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Abstract The nonlinear filtering problem plays a fundamental role in multi-

ple space related applications. This paper offers a new filtering technique that

combines Monte Carlo time propagation with a Gaussian mixture model mea-

surement update. Differential Algebra (DA) techniques are used as a tool to

reduce the computational effort required by particle filters. Moreover, the use

of Expectation Maximization (EM) optimization algorithm leads to a good

approximation of the probability density functions. The performance of the

new method is assessed in the nonlinear Orbit Determination problem, for

the challenging case of low observations frequency, and in the restricted three

bodies dynamics.
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1 Introduction

The filtering problem for nonlinear dynamic systems is an important research

area that has attracted considerable interest, especially in space applications:

it consists in estimating the state of a nonlinear dynamical system from noisy

measurements. For the well-known linear and Gaussian case, the posterior dis-

tribution remains Gaussian and the optimal estimate is the posterior mean.

The well-known Kalman Filter [16] [17] provides the mechanization to calculate

the mean and the covariance of the a posteriori probability density function

(PDF). However, most problems of interest in aerospace engineering applica-

tions, such as orbit determination [27], spacecraft navigation, target tracking,

etc., require a reliable filtering method that deals with high nonlinearities. In

the presence of nonlinearities, the posterior distribution is necessarily a non-

Gaussian PDF that is typically not representable exactly in closed form and

needs to be approximated.

The most common approach to estimate a system with nonlinear dynam-

ics/measurements is the Extended Kalman Filter (EKF) [8]. The EKF is

widely used for trajectory estimation. The EKF linearizes the equations of mo-

tion and the measurements equations around the most current estimate and

then applies the Kalman filter update equations to the linearized system. In
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its Bayesian interpretation, the EKF approximates the distributions as Gaus-

sian. However, in problems with high nonlinearities, the simple linearization

assumption fails to provide an accurate approximation of the dynamics and the

filter fails to give a valid estimate [15]. In such cases, a different approach that

accounts for the system nonlinearities must be used. The Unscented Kalman

Filter (UKF) [13] [14] is based on the unscented transformation and does not

rely on linearization around the estimate. Carefully chosen sample points are

propagated with the true nonlinear dynamics, leading the UKF to higher con-

sistency when compared to the EKF.

Park and Sheeres [21,22] developed two nonlinear filters that use state

transition tensors (STT) to describe the localized nonlinear motion. The initial

uncertainties, mean and covariance matrices, are analytically mapped achiev-

ing a better representation than the EKF. Valli et al. [30] reproduced Park

and Sheeres’ work using Differential Algebra (DA), eliminating the need to

evaluate STT.

Gaussian Sum Filters (GSF) represent the states distribution function with

multiple Gaussian kernels (known as Gaussian Mixture Model, GMM) and

apply the Kalman filter equations for each model. The GSF estimate is the

weighted sum of the estimates from each model, based on the measurement

likelihood function. Accuracy during the PDF time-update has been improved

by changing the weights of each distribution regardless of the availability of

measurements [28], or by changing the number of kernels to better address the

nonlinearities present in the system [6].
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The nonlinear filters mentioned above are more accurate than the EKF,

but also more computationally expensive due to the evaluation of STT or to

performing multiple high fidelity integrations [12]. High accuracy can also be

achieved with sequential Monte Carlo methods [26] (such as the particle filter,

PF), or the Monte Carlo Kalman filter (MCKF)[10]. However, even if these

filters can provide a good estimate of the statics and uncertainties, performing

a large number of particle propagations can be computationally expensive

and, as a consequence, they are not necessarily always the best choice for

orbit determination problems or on-board navigation applications.

Valli et al. [29] use DA techniques to develop a Monte Carlo Kalman fil-

ter that substitutes samples propagation with polynomial evaluations: thus

it enhances and speeds up the classical Monte Carlo approach. However, the

measurement update in [29] is linear, i.e. the distributions are approximated as

a Gaussian distribution and the Kalman update is performed. This approach

neglects the information about the shape of the predicted PDF contained in

the samples. The filter presented in this paper contains a similar prediction

step to that in [29], but it improves the update step with the introduction of

multiple Gaussian models.

Raihan and Chakravorty [23] developed a particle Gaussian mixture fil-

ter where the kernels are created directly from the propagated samples. The

estimator has the usual computational burden that characterize all particle

filters: having to propagate the whole set of particles. Ref. [23] uses K-means

clustering algorithm to form a Gaussian Mixture from the particles. K-means
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is a hard clustering algorithm, and the covariance calculation for each Gaus-

sian component is performed using only the points belonging to that cluster,

without any influence from the rest of the ensemble. A different approach to

clustering is optimization via the Expectation Maximization algorithm [33].

Expectation Maximization is a type of coordinate descent/ascent optimiza-

tion often used in clustering applications [9].

This paper introduces a filter, EMDAc-N , that combines the strengths of

the above cited filters. EMDAc-N will use DA techniques to solve the predic-

tion problem through DA-based Monte Carlo integrations. By solving ordinary

differential equations (ODEs) in the DA framework, the result is not only the

integrated state, but also a map of how deviations from the nominal solution

evolve in time (represented using Taylor series expansion up to a user-defined

order c). In the measurement update portion of the algorithm, the performance

of the classical Kalman update is improved with the addition of multiple mod-

els. After clustering the predicted PDF into N Gaussians, a GSF updates is

performed and the estimate is evaluated through weighted mean of the Gaus-

sian components.

