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Abstract—A novel estimator is presented that expands the
typical state and covariance update laws of Kalman filters to
polynomial updates in the measurement. The filter employs
Taylor series approximations of the nonlinear dynamic and
measurement functions. All polynomials (functions approxima-
tion, state update, and covariance update) can be selected up
to an arbitrary order to trade between filter’s accuracy and
computational time. The performance of the algorithm is tested
in numerical simulations.
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I. INTRODUCTION

Estimation is the process of inferring the value of a quantity
of interest from indirect, inaccurate and noisy observations.
When the quantity of interest is the (current) state of a dynamic
system, the problem is often referred to as “filtering”: the best
estimate is obtained by “filtering out” the noise from noisy
measurements. The estimate is the output given by an optimal
estimator, which is a computational algorithm that processes
measurements while maximizing a certain performance index.
The optimal estimator makes the best use of the data, the
knowledge of the system, and of the disturbances.

For the well-known linear and Gaussian case, the posterior
distribution remains Gaussian and the Kalman Filter [1], [2]
provides the mechanization to calculate its mean and covari-
ance matrix. However, most practical problems are nonlinear
in the dynamics and in the measurement equations, leading to
non-Gaussian probability density functions (PDFs).

Many techniques have been developed to deal with the
nonlinear estimation problem. A simple solution is based on
the linearization of the dynamics and measurement equations
around the most current estimate. The Extended Kalman Filter
(EKF) [3] algorithm applies the Kalman filter mechanization to
the linearized system. Another well-know technique to account
for the system nonlinearities is the unscented transformation.
The Unscented Kalman filter (UKF) [4], [5] is able to better
handle the effects of nonlinearities in the dynamics and in
the measurements and, typically, achieves higher accuracy and
robustness levels when compared to the EKF. The UKF applies
the unscented transformation to achieve a more accurate
approximation of the predicted mean and covariance matrix.
The UKF is a linear estimator, i.e. the estimate is a linear
function of the current measurement.

The first order approximation of the EKF can be extended
to higher order Taylor series [3], [6]. Generally, the higher the
order of the Taylor series, the better the performance of the

filter. The Gaussian Second Order Filter (GSOF) [7] truncates
the Taylor series at second order to better account for the
system’s nonlinearities. Truncating the Taylor series to order c
requires knowledge of the estimation error’s central moments
up to order 2c in order to calculate the Kalman gain. E.g.,
the EKF truncates at first order and it requires knowledge of
the covariance matrices. Consequentially, the GSOF requires
knowledge of the third and forth central moments of the state
distribution. At each iteration, the GSOF approximates the
prior PDF as Gaussian so that the third order central moment
is zero and the fourth is easily calculated from the covariance
matrix. The GSOF performs a linear update based on a second
order approximation of the posterior estimation error. Linear
Gaussian filters exist up to any arbitrary truncation order of
the Taylor series appriximation of the dynamic/measurement
functions [8].

Other linear filters make different types of approximations,
such as Gaussian quadrature (QKF)[9], spherical cubature
(CKF)[10], ensemble points (EnKF)[11], central differences
(CDKF)[12], finite differences (DDKF) [13], etc..

All of the filters mentioned above are linear estimators, i.e.
the estimate is a linear function of the current measurement.
The conditional mean, which is the optimal Minimum Mean
Square Error (MMSE) solution, is typically some unknown
nonlinear function of the measurement whose exact compu-
tation is usually not feasible. A linear estimator, even when
accounting for the nonlinearities of the measurement function,
is typically outperformed by nonlinear estimators such as the
Gaussian Sum Filter (GSF) [14], [15] or Particle Filters (PF)
such as Bootstrap PF (BPF) [16], Marginalized PF (MPF) [17],
Auxiliary PF (APF), Unscented PF (UPF) [18], Gaussian PF
(GPF) [19], Monte Carlo Filter PF (MCFPF) [20].

In Ref. [21] derives the evolution of the conditional mean,
covariance, and higher order moments of a dynamic system
subject to continuous measurements. To make the solution
practical, the nonlinear dynamic and measurement equations
are approximated with Taylor series expansions.

