−→ 0l×l (72)

Hence using the above results, we conclude that

Pk − Pk,opt
P
−→ 0l×l (73)

P̂k − Pk,opt
P
−→ 0l×l (74)

V. Estimability of noise covariance matrices
In (38), the existence of a pseudo-inverse of S matrix was assumed so that the unknown elements of QO and R

matrix could be estimated. The S matrix can be precalculated and the estimability of the unknown elements can be

checked before the filter is deployed. However, a physical insight behind this assumption is uncovered via mathematical

analysis in this section.
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A. Estimability of R matrix

Say that the entire R is unknown and needs to be estimated while QO matrix is known. Consider the case when the

system given by (1) has linearly dependent measurements. This is mathematically expressed as

∃ ξ , 0p×1 : ξT H1 = 01×l (75)

Thus,
[
ξT . . . ξT

]

1×mp

Mo = 01×l =⇒ M†o

[
ξT . . . ξT

]T

mp×1
= 0l×1 (76)

Hence, using the matrices defined in (30), the above condition translates to

Biξ = 0l×1,∀ i = 0, 1, . . . ,m =⇒
m∑
i=0

(Biξξ
T BT

i ) = 0l×l (77)

(B0 ⊗ B0 + · · · Bm ⊗ Bm)︸                           ︷︷                           ︸
T1

vec(ξξT ) = 0l2×1 (78)

Hence, we found a common null space for all the coefficient matrices Bi for i = 1, 2, . . . ,m. Therefore, the matrix

vec(ξξT ) belongs to the null space of the matrix T1 defined in (41). In case of repeated or linearly dependent

measurement, estimation of the R matrix is ambiguous. It is important to note that this unintentionally establishes a

hard limit on the number of measurements available to the system. If the number of measurements is greater than the

number of states, there always exists a ξ which satisfies the above condition and the R matrix cannot be unambiguously

estimated. Intuitively, for example, say that the system has two identical sensors, This algorithm is unable to estimate

the cross-covariance between the two noises of the identical sensors (with possibly different noise covariance matrices).

The measurement equation can be modified by averaging out the linearly dependent measurements and estimating their

aggregate covariance matrix. However, note that this is not a sufficient condition for estimability of R. There can be

other cases which make rank (T1) = 0.

B. Estimability of QO matrix

For estimability of the QO matrix, it has been established that the number of unknown elements that need be

estimated cannot be more than l × p where p is the number of independent measurements [17].

Again let us assume that the entire QO matrix is to be estimated while R matrix is completely known. Let the matrix

X = (MT
o Mo)−1 and M†o is stated as

M†o =
[
X (FT

11)m−1HT
1 X (FT

11)m−2HT
1 . . . X HT

1

]
(79)

Note that X is an invertible matrix. Similar to the case for unknown R matrix, the idea is to find a null space common to
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all the matrix Ai, i = 1, 2, . . . ,m. First, the expression for M†o can be expressed as

M†o =
[
C1 C2 . . . Cm

]
(80)

Ci = X (FT
11)m−iHT

1 i = 1, 2, . . . ,m (81)

Using the above expression, the matrix M†o Mw is evaluated as

M†o Mw =

[
D1 D2 . . . Dm

]
(82)

D1 = C1H1 (83)

D2 = C1H1F11 + C2H1 (84)

...

Dm = C1H1Fm−2
11 + C2H1Fm−3

11 + . . . + Cm−1H1 (85)

Evaluating A matrix using the expression above, we get

A =

[ [
M†o Mw I

]
−

[
0l×l F11 M†o Mw

] ]
(86)

Am = D1 = C1H1 (87)

...

A2 = Dm − F11Dm−1 (88)

A1 = I − F11Dm (89)

Note that all matrices Ai ∈ R
l×l for i = 1, 2, . . . ,m. However, due to the matrix multiplication HT

1 H1, their rank cannot

be more than p with an exception of A1. The estimability of QO thus directly depends on rank (A1 ⊗ A1 + . . . Am ⊗ Am)

and one of the cases in which this rank is 0 is if the null spaces of the matrices Ai, i = 1, 2, . . . ,m intersect. Let us say

this is the case and there exists a non-zero vector κ ∈ Rl×1 such that Aiκ = 0l×1 for i = 1, 2, . . . ,m. Trying to find an

expression for κ, we get

∀i = 1, 2, . . . ,m Aiκ = 0l×1 =⇒ Diκ = 0l×1 (90)

However, note that in that case, A1κ , 0l×1. Hence, we have a contradiction and the matrices Ai do not share a part

of their null space. However, since this is only a necessary condition, this analysis does not provide a condition for

estimability of QO matrix.
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VI. Further comparison with prior literature
The problem of estimating the state and certain unknown elements of the process and measurement noise covariance

matrices has received significant attention in prior literature, most notably in [17]. Several important facts that highlight

crucial differences between [17] and our work are stated below.