This paper is organized as follows. First a brief introduction on differential

algebra is presented with references to a more detailed explanation. Then, the

main part of the paper describes the filtering algorithm and how it works in

the DA framework, underlining the benefits of the Taylor series representation

and the improvements given by a multiple model update. Moreover, the effec-

tiveness of the proposed method is assessed in an orbit determination problem
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characterized by low availability of measurements: the filter has been compared

to multiple others to demonstrate the benefits of the new algorithm. Further-

more, a second orbit determination example is presented where the spacecraft

undergoes the restricted three bodies dynamics around the unstable L2 point.

Lastly, conclusions are deduced.

2 Differential Algebra

Differential Algebra techniques are used to obtain the c-th order Taylor ex-

pansion of the solution flow of a system of ODEs with respect to a given initial

condition. DA relies on solving analytical problems using an algebraic approach

[18]. Standard representation of functions in a computer environment is based

on the simple evaluation at specific points, working with the classical floating

point (FP) representation. DA techniques, on the other hand, exploit the idea

that it is possible to extract more information from a function rather than its

evaluations. Therefore, DA expresses each function as a matrix of coefficients

and exponents that describe the Taylor series approximation of that specific

function after a center point is selected. The DA framework is able to operate

algebraic operations, including differentiation and integration operators, in the

DA structure [24]. Therefore, DA offers another way to work in a computer

environment, with endowed composition of functions, function inversions, ex-

plicit system solving, etc., similar to the algorithms used in FP arithmetic. DA

has been successfully used to compute the time evolution of the state of a dy-

namic system affected by process noise both in discrete-time applications [25]
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and in continuous-time situations [19]. Rasotto at al. quantify the accuracy

of DA methods by studying the convergence of the approximation errors, for

different expansion orders, comparing the DA propagation results with Monte

Carlo [24].

An implementation of such DA computer routines is available in the Dif-

ferential Algebra Core Engine (DACE2.0) software [7], which has been used to

implement the algorithm presented in this paper. For additional explanation

of DA, the reader is advised to look through previous works such as [29] and

[3].

3 Multiple Models Differential Algebra Ensemble Kalman Filter -

EMDA

Consider the following system, where the state evolves according to a discrete-

time nonlinear state transition equation. The only information about the sys-

tem is a set of measurements, related to the state vector, acquired at discrete

times

xk+1 = fk[xk] + νk (1)

yk+1 = hk+1[xk+1] + ηk+1 (2)

where fk is the process model, xk is the s-dimensional state at time-step k, yk+1

is the m-dimensional vector of the actual measurement at time-step k+1, and

hk is the measurement function. The process noise νk and the measurement
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noise ηk are random sequences which satisfy the following conditions ∀ i, j > 0:

E {νi} = E {ηi} =0 (3)

E
{
νiν

T
j

}
=Qδij (4)

E
{
ηiη

T
j

}
=Rδij (5)

E
{
νiη

T
j

}
=0 (6)

3.1 Cluster Propagation

The truncation order of the Taylor series can be set to any desired value, it is

denoted with c. Let N be the fixed number of Gaussian distributions that will

approximate the propagated PDF. Therefore, each Gaussian PDF is described

by its own mean x̂i and covariance matrix Pi, and has an associated weight µi,

where i = 1, . . . , N . The weights add to one and the estimate is evaluated as

the weighted average of the Gaussian kernels’ means. If the initial distribution

is exactly Gaussian, at initialization each of theN Gaussian components shares

the same mean and covariance values, with equal weight 1/N .

Let n be the total number of particles used to describe the shape of the

distribution. Each filter’s iteration starts with sampling from the GMM, in

particular each ith Gaussian component generates a number of particles pro-

portional to its weight

σi = nµ+
i,k ∈ N (7)
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where µ+
i,k indicates the updated weight at time step k of the i-th Gaussian.

The points are generated after calculating, thorough Cholesky Decomposition,

the square root of the covariance matrices.

The propagation is carried out in the DA framework . Differential Algebra

creates a map of the dynamics that connects deviations at time steps k to

deviations at time step k + 1. This can be achieved by replacing the classic

numerical integration scheme with the corresponding DA operations. Conse-

quently, by working directly on functions, the DA solution of any ODE allows

the propagation of the Taylor expansion of the flow forward in time from

the given initial condition to any final time [32]. Therefore, it is sufficient to

propagate the mean of the samples together with the map and, subsequently,

evaluate the polynomial map at each deviation. The result is a computational

efficient way to evaluate the predicted PDF [1].

The next step of the algorithm is to calculate the deviation of each single

sample from its component’s mean: this is achieved through simple vector

subtraction. As depicted in Figure 1, the deviation δj , j = 1, . . . , n, of each

Fig. 1: Vectors representation.
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sample from the estimate after propagation x̄k is the vector summation of the

deviation from the mean of the Gaussian component, αj , and the distance

between that Gaussian mean and the estimate, di.

αj = pj,k − x̂i,k (8)

di = x̂i,k − x̄k (9)

δj = pj,k − x̄k = pi,k − x̂i,k + x̂i,k − x̄k = αj + di (10)

where pj,k is the particle’s position and this set of equation is repeated ∀i, j.

The state is now propagated to the next time step in the DA framework.

xk = x̄k + δx (11)

x−
k+1 = fk[xk] (12)

where x−
k+1 indicates the Taylor series expansion of the dynamics centered at

x̄k and truncated at order c. The polynomial is now evaluated n times, one for

each sample point. With this DA approach, n−1 propagations are substituted

with faster polynomial evaluations. Therefore, each particle of the propagated

PDF is found as

pj,k+1 = x−
k+1(δj) + νk+1,j ∀j = 1, . . . , n (13)
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where νk+1,j indicates the contribution from the process noise, at time step

k + 1 for the jth particle, generated randomly from the knows process noise

PDF.