Another, less studied, approach to nonlinear filtering is to
expand the linear update structure to a polynomial update
function of the measurement. De Santis et al. [22] propose
an augmented state to obtain a polynomial update but pre-
serving the linear update structure. Their work augments
the measurement vector with its square to form a quadratic
update [22] and was extended to polynomial updates [23]. Li
et al. [24] propose to augment the measurement vector with
uncorrelated nonlinear conversions. Similarly to [22], [23],
Liu et al. [25] obtain a nonlinear estimator preserving the
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linear structure of the measurement update. The mean square
error (MSE) can be minimized by an optimal selection of the
uncorrelated functions [26]. Later, Zhang and Lan merged [26]
with the GSF mathematics [27]. Servadio and Zanetti [28] also
implemented a quadratic update (extendable to polynomial
update of any order) based on Taylor series expansions. The
polynomial update requires knowledge of high order central
moments, and [28] carries these moments, exactly like the
EKF carries mean and covariance. The computational demand
of carrying higher order central moments (propagating forward
in time and updating with measurement data) grows quickly
with the truncation order of the Taylor series, the size of
the state vector, and the order of the polynomial update.
Ref. [29] performs a polynomial update without carrying the
higher order central moments and hence reduces overall com-
putational cost by approximating non-Gaussian distributions
as polynomial transformation of Gaussian random variables.
In doing so, all high order central moments are easily and
efficiently calculated in closed form. Consequently, in [29],
polynomial updates can be performed much more efficiently
than in [28].

The update methodologies presented in [22], [23], [24],
[28], [29] produce a more precise state estimate than those
produced by a linear state update. This work introduces a
higher order update for the covariance matrix as well as for the
state update, which results in a more accurate quantification of
the uncertainty associated with the estimate. In turn, the more
accurate uncertainty representation produces a more accurate
estimator and hence a reduced estimation error.

The paper is structured in the following way. First a short
background section highlights the novel contributions of the
work. This is followed by the development of the new method-
ology and by applications to three numerical examples. Lastly,
conclusions are drawn.

II. BACKGROUND

The linear update rule for mean x̂+ and covariance matrix
P+

xx are given by

x̂+ = x̂− + K(ỹ − ŷ−) (1)

P+
xx = P−xx −KPyyKT (2)

where K is the Kalman gain, ỹ is the measurement outcome,
ŷ− is the predicted measurement mean, x̂− is the prior mean,
P−xx is the covariance of the state and Pyy is the covariance
of the measurement. The above equations are optimal in a
minimum mean square error (MMSE) only when the prior
distribution and the measurement are jointly Gaussian (which
implies a linear relation between the two). In general the
MMSE estimate is the conditional mean, an unknown and
typically nonlinear function of the measurement outcome;
Equation (1) is the statistical linear regression of the condi-
tional mean [30], that is to say: Equation (1) is the best linear
fit of the conditional mean with respect to a mean-square error
performance index:

x̂+ ≈ E
{

x
∣∣∣y = ỹ

}

where the approximation holds to first order. Equation (2) on
the other hand, is the total covariance of the estimation error:

P+
xx = E

{
(x− x̂+) (x− x̂+)T

}
but it is also the best constant approximation of the conditional
covariance of the state given the measurement, also in a mean-
square error sense.

P+
xx ≈ E

{
(x− E {x}) (x− E {x})T

∣∣∣y = ỹ
}

where the approximation holds to zeroth order.
For nonlinear dynamics/measurements, the linear update

equations above are not fully recursive, processing nonlinear
measurements as a batch is more accurate than processing
them individually [28]. For nonlinear systems, Bayes’ rule can
be applied recursively to obtain an optimal estimator, that is
to say: the quantity to be calculated recursively is the condi-
tional PDF given the measurements outcome. Hence, a linear
recursive filter can be interpreted as an approximated filter
where the distribution of the state given the measurements is
approximately Gaussian with mean x̂+ and covariance matrix
P+

xx.
Experience has shown that the order of the statistical

regression approximation of the covariance needs to be lower
than that of the mean in order to obtain for good numerical
performance of the algorithm. A zeroth order covariance
approximation, therefore, has endured as a companion of a
linear mean update rule, but it is also used in higher order
update methodologies [22], [23], [24], [28], [29]. Our prior
work, HOPUF-`-c [29], presents a high order polynomial state
update, i.e. a higher-than-linear polynomial approximation of
the conditional mean. This paper presents a novel higher
order polynomial covariance update to better approximate
the conditional covariance than the standard zeroth order
approach.

A. The Polynomial Estimator

Gaussian filters are linear filters that approximate the distri-
bution of the state given the measurements as Gaussian with
mean x̂+ and covariance matrix P+

xx. This is equivalent to
approximating the distribution of the state given the measure-
ments as a linear transformation of a standard normal. This
linear transformation is given by a shift of x̂+ and a scale of√

P+
xx.