• In [17], the pair (F,Q
1
2 ) is assumed to be controllable and pair (F, H) is taken to be observable. Our work

respectively assumes stabilizability and detectability of the same matrix pairs as given in assumptions 3 which are

clearly weaker technical hypotheses. This allows our results to be applicable to a wider class of systems.

• Both the optimal (case of known covariance matrices) and suboptimal (case of unknown covariance matrices)

are assumed to have reached steady-state conditions in [17]. This assumption is central to the developments

therein since it is used to calculate the covariance matrix estimate. We make no such assumption as we prove the

steady-state properties for our estimator and guarantee its convergence.

• The state transition matrix F is assumed to be nonsingular in [17] which is arguably a mild restriction. This

assumption is subsequently used to calculate the estimate of the noise covariance matrices and hence is crucial to

the formulation in [17]. On the other hand, our assumption of detectability is sufficient for convergence and we do

not place any additional non-singularity restrictions upon the state transition matrix.

• We note that [10] analyzed discrete-time Kalman filtering with incorrect noise covariances. Corollary 3.3 in [10]

states that for incorrect noise covariances obtained simply by multiplying with a positive scalar, the sequences

are asymptotically white. This result, as the authors state, shows the insufficiency of the whiteness test used in

[17] for estimating the noise covariance matrices that are required for constructing the steady-state filter. For

related discussion, we also refer to [18]. This inadequacy of the whiteness condition should be noted to be a major

limitation of the approach in [17] for estimating covariance matrices using the autocovariance function in case of

sub-optimality of the filter. Our method is impervious to these arguments involving the whiteness tests as we do

not use the residual autocovariance properties for our proposed estimation schemes.

• In [17], convergence is proved for the asymptotic case, i.e., when the batch size (N) becomes infinitely large.

However, such a filter can be potentially impractical (large memory buffer usage), and moreover, one has to always

initiate the filter with a fixed batch size, the chosen batch size may not be large enough to guarantee convergence.

In [17], it is assumed that the batch size N is much larger than n. All the results that follow prove convergence of

the estimates for a large value of N . In our work, as given in (8), at most n measurements are stacked and the

number of stacked measurements is pre-calculated using the system matrices (F and H).
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VII. Simulations
We construct a fictitious detectable system which satisfies the assumptions for this algorithm to converge.

xk =



0.8 0.2 0

0.3 0.5 0

0.1 0.9 0.7



xk−1 + wk−1 (91)

yk =



1 0 0

0 1 0



xk + vk (92)

It is assumed that wk ∼ N (0,Q), and vk ∼ N (0, R) are both i.i.d white Gaussian noises. We assume

R =



5 0

0 4



and Q =



3 0.2 0

0.2 2 0

0 0 7.5



The elements R11, Q11, and Q22 were to be estimated and all other elements were assumed to be known. The initial

estimates for all these elements was chosen to be 10. From Monte Carlo simulation results, the 2 norm of the error

between R̂k and R as well as Q̂O
k
and QO is shown to converge Figs. (1) and (2) respectively. The predictor and actual

state error covariance converges to the optimal Kalman filter values Fig. (4) as shown in one of the Monte Carlo

simulations. The state estimation error and their respective 3σ bounds of predictor state error covariances for the three

states are shown in Fig. (3).

Fig. 1 Estimation error norm of R matrix for 100 Monte Carlo simulations.

VIII. Conclusions
A novel algorithm to adaptively estimate the state and certain unknown elements of the process and measurement

noise covariance matrices of a discrete linear time invariant stochastic system is formulated. The algorithm presented

here is derived using a judicious combination of established adaptive filtering approaches such as correlation techniques
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Fig. 2 Estimation error norm of Q matrix for 100 Monte Carlo simulations.
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Fig. 3 Estimation errors for the two observable states with the 3σ bounds corresponding to their predictor
error covariance P̂k

and covariance matching techniques. The detectability property of the system is utilized for observing the state and

formulating a time series containing measurement and process noise sequences independent of the state. A proof

for the probabilistic convergence of the new algorithm is presented under additional assumptions of existence of a

pseudo inverse used for uniqueness of the estimates of the covariance matrices. Our work bears significant contrasts

to approaches for adaptive covariance estimation algorithms reported in existing literature. Firstly, we note that our

technical assumptions of detectability rather than observability, no non-singularity requirements on the state transition

and observation matrix like invertibility, and no requirement of reaching steady-state are less restrictive. Secondly,

our proposed algorithm is independent of suboptimality tests for whiteness toward constructing the state-state filter.

Lastly, our results do not require arbitrarily large batch sizes for ensuring convergence but rather, the memory usage

and buffer size demands imposed by our algorithm can be a priori benchmarked in terms of the dimensionality of the

state-space. Monte Carlo simulations demonstrate the effectiveness of our algorithm. Further generalizations of the

proposed algorithm to the continuous-time domain and applications for linear time-varying systems represent fruitful

directions for further research in this field.
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