3.2 K-means

As with all particle filters, the propagated PDF is represented by n random

samples. In the proposed approach, the next step is to approximate the distri-

bution as a GMM [23]. After approximating the propagated PDF with multiple

Gaussian kernels, the measurements are incorporated as in the Gaussian Sum

Filter. Expectation Maximization (EM) is an algorithm that evaluates means

and covariances of the Gaussian distributions to approximate the cluster. The

EM optimization is initialized with the K-means clustering solution. K-means

divides the whole ensemble into a selected number of sets using a hard con-

straint on the sample: each point is either part of the set or not. EM, on the

other hand, enforces a soft constraint where each sample has a probability of

belonging to each different set.

Let us randomly select N particles as initial guesses of the means x̂−
i,k+1

of the sets for the K-means algorithm. Then, we repeat until convergence the

following Equations:

aj := arg min
i
‖pj,k+1 − x̂−

i,k+1‖
2 (14)

x̂−
i,k+1 :=

∑n
j=1 1{aj = i}pj,k+1∑n

j=1 1{aj = i}
(15)
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Equation (14) selects which is the closest mean to sample pj,k+1 and assigns

it to that corresponding set. Equation (15) evaluates the updated means with

the new sets of points. When the sets stop changing, the algorithm has reached

convergence and the outputs are the N state vectors x̂−
i,k+1 and the clustered

samples. The K-means algorithm always converges but not necessary to a

global optimum. However, since the output of K-means is used purely as a

good initial condition for the EM algorithm, the proposed filtering technique

does not suffer from this issue. Another possible solution is to implement the

more robust K-means++ algorithm [2].

3.3 Expectation Maximization (EM)

As stated above, the EM algorithm is initialized with the output from the

K-means algorithm. The initial means are taken from K-means and the initial

covariances are calculated directly from the clustered particles. Given the set n

independent samples ρ = {p1,k+1. . . . , pn,k+1}, the goal is to fit the parameters

of a model p(ρ, ζ) to the data, in order to find the maximum of the likelihood

max
θ
`(θ) = max

θ
log

∫
ρ

p(ρ, ζ; θ)dρ (16)

where θ are the parameters of the models it is desired to find, such as means,

weights and covariances. In Equation (16), the ζi,k+1 are the latent random

variables (unobserved). The EM algorithm gives an efficient method for max-

imum likelihood estimation. The explicit maximization of `(θ) might be un-
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feasible. thus the proposed strategy is to repeatedly construct a lower bound

on `, E-step, and then optimize that lower bound, M-step.

Starting from the particles, each one has an associated probability to belong

to each of the N Gaussian clusters given by

P (pj,k+1|i) = N
(
x̂−
i,k+1,P

−
i,k+1

)
=

=
1

(2π)
s/2
√

det P−
i,k+1

exp

(
−1

2

(
pj,k+1 − x̂−

i,k+1

)(
P−
i,k+1

)−1 (
pj,k+1 − x̂−

i,k+1

)T)

(17)

where P (pj,k+1|i) is the probability that point pj,k+1 belongs to the ith Gaus-

sian. It is now possible to calculate, through Baye’s rule, the probability of

each Gaussian given the single sample.

P (i|pj,k+1) =
P (pj,k+1|i)P (i)∑N

h=1 P (pj,k+1|h)P (h)
(18)

where P (i) = µi,k is the weight of each Gaussian component. Due to the

exponential behavior of the Gaussian distribution, it is convenient to work

with a logarithm scale and to operate with the weights separately. Therefore,

the following step of the EM algorithm, after Equation (17), is to calculate

the weight of each single particle j referred to each single Gaussian i. This

can be performed working directly on logarithms, after some mathematical
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manipulations.

wi,j =
P (pj,k+1|i)∑N
h=1 P (pj,k+1|h)

=
1∑N

h=1 exp (log [P (pj,k+1|h)]− log [P (pj,k+1|i)])
∀i = 1, . . . , N ∧ ∀j = 1, . . . , n

(19)

Conceptually, wi,j defines how much the jth sample belongs to the ith Gaus-

sian: the denominator normalizes the weights such that
∑N
i=1 wi,j = 1. Fur-

thermore, the influence of each Gaussian is evaluated by summing the relative

weights.

Wi =

n∑
j=1

wi,j (20)

The new mean and the covariance of the Gaussians can then be calculated:

x̂−
i,k+1 =

1

Wi

n∑
j=1

wi,jpj,k+1 (21)

P−
i,k+1 =

1

Wi

n∑
j=1

wi,j

(
pj,k+1 − x̂−

i,k+1

)(
pj,k+1 − x̂−

i,k+1

)T
(22)

whereWi normalizes the summation. The last step is to normalize the weights

of the Gaussians such that they sum to unity.

µ−
i,k+1 =

Wi∑N
h=1Wh

(23)

The next iteration is then ready to start with the new mean, covariance, and

weight values until a set tolerance level on the update of the weights is reached.
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3.4 Measurement Update

The prediction part of the filter results in the propagated PDF approximated

as a GMM. The following step is to perform the measurement update.

The measurement equation can be expressed as a truncated Taylor series

expansion in the DA framework.

zk+1 = hk+1[xk+1] (24)

Where zk+1 is a polynomial centered in x̄k truncated at order c. The polyno-

mial can now be evaluated using the deviations from Equation (??) in order

to calculate the predicted measurements associated with each particle.

qj,k+1 = zk+1(δ̃j) (25)

It is now possible to apply the Kalman filter update equations to each Gaus-

sian component. The measurements covariances and cross covariances are com-

puted directly from the particles:

ẑ−i,k+1 =
1

Wi

n∑
j=1

wi,jqj,k+1 (26)

PZZ,i =
1

Wi

n∑
j=1

wi,j

(
qj,k+1 − ẑ−i,k+1

)(
qj,k+1 − ẑ−i,k+1

)T
+ R (27)

PXZ,i =
1

Wi

n∑
j=1

wi,j

(
pj,k+1 − x̂−

i,k+1

)(
qj,k+1 − ẑ−i,k+1

)T
(28)
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The covariance matrices PZZ,i and PXZ,i are calculated using the whole en-

semble of points. This approach is in contrast with the hard K-means con-

straint of Ref. [23]. The advantage of a soft constraint is that all Gaussian

components are updated using complete knowledge of the distribution from

the entire set of points.