Our previous work (HOPUF-`-c) expanded this concept by
introducing a filter that approximates the distribution of the
state given the measurements as a polynomial transformations
of standard normal random variables and uses a higher-than-
linear polynomial update function. This work introduces a
novel covariance update technique and uses the HOPUF-`-c
state update which is summarized here.

Let x be the state of the dynamic system which is desired to
be estimated, and let y be another random vector, sampleable,
related to x. Estimators are functions g(y) that infer the
unknown value of x based on the know outcome of y.
Polynomial estimators are a subset of all estimators which,
using the Kronecker operator, can be written as

g(y) = a + K1y + K2y
[2] + K3y

[3] + K4y
[4] + . . . (3)
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where a is a constant, each Ki is a constant matrix of
appropriate dimensions, and each y[i] is calculated using the
Kronecker product

y[i] = y ⊗ y ⊗ y ⊗ . . . (4)

In order to avoid redundancy, each repeated component of
Eq. (4) generated by the Kronecker product is eliminated,
which means that, as an example, only one term between yiyj
and yjyi is kept. It is convenient to derive the estimator’s
constants by working with deviation vectors. Deviation vectors
are defined as

dx = x− E {x} (5)

dy{i} = y[i] − E
{

y[i]
}

(6)

Deviations have zero mean by construction. The family of
polynomial estimators defined by Equation (3) is redefined by
adding and subtracting constants, in order to obtain a new, but
theoretically equivalent, polynomial estimator family

g(y) = a + E {x}+ K1(y − E {y})+

+ K2

(
y[2] − E

{
y[2]
})

+

+ K3

(
y[3] − E

{
y[3]
})

+ . . .

= a + E {x}+ K1dy + K2 dy
{2} + K3 dy

{3} + . . .
(7)

= a + E {x}+KdY (8)

where both the measurement residual with its powers, dY , and
the matrices Ki are stacked

K =
[
K1 K2 K3 . . .

]
(9)

dY =
[
dyT dy{2}T dy{2}T . . .

]T
(10)

The optimal estimator, in a Minimum Mean Square Error
(MMSE) sense, satisfies the orthogonality principle, from
which it follows that the optimal polynomial update estimator
becomes

x̂ = E {x}+ PxYP−1YYdY (11)

Matrices PxY and PYY are the augmented state-measurement
cross-covariance matrix and the augmented measurement co-
variance matrix, respectively. These matrices are constructed
blockwise by using covariances Pxy[j] and Py[i]y[j] , for any
combination of i and j. As an example, Py[3]y[4] indicates
the covariance between the third order measurement vector
y[3] and the forth order y[4]. Since deviations have zero mean
by construction, the identities Py[i]y[j] = Pdy{i}dy{j} and
Pxy[j] = Pdxdy{j} are valid ∀i, j ∈ N0.

B. Differential Algebra

In this work, Gaussian random vector undergo nonlinear
(polynomial) transformations. The methodology used here to
approximate these transformation is differential algebra (DA)
via the Differential Algebra Core Engine (DACE2.0) software
program. DA is used as a tool to implement the polynomial
filter. Other approximations of nonlinear transformations are

also possible but not considered here, [24] for example used
the Unscented Transformation.

The theory of DA has been developed by Martin Berz in
the late 1980’s [31]. The DA framework is an algebra of
Taylor polynomials. All functions are represented through a
matrix of coefficients and exponents rather than the classical
representation with an array of floating points (FP) numbers.
The DACE2.0 [32] software has a hard-coded library of
the Taylor series expansion of elementary functions. As a
consequence, derivatives are not computed numerically (e.g
finite differences), but evaluated directly from the Taylor
polynomials. DA offers a way of working in a computer
environment where the algebra of polynomials is endowed of
composition of function, function inversions, explicit system
solving, etc., as in the standard FP arithmetic.

Differential algebra has been proven to reduce computa-
tional costs in solving ordinary differential equations (ODE)
[33]. Once the maximum truncation order of the polynomial is
selected, DA creates the Taylor polynomial expansion of the
flow of ODEs as a function of the provided initial conditions.
This approach can replace thousands of integrations with the
computationally faster evaluation of the Taylor expansion [34].
As a result, the computational burden reduces considerably
[11]. In the filtering problem, DA techniques have been used
for the development of an efficient mapping of uncertainties
[35] and for the evaluation of high-order moments [36].
Wittig et al. [37] developed a domain splitting technique that
improves the state propagation when initial uncertainties are
large by creating multiple polynomials.