The Kalman gain of each Gaussian kernel is evaluated as

Ki = PXZ,i (PZZ,i)
−1

(29)

Each mean and covariance are updated likewise they are working indepen-

dently

x̂+
i,k+1 = x̂−

i,k+1 + Ki

(
yk+1 − ẑ−i,k+1

)
(30)

P+
i,k+1 = P−

i,k+1 −KiPZZ,iK
T
i (31)

where yk+1 is the actual measurements vector from the sensors.

3.5 Weights Update and Estimate

The weight associated to each Gaussian component of the updated PDF are

updated based on the measurement outcome as well. This step applies Baye’s

rule to obtain the posterior distribution of the probability of each Gaussian
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given the measurements [4].

µ+
i,k+1 = P (i|Yk+1) = P (i|yk+1,Yk) =

=
P (i,yk+1|Yk)

P (yk+1|Yk)
=

P (i,yk+1|Yk)∑N
h=1 P (h,yk+1|Yk)

=

=
P (yk+1|i,Yk)P (i|Yk)∑N

h=1 P (h,yk+1|Yk)
(32)

where Yk indicates all the measurements up to time step k. Looking at Equa-

tion (32), it can be noted its recursive property, since P (i|Yk) = µ−
i,k+1. More-

over P (yk+1|i,Yk) is the probability of yk+1 to be the outcome from the ith

Gaussian.

P (yk+1|i,Yk) =
(2π)

−m/2√
det PZZ,i

exp

(
−1

2

(
yk+1 − ẑ−i,k+1

)
(PZZ,i)

−1
(
yk+1 − ẑ−i,k+1

)T)
(33)

Therefore, the weights update equation can be written as

µ+
i,k+1 =

P (yk+1|i,Yk)µ−
i,k+1∑N

h=1 µ
−
h,k+1P (yk+1|h,Yk)

(34)

These weights will dictate how many samples each Gaussian will generate in

the next time step, as explained at the beginning of the algorithm.

Lastly, the state estimate and covariance are calculated as weighted means.

x̄k+1 =

N∑
i=1

µ+
i,k+1x̂

+
i,k+1 (35)

Pk+1 = −x̄k+1x̄
T
k+1 +

N∑
i=1

µ+
i,k+1

(
P+
i,k+1 + x̂+

i,k+1x̂
+T
i,k+1

)
(36)
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The filter is now ready to start the following step with x̄k+1, µ+
i,k+1, x̂+

i,k+1

and P+
i,k+1.

3.6 Algorithm Summary

The proposed filtering technique (EMDAc-N) is summarized in Algorithm 1,

with references to Algorithm 2 (K-means), and Algorithm 3 (EM for GMM).

Algorithm 3 differs from the classic implementation of the EM algorithm since

it adds as outputs the weight of each jth particle wi,j , and their sum over the

total number of samples, Wi. Due to this feature, Algorithm 1 uses the whole

ensemble of points for the evaluation of the covariances PXZ,i and PZZ,i, for

each ith Gaussian model.

Choosing N = 1, EMDAc-1 reduces to the DAEnKF-c from [29]. Adding

a linear approximation of the dynamics and measurement equation reduces

EMDA1-1 to the classic EKF.

4 Orbit Determination

The performance of the newly developed filter has been assessed with a non-

linear problem common in celestial mechanics: the two body problem. The

equations of motion governing the system are the ones associated to the Kep-

lerian dynamics, where r is the position vector of the spacecraft and µ is the
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Algorithm 1 EMDAc-N

Declare Taylor truncation order c;
Declare number of particles n;
Declare number of Gaussian Kernels N ;
Initialize iteration counter k = 0;
Initialize Gaussians: µi,0 = 1/N, x̂i,0 = x̄0, Pi = P0 ∀i = 1, . . . , N ;
while new measurements yk+1 available do

//Deviations//
for i = 1, . . . , N do
σi = nµ+

i,k; //Number of particles per Gaussian
pj,k = N (x|x̂i,k,Pi,k); // Samples generated by each Gaussian
δj = pj,i − x̄k; //Deviations from current estimate

end for

//Propagation//
xk = x̂ + δx; //Initialize State Polynomial
x−
k+1 = fk[xk]; //Propagation in the DA framework

for j = 1, . . . , n do
pj,k+1 = x−

k+1(δj) +νk+1,j ; //Propagated ensemble through evaluation

δ̃j = δj + νk+1,j ; //New Deviations with process noise

//Clustering//
[x̂−
k+1,P

−
k+1,µ

−
k+1] = K-means(pk+1, N);

[x̂−
k+1,P

−
k+1,µ

−
k+1,w,W] = EM(pk+1, x̂

−
k+1,P

−
k+1,µ

−
k+1);

//Measurement Update//
zk+1 = hk+1[xk+1]; //Evaluate measurement polynomial
for j = 1, . . . , n do
qj,k+1 = zk+1(δ̃j); //Measurement ensemble through evaluation

end for
for i = 1, . . . , N do

ẑ−i,k+1 =
1

Wi

∑n
j=1 wi,jqj,k+1;

PZZ,i =
1

Wi

∑n
j=1 wi,j

(
qj,k+1 − ẑ−i,k+1

)(
qj,k+1 − ẑ−i,k+1

)T
+ R ;

PXZ,i =
1

Wi

∑n
j=1 wi,j

(
pj,k+1 − x̂−

i,k+1

)(
qj,k+1 − ẑ−i,k+1

)T
;

Ki = PXZ,i (PZZ,i)
−1

;

x̂+
i,k+1 = x̂−

i,k+1 + Ki

(
yk+1 − ẑ−i,k+1

)
;

P+
i,k+1 = P−

i,k+1 −KiPZZ,iK
T
i ;

P (yk+1|i,Yk) =
(2π)

−m/2√
det PZZ,i

exp

(
−1

2

(
yk+1 − ẑ−i,k+1

)
(PZZ,i)

−1
(
yk+1 − ẑ−i,k+1

)T)
;

µ+
i,k+1 =

P (yk+1|i,Yk)µ−
i,k+1∑N

h=1 µ
−
h,k+1P (yk+1|h,Yk)

;

end for

//Estimates//

x̄k+1 =
∑N
i=1 µ

+
i,k+1x̂

+
i,k+1;

Pk+1 = −x̄k+1x̄
T
k+1 +

∑N
i=1 µ

+
i,k+1

(
P+
i,k+1 + x̂+

i,k+1x̂
+T
i,k+1

)
;

end while
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Algorithm 2 K-means

Get ensemble of n points p;
Get number of clusters N ;
Declare N random initial means x̂i;
while x̂i changes do

//Sample Assigment//
for j = 1, . . . , n do

for i = 1, . . . , N do
di = ‖pj − x̂i‖2; //Get distances

end for
aj = arg(min(d)); //Assign sample to cluster

end for

//Mean Correction//
for i = 1, . . . , N do

x̂i =

∑n
j=1 1{aj = i}pj∑n
j=1 1{aj = i}

;

end for
end while

Earth gravitational parameter.

r̈ = − µ
r3

r (37)

The initial condition and uncertainties values are chosen equal to those in

Refs. [29,7] and are here listed. Length units are normalized by the orbit

semi-major axis, a = 8788 km, and time units by the parameter

√
a3

µ
based
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Algorithm 3 EM

Get ensemble of n points p;
Get N means x̂i, covariances Pi, and weights µi;
Declare a tolerance τ ;
while tolerance is met do

//Maximization//
for j = 1, . . . , n do

for i = 1, . . . , N do

P (pj |i) =
(2π)

−s/2
√

det Pi

exp

(
−1

2
(pj − x̂i) (Pi)

−1
(pj − x̂i)

T

)
;

wi,j =
1∑N

h=1 exp (log [P (pj,k+1|h)]− log [P (pj,k+1|i)])
;

end for
end for

//Expectation//
for i = 1, . . . , N do
Wi =

∑n
j=1 wi,j ;

x̂i =
1

Wi

∑n
j=1 wi,jpj ;

Pi =
1

Wi

∑n
j=1 wi,j (pj − x̂i) (pj − x̂i)

T
;

end for
end while

on the orbital period.

x0 =

r0

v0

 =



−0.68787

−0.39713

0.28448

−0.51331

0.98266

0.37611



(38)

and the initial estimate of the system state has a 10% offset from the true

initial state.
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The measurement model assumes the radial position of the spacecraft w.r.t.

the Earth and the line of sight direction of the planet:

y1 = r + η1 (39)

y2 = arctan2(
x2
x1

)
+ η2 (40)

y3 = arcsin
(x3
r

)
+ η3 (41)

where ηi, with i = 1, 2, 3, is the measurement noise, assumed to be Gaussian.

The standard deviation of the error is assumed to be 0.1 m for the radial posi-

tion and 0.1 arcsec for the angle errors. The initial uncertainties are assumed

to be Gaussian as well, with a diagonal covariance matrix divided into position

states, with std σr = 10−2a, and velocity states, with std σv = 10−4

√
µ

a
.

For the presented application, the number of Gaussians in the multiple

models is chosen beforehand and it is kept fixed during the whole simulation.

However, if needed, the EMDAc-N algorithm can be enhanced with merging,

splitting, pruning and truncation, according to the methodology that the user

desires. The nomenclature EMDAc-N indicates with c the truncation order of

the dynamics flow during propagation and N indicates the number of Gaus-

sians used in the clustering algorithm. For example, EMDA2-3 indicates a

filter with truncation order 2 and a GMM update with 3 Gaussians. In each

single simulation a total of 104 particles are used.

A Monte Carlo analysis is performed to assess the consistency of the pre-

sented filter and to show reliability and accuracy levels. The simulation is
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performed with low acquisition measurement frequency. Figure 2 and Fig-

ure 3 show the performance of EMDA2-3 and EMDA2-5, respectively, with a

Monte Carlo analysis of 100 runs. The figures show the consistency of the posi-

tion components, left columns, and velocity components, right columns, of the

spacecraft state vector in a simulation with time duration of 12 orbits with

3 equally spaced observations per orbit. Both filters converge and correctly

predict the estimation uncertainties. The continuous blue lines indicate the

standard deviation of the estimation error as predicted by the filter, expressed

as 3σ values, while the dashed blue lines represent the actual standard devi-

ations of the errors calculated directly from the Monte Carlo samples, again

shown as 3σ values. The consistency of the filter is assessed by the overlap-

ping of the two lines. Lastly, the black line shows the mean of the samples:

the expected value of the error is very close to zero, making EMDAc-N and

unbiased filter, matching the theoretical results expected for minimum mean

square error (MMSE) estimators.