The main concept of DA is that each function f(x) can be
expressed as a polynomials p(δx); where the new variable δx
is the deviation from the expansion center x̂. The polynomial
p(δx) is the Taylor series expansion of f(x), centered at x̂,
and truncated up to a user-selected order c.

For a detailed description of DA, its techniques, and how
the DACE2.0 works in a computer environment, the reader is
referred to the references.

III. THE STATE AND COVARIANCE ESTIMATION FILTER

A new filtering technique, based on a double polynomial
estimator, is proposed in the DA framework. The double
nature of the filter refers to the sequential estimation of
the state and the covariance, where, at each time step, the
same measurement outcome is used twice to achieve matching
between the conditioned state mean and its relative uncertainty
spread.

Consider the generic dynamic system described by the
following equations of motion and measurement equations:

xk+1 = f(xk) + vk (12)
yk+1 = h(xk+1) + wk+1 (13)

where f(·) is the dynamics function, xk is the n-dimensional
state of the system at time-step k, yk+1 is the m-dimensional
measurement vector at time-step k + 1, and h(·) is the
measurement function. The noises are assumed to be zero
mean Gaussians and uncorrelated, such that their distribution
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is fully described by the first two moments. For all discrete
time indexes i and j

E
{
viw

T
j

}
= 0 (14)

E
{
viv

T
j

}
= Qiδij (15)

E
{
wiw

T
j

}
= Riδij (16)

where Qi is the process noise autocovariance function while
Ri is for the measurement noise. The initial condition of the
state of the system is assumed to be Gaussian as well x0 ∼
N (x̂0,P0); however, for all other time steps k > 0, the state
distribution will be non-Gaussian due the nonlinearities in the
dynamics.

The main result of this paper, the State And Covariance
Estimation Filter (SACE-c-η-µ) shares the prediction step with
our previous work [29] and introduces a new update technique.
The single distribution used in SACE-c-η-µ is expanded us-
ing Gaussian Multiple Models (GMM) theory [38] to create
the Multiple Models State And Covariance Estimation Filter
(SACEMM-c-η-µ).

SACE-c-η-µ, is composed of three different parts: the
prediction, the state update, and the covariance update. The
three integers c, η and µ in SACE-c-η-µ refer to the tuning
parameters of the filter: they are, respectively, the order of
the Taylor polynomial approximation of f(·) and h(·), (c), the
order of the state polynomial update, (η), and the order of the
covariance polynomial update, (µ).

A. Prediction
At the beginning of each time step, the state distribution

is assumed to be Gaussian xk ∼ N (x̂k,Pk). The state can
therefore be initialized in the DA framework as a first order
polynomial

xk = xk(δxk) = x̂k + Skδxk (17)

where SkS
T
k = Pk and the DA variable δxk = xk − x̂k

expresses the deviation from the expansion center and it is
interpreted as a Gaussian with zero mean and identity covari-
ance matrix. Therefore, matrix Sk (here calculated through
Cholesky Decomposition), scales the coefficients of the state
polynomial and results in the moments of xk easily calculated
from the moments of N (0, I).

The propagation function is applied directly to the state
polynomial, such that the predicted state vector is

x−k+1 = x−k+1(δxk) = f
(
xk(δxk)

)
(18)

where x−k+1 indicates the Taylor series expansion of the dy-
namics centered at x̂k and truncated at the user-defined integer
order c. Equation (18) is carried out in the DA framework.
Each component of x−k+1 is a polynomial map (centered at
x̂k) that maps deviations (δxk) from time step k to time step
k + 1 and describes how the state PDF evolves in time. The
predicted polynomials are lacking the influence of the process
noise. Process noise can be mapped in the DA framework with
the same representation reserved for the state of the system.
Thus, a new DA variable δvk, interpreted again as a standard
normal random vector, is introduced

x−k+1(δxk, δvk) := x−k+1(δxk) + Tkδvk (19)

where vk = Tkδvk and TkT
T
k = Qk.