In order to assess the filter relative accuracy and robustness, it is compared

with common estimators, such as the EKF and the UKF, and filters from pre-

vious works on differential algebra, such as DAHO-c from [31] and DAEnKF-c

from [29]. DAHO-c is a DA-based filter that uses Taylor expansion series up to

order c to represent each predicted variable. After propagation in time in the

DA framework, the predicted means and covariances are evaluated directly

on the monomials of each polynomial using a Gaussian assumption of the

distribution. DAEnKF-c is a Monte Carlo Kalman Filter (MCKF) that uses



24 Simone Servadio, Renato Zanetti

Fig. 2: 100 Monte Carlo runs depicting the performance of EMDA2-3 over 12
orbits with 3 observations each orbit.

polynomial evaluations, through DA, to propagate an ensemble of particles to

the next time step, as done in EMDAc-N . Therefore DAEnKF-c is equivalent

to choosing a single Gaussian kernel in our approach (EMDAc-1), where the

GMM update reduces to the single model Kalman filter update.

Figure 4 is divided into two parts. It shows the standard deviation profiles

for the spacecraft position, top row, and velocity, bottom row on a 6 orbits-

long simulation with 3 observations per orbit. Each graph has two sets of lines:

the dashed lines refer to the standard deviations calculated from the Monte

Carlo samples (100 runs), at each time step, while the continuous lines are
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Fig. 3: 100 Monte Carlo runs depicting the performance of EMDA2-5 over 12
orbits with 3 observations each orbit.

the predicted standard deviations estimated by each filter. These values are

derived from the diagonal terms of the updated covariance matrix of each of

the filters.

σr =
√
σ2
rx + σ2

ry + σ2
rz (42)

σv =
√
σ2
vx + σ2

vy + σ2
vz (43)
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Therefore, a consistent filter will have the overlapping of its dashed and con-

tinuous lines, meaning a match between the effective and the predicted uncer-

tainties.

Fig. 4: Position and velocity error standard deviations comparison over a pe-
riod of 6 orbits with 3 observations per orbit.
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The figure compares, in a logarithmic scale, the estimators mentioned above

for a total of 7 different filters. From the figure it can be noted how DAHO-1

and DAEnKF-1 have identical trends and they give the same estimation. Their

lines overlap both for the predicted and the effective covariance, settling on

different order of magnitude. The two filters work with a simple linearization

of the dynamics, thus they reduce to the well-know Extended Kalman Filter

which, in this orbit determination problem with high initial uncertainty, di-

verges. In fact, their dashed lines settle two orders of magnitude above the

continuous lines: the EKF is overconfident on its estimation and the effective

accuracy level is way bigger with respect to the covariance level that the filter

is expecting to achieve. The other filters, characterized by nonlinear propaga-

tion, behave similarly, but with some important differences that need to be

pointed out. The UKF predicted covariance settles with the same accuracy

level as the other nonlinear filter, however, the effective covariance from the

Monte Carlo runs does not match this prediction and it is larger, indicating

the UKF is not performing correctly and it is not a consistent estimator, as

the dashed green line in the figure is the only one that does not overlap with

the others, both in position and velocity. In contrast, DAHO-2, DAEnKF-2,

EMDA2-3 and EMDA2-5 show similar behavior and achieve the same accu-

racy level. The filters are consistent and the state is predicted correctly with

the same steady state precision. However, it is important to point out that

the new EMDA2-5 is the fastest filter to reach steady state, as it can be seen

by the black lines being the lowest in the transient phase. Furthermore, by
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remembering that DAEnKF-2 is equivalent to EMDA2-1, the figure shows

that, in EMDA2-N , the bigger the number of Gaussians used in the clustering

algorithm, the faster the filter converges to steady state.

The estimation improvement gained by approximating the shape of the

propagated PDF with multiple Gaussians can be appreciated by reducing fur-

ther the measurements acquisition frequency in the simulations. Figure 5 and

Figure 6 show the Monte Carlo analysis when only three measurement acquisi-

tions every two revolutions are available, for EMDA2-3 and EMDA2-5 in a 12

orbits long simulation. EMDA2-3 is able to estimate the state of the system,

but its covariance prediction is not consistent with the Monte Carlo analysis:

the standard deviation calculated from the samples at each time step is slightly

bigger when compared to the predicted one, thus the filter diverges. On the

other hand, EMDA2-5 has a consistent behavior and both the state and the

uncertainties are evaluated correctly, achieving steady state and reaching good

accuracy level.

Figure 7 represents the standard deviations analysis for DAHO-2, DAEnKF-

2, EMDA2-3, EMDA2-5 and the UFK in a 12 orbits simulation with 3 equally

spaced observations each 2 revolutions. The figure resemble the same charac-

teristics from the 3 observations per orbit case. Therefore, each dashed line is

connected to a Monte Carlo analysis performed with the relative filter where,

at each time step, the standard deviation of the error has been evaluated by

extracting the values from the single runs. The continuous lines represent the

error standard deviations predicted by the filters according to Equation (42)
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Fig. 5: 100 Monte Carlo runs depicting the performance of EMDA2-3 over 12
orbits with 3 observations each 2 orbits

and (43). The EKF, (equivalent to DAHO-1 and DAEnKF-1) has the same

problems seen in Figure 4: it diverges and the effective uncertainties increase,

it has therefore been omitted from the figure. The main difference with re-

spect to the previous case comes from UKF, DAHO-2 and DAEnKF-2: they

fail in their task to estimate the state and the estimation error grows in time,

diverging. Indeed, the dashed blue, red and green lines are almost 9 orders of

magnitude out of scale when compare to the relative continuous one. These 3

filters overestimate their confidence in their approximation of the uncertainties

and fail to perform a correct update of the state. On the contrary, EMDAc-
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Fig. 6: 100 Monte Carlo runs depicting the performance of EMDA2-5 over 12
orbits with 3 observations each 2 orbits