Analogously, the predicted measurement is expressed as a
Taylor polynomial expansion in the DA framework

yk+1 = yk+1(δxk, δvk) = h
(
x−k+1(δxk, δvk)

)
(20)

where yk+1 is, again, a polynomial centered at x̂k with
maximum order c. In Equation (20), the expansion is now
w.r.t. both the state deviation vector (δxk) and the process
noise (δvk). The influence of the measurement noise is added
to the polynomials like in Equation (19). A new DA variable
δwk+1 is introduced

yk+1(δxk, δvk, δwk+1) := yk+1(δxk, δvk) + Uk+1δwk+1

(21)
where wk = Ukδwk and UkU

T
k = Rk. Once again, δwk+1

is interpreted as a standard normal random vector.
All the predicted quantities have been calculated and they

are represented as polynomial functions of standard random
vectors. The number of variables is 2n+m: n deviations map
the state behavior, n map the process noise, and the remaining
m map the measurement noise. The Gaussian nature of the
random vectors leads to a fast evaluation of all expectation
operations since, for a Gaussian PDF, central moments can be
easily computed using the Isserlis’ formulation [39].

B. The State Polynomial Update

The second part of SACE-c-η-µ is the state polynomial
update. After selecting the integer c in the prediction step,
the user defines a second integer, η, which selects the order of
the polynomial estimator dedicated to the state of the system.

The polynomial update evaluates the augmented Kalman
gain and for high powers of the measurement polynomials.
Starting from the latter,

y
[2]
k+1 = yk+1 ⊗ yk+1 (22)

y
[i]
k+1 = yk+1 ⊗ yk+1 ⊗ . . . (23)

with i = 1, . . . , η and, once again, the redundant components
are eliminated, in order to have independent measurements.

The means of the predicted state polynomials are now eval-
uated. Each polynomial undergoes the expectation operator
which, being a linear operator, works directly on the single
monomials of the expansion [8].

x̂− = E
{
x−k+1

}
(24)

The deviations have a Gaussian distribution with zero mean
and identity covariance matrix, therefore the expected value
substitutes the relative Isserlis’ moment in for each monomial,
according to Table I.

exponent 0 1 2 3 4 5 6 7 8 . . .
coefficient 1 0 1 0 3 0 15 0 105 . . .

TABLE I
ISSERLIS’ MOMENTS OF GAUSSIAN N (0, 1)

For example: E
{
αδx81δx

4
2δx

6
4δv

2
2δw

4
3

}
= 4725α. The pre-
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dicted means of the measurement polynomials are similarly
evaluated with Equation (24)

ŷk+1 = E {yk+1} (25)

ŷ
[2]
k+1 = E

{
y
[2]
k+1

}
(26)

ŷ
[i]
k+1 = E

{
y
[i]
k+1

}
(27)

where, once again, i = 1, . . . , η.
The augmented measurement covariance PYY,[η] is evalu-

ated blockwise. The matrix is guaranteed to be nonsingular
because redundant rows and columns have been eliminated.
The matrix is symmetric and each block is evaluated as

Py[i]y[j] = E
{

(y
[i]
k+1 − ŷ

[i]
k+1)(y

[j]
k+1 − ŷ

[j]
k+1)T

}
(28)

∀i, j = 1, . . . , η. Every time a polynomial multiplies itself, the
maximum truncation order of the Taylor series doubles. For
example, the evaluation of Py[5]y[3] applies the expectation
operator to a polynomial with monomials up to order 8c. The
augmented state-measurement cross covariance matrix PxY,[η]
is evaluated blockwise, each block is evaluated as

Pxy[i] = E
{

(x−k+1 − x̂−k+1)(y
[i]
k+1 − ŷ

[i]
k+1)T

}
(29)

∀i = 1, . . . , η. The subscript [η] specifies that the covariance
matrices are created with measurement powers up to order
η. From these covariances it is now possible to evaluate the
augmented Kalman gain

K = PxY,[η]P
−1
YY,[η] (30)

Denote with ỹk+1 the numerical outcome of the random
vector yk+1, its powers are evaluated using the Kronecker
product

ỹ
[2]
k+1 = ỹk+1 ⊗ ỹk+1 (31)

ỹ
[i]
k+1 = ỹk+1 ⊗ ỹk+1 ⊗ . . . (32)

with i = 1, . . . , η and, once again, the redundant components
are eliminated. The polynomial update exploits the influence
of high powers from the measurement outcome. The measure-
ment residual is developed to create the augmented innovation
vector

dỸ(δxk, δvk, δwk+1) =


ỹk+1 − yk+1(δxk, δvk, δwk+1)

ỹ
[2]
k+1 − y

[2]
k+1(δxk, δvk, δwk+1)

. . .

ỹ
[η]
k+1 − y

[η]
k+1(δxk, δvk, δwk+1)


(33)

The updated distribution (polynomial) of the state is given by

x+
k+1(δxk, δvk, δwk+1) =

x−k+1(δxk, δvk) +KdỸ(δxk, δvk, δwk+1) (34)

and the posterior estimate is its mean

x̂+
k+1 = E

{
x+
k+1(δxk, δvk, δwk+1)

}
(35)

evaluated, through Isserlis’s moments, monomial by monomial
using Table I.