N is able to estimate the state of the system. When working with multiple

Gaussians (N > 1), the approximation of the shape of the ensemble of points

(thus the distribution) significantly improves and the multiple update achieves

a good estimate. However, even if decreasing, the effective std from EMDA2-

3 (dashed orange line) does not match the predicted one (continuous orange

line), as expected after studying Figure 5: the two lines do not overlap. Other-

wise, EMDA2-5 shows robustness and coherence. The black lines demonstrate

that EMDA2-5 is the only consistent filter and it has also fast convergence

to steady state level. Moreover, during the transient, the effective std stays



Title Suppressed Due to Excessive Length 31

below the predicted one. Therefore, it has been proven that the bigger the

number of Gaussians used in the algorithm, the more robust the prediction is,

at the expenses of a higher computational effort. The Bootstrap PF has not

been reported in the figure. In the absence of process noise, the particles of the

BPF do not spread during the propagation and the BPF suffers from particle

impoverishment.

Figure 8 supports the latter statement by showing the EM clustering at the

end of the first propagation. The samples distribution shows how the predicted

PDF has the so-called banana shape, characteristic of an orbit determination

problem with long propagation times in-between measurements. The clustering

algorithm with 5 Gaussians better approximates the shape of the distribution,

especially near the mean and at the tails. Using only 3 Gaussians the algorithm

does not match the curve of the density function. EMDA2-5 achieves a correct

estimate when EMDA2-3 fails.

5 Unstable and Chaotic L2 Orbit

The new filter is also tested on the restricted three body problem. A spacecraft

orbiting in the Earth-Moon system has his coordinates expressed with respect

to the rotating syndic reference frame. The equations of motion are derived

by expressing the position of the spacecraft with respect to the barycenter of

the system, which is the center of the frame, as shown by Figure 9. Figure

9 illustrates the x1 axis connecting Earth’s center to the Moon’s center and

the x3 axis defining the Moon’s rotation plane around the Earth. The x2 axis
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Fig. 7: Position and velocity error standard deviations comparison over a pe-
riod of 12 orbits with 3 observations each 2 orbits.

closes the frame. The problem is scaled such that variables and units are non

dimensional. The location of the barycenter for the system is defined by the

mass ratio

µ∗ =
mMOON

mMOON +mEARTH
= 0.0121505856 (44)
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Fig. 8: Position and Velocity EM clustering representation with 3 and 5 Gaus-
sians. First propagation from initial condition in the case of 3 observations each
2 orbits. Portrait of the Gaussian kernels before the measurement update.

Fig. 9: Coordinates in Earth-Moon system.

such that the distance between the two celestial masses defines the distance

unit: 1 DU = 385692,5 km. Under this parametrization, the distances of the
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spacecraft with respect to the Earth, r1, and to the Moon, r2, are

r1 =
√

(x1 + µ∗)2 + x22 + x23 (45)

r2 =
√

(x1 − 1 + µ∗)2 + x22 + x23 (46)

The spacecraft, assumed of negligible mass compared to the two bodies, is

governed by the following equations of motion [11]:

ẍ1 = 2ẋ2 + x1 −
(1− µ∗)(x1 + µ∗)

r31
− µ∗(x1 − 1 + µ∗)

r32
(47)

ẍ2 = 2ẋ1 + x2 −
x2(1− µ∗)

r31
− x2µ

∗

r32
(48)

ẍ3 = −x3(1− µ∗)

r31
− x3µ

∗

r32
(49)

The dynamics are propagated at 1.4 Hz with a Runge-Kutta 7-8 integrator.

The system has five different equilibrium points, the so-called liberation or

Lagrange points. In the presented application, the filter estimates the orbit

parameters of the spacecraft around the unstable L2 location, at coordinates

(1.156, 0, 0) DU [5].

The initial state distribution is assumed to be Gaussian x0 ∼ N (x̂0,P0),

with mean at L2 with zero velocity and given covariance matrix P0 = 10−3I6×6.

The measurement model assumes the radial position of the spacecraft w.r.t.

the Earth and the line of sight direction of the planet, as in the previous
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problem,

y1 = r1 + η1 (50)

y2 = arctan2(
x2

x1 + µ∗

)
+ η2 (51)

y3 = arcsin
(x3
r1

)
+ η3 (52)

where ηi, with i = 1, 2, 3, is the measurement noise, assumed to be Gaussian.

The standard deviation of the error resembles the previous application.

The selected initial condition integrates to a bimodal PDF, caused by the

unstable nature of the L2 point. Therefore, depending on the true initial state

of the spacecraft, which is randomly selected according to the initial Gaussian

PDF, the equations of motion define two family of orbits, as shown in Figure

10. The different orbit realizations are reported in the (x1, x2) plane, as a

Fig. 10: 200 orbit realizations from L2, propagated for 2.7π.
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bidimensional projection of the actual tridimensional orbit. Figure 10 shows

that the left part of the initial Gaussian evolves with revolutions around the

Moon before leaving due to the gravitational assist. The other half of the initial

Gaussian moves away form the Moon and starts orbiting around the Earth.

Process noise is added to the system. The process noise is white and addi-

tive to the acceleration of the system. The process noise covariance matrix is

computed as [27]

T (tk+1, tk) =

[
(tk+1 − tk)2

2
I3 (tk+1 − tk)I3

]T
(53)

Qk+1 = σ2
QT (tk+1, tk)T (tk+1, tk)T (54)

Considering that the state of the system is scaled by the Earth/Moon distance,

the value of σQ is chosen to be 10−6.

A Monte Carlo analysis with 200 runs has been performed with EMDA2-3

and it is reported in Figure 11. The graphs are zoomed in from the initial large

uncertainty levels in order to show convergence. The overlapping, at steady

state, between the continuous and dashed blue lines proves the matching be-

tween the effective and the estimated uncertainties of the system, expressed as

3σ. Therefore, even in the new scenario, EMDA2-3 is a consistent filter that

reaches a precise estimate of the state. The error mean is null as expected by

the unbiased nature of the filter.

The performances of EMDAc-N is compared against the other filters, as

done in the previous problem. Figure 12 reports the standard deviation analy-
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Fig. 11: 400 Monte Carlo runs depicting the performance of EMDA2-3 at 1.4
Hz for 2.7π.

sis for position, left, and velocity, right, of the spacecraft. EMDA2-3 has been

compared to the UKF, the BPF, and DAEnKF-2. DAHO-1 and DAEnKF-1

(which reduce to the EKF) diverge; and is therefore not reported. From the

figure, it can be noted that the UKF diverges and the effective standard devi-

ation is larger than the filter’s own prediction. The DAHO-2 has an analogous

behavior to the UKF and it is not reported in the figure. The BPF diverges and

the orange curves start growing after the first step. Based on following each

single particle, the BPF follows both paths from the initial PDF. Therefore, in
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Fig. 12: Position and Velocity error standard deviations comparison with 200
Monte Carlo runs.

the first steps, the corresponding estimate is in conflict on which path of the

bifurcation to take, and the filter fails. The remaining two filters, DAEnKF-2

and EMDA2-3, converge and they reach steady state with consistency. These

are the filters that approximate the PDFs with clustering, where the mea-

surement likelihood better weights, and picks, which one of the two modes
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the true state belongs to. However, as in the previous example, EMDA2-3

shows an improvement in accuracy and its precision levels are superior to its

single-Gaussian counterpart. Indeed, the blue lines lie below the red lines dur-

ing the whole simulation, both for position and velocity. EMDA2-5 achieves

convergence with consistency, and it is slightly more accurate than EMDA2-3.

However, it is not reported in the figure for clarity purposes.

A computational time analysis is performed on the L2 orbit determination

problem in order to underline the benefits of using DA evaluation techniques

for the propagation of an ensemble of points. The time analysis studies the

average computational time requested by the processor to perform one single

run of the Monte Carlo analysis:

τ =

∑MC
i

∑Nsteps

j titer

MC
(55)

where titer is the computational time requested for one single iteration of the

algorithm, Nsteps is the total number of steps for each Monte Carlo run, and

MC is the number of runs. Table 1 reports the values of τ among different

filters and for three sizes of particles in the ensemble. The table reports the

BPF, EMDA2-3, EMDA2-5, DAEnKF-2, and the MCKF. The MCKF is the

classical Monte Carlo Kalman Filter, implemented without differential algebra

techniques. Consequently, the particles in MCKF are individually propagated.

Figure 13 gives a visual representation of τ through a bar graph. The figure

proves that DA reduces the computational time of the filtering algorithm. The

three filters based on DA are the fastest, while the BPF is the slowest. DA uses
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Filter 1 · 104 2 · 104 3 · 104

BPF 11.798 21.454 35.512
MCKF 12.022 20.135 26.915

EMDA2-5 8.784 17.504 26.698
EMDA2-3 6.613 13.096 19.432

DAEnKF-2 1.659 3.311 4.865

Table 1: Computational time τ analysis among different filters for different
ensemble size.

the polynomial map of deviations to propagate all the points with a singe DA

integration and n evaluations, while classic particle based filtering techniques,

such as the BPF and the MCKF, perform n propagations. Therefore, the

main advantage of leveraging DA is appreciated by comparing the DAEnKF-2

computational time with that of the MCKF. The two filters have the same

accuracy and robustness levels, but DAEnKF-2 is considerably faster. It is

important to re-emphasize that DAEnKF-c is equivalent to EMDAc-1, by

selecting N = 1 the filter skips the clustering (K-means and the EM) part

of its algorithm. Therefore, in the figure, DAEnKF-2 is the fastest algorithm,

and the computational time increases as we increase the number of Gaussian

kernels. Increasing the number of kernels produces a more precise estimate

at the cost of a heavier computational burden. As expected, as the number

of particles n becomes larger, the computational effort increases as well. The

value of τ requested by EMDAc-N depends also on the tolerance selected to

stop the EM iterations. Initializing EM with the output of K-means typically

requires only few iterations.
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Fig. 13: Computational time comparison among different filters.

6 Conclusions

A new differential algebra particle filter has been presented. The nonlinearity

of the dynamics and measurements is approximated by high order Taylor se-

ries expansions using differential algebra (DA) techniques. Using a truncated

Taylor series representation of the dynamics, the propagation step of each

particle is replaced with a faster polynomial evaluation. Working in the DA

framework significantly reduces the computational burden required by stan-

dard approaches to propagate particles forward in time [7] [19], while retaining

high accuracy [24] [20]. The proposed algorithm, named EMDAc-N , utilizes
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soft clustering, thought Expectation Maximization. As a consequence, dur-

ing the measurement update, each model works with the whole set of points.

Clustering the propagated PDF improves the estimation of the state of the

system: multiple models better represent the shape of the distribution espe-

cially for long time intervals, better than a single Gaussian. In the numerical

examples considered, it is shown that increasing the number of Gaussian com-

ponents achieves satisfactory accuracy and robustness levels in the challenging

situation of having sporadic measurements, where filters with a Gaussian ap-

proximation fail to converge.
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