Equation (34) shows that the state polynomials are func-
tion of the three different deviations: the state deviation,

the process noise, and the measurement noise. Furthermore,
the new order of the polynomial as increased by a factor
η, dictated by the order of the polynomial update. If the
order of the polynomial approximation of the prior distribu-
tion (x−k+1(δxk, δvk)) is c, then, the order of the posterior
polynomial (x+

k+1(δxk, δvk, δwk+1)) is ηc. The higher the
polynomial order, the higher the number of moments to be
calculated by Table I, which leads to a higher computational
burden.

C. The Covariance Polynomial Update

The third, and last, part of SACE-c-η-µ is the covariance
polynomial update. After having estimated the state of the
system, SACE-c-η-µ applies a second polynomial estimator
to identify the value of the state covariance conditioned to
the measurements. Therefore, the user defines one last integer
parameter, µ, that specifies the order of the covariance poly-
nomial update. Unlike previous tuning parameters, µ cannot
be freely chosen but it has to respect the inequality µ < η.
The covariance cannot have an higher update order than the
state.

The covariance matrix is obtained as

Pxx,k+1 = E
{

(x+
k+1 − x̂+

k+1)(x+
k+1 − x̂+

k+1)T
}

(36)

This value shows the average spread of the posterior distribu-
tion among all different possible outcomes, ỹ, of the random
variable y. Equation (36) is the equivalent of the classical
covariance update formulation, Equation (2), that is used in the
most common filters such as EKF, UKF, QKF, CBF, Central
Difference Filter, GSOF, etc. Therefore, even if correct, using
the average error covariance does not extract all the possible
information from the measurement outcome. Similar to the
polynomial formulation for estimating the state presented in
Equation (7), Equation (36) can be seen as a zeroth order
polynomial estimator of the covariance matrix.

A new approach is therefore presented in which the estimate
of the covariance is performed to order higher than zero. De-
fine a polynomial vector, ρk+1, as the covariance polynomial

ρ−k+1(δxk, δvk, δwk+1) = (x+
k+1 − x̂+

k+1)⊗ (x+
k+1 − x̂+

k+1)
(37)

where, in order to reduce the computational burden, the
redundant terms of the symmetric covariance matrix have
been eliminated, e.g. the upper diagonal terms are removed.
The covariance polynomial maximum order is 2ηc, being
the square of the posterior distribution. The mean of ρk+1

is exactly the vectorized version of the covariance matrix
expressed in Equation (36)

ρ̂−k+1 = E
{
ρ−k+1(δxk, δvk, δwk+1)

}
(38)

= stack(Pxx,k+1) (39)

where the stack() operator indicates the vectorization of a ma-
trix, performed by stacking columns on top of each other. The
covariance update is treated in the same mannar as the state
vector: adding to a known prior a polynomial function of the
measurement outcome ỹk+1. This second polynomial update
provides an updated covariance value that better represents the
state estimate’s uncertainty.
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The starting point is the already computed augmented
measurement covariance matrix PYY,[µ]. The constrain µ < η
makes PYY,[µ] a subset of PYY,[η], obtained by selecting the
first µ rows and columns. The cross covariance matrix PρY,[µ]
is evaluated block-wise

PρY,[µ] =
[
Pρy Pρy[2] Pρy[3] . . .

]
(40)

similarly to PxY,[η]. Each block is obtained as

Pρy[i] = E
{

(ρ−k+1 − ρ̂−k+1)(y
[i]
k+1 − ŷ

[i]
k+1)T

}
(41)

with i = 1, . . . , µ. The Kalman gain associated to the covari-
ance correction is calculated as

G = PρY,[µ]P
−1
YY,[µ] (42)

The covariance is updated to its posterior estimate as

ρ̂+
k+1 = ρ̂−k+1 + G


ỹk+1 − ŷk+1

ỹ
[2]
k+1 − ŷ

[2]
k+1

. . .

ỹ
[µ]
k+1 − ŷ

[µ]
k+1

 (43)

where the influence of the measurement is weighted by the
augmented Kalman gain. Before starting the next iteration,
vector ρ̂+

k+1 is brough back to its matrix formulation

P̂xx,k+1 = matrix(ρ̂+
k+1) (44)

where the matrix() operator is the inverse of the stack()
operator.

The updated posterior distribution can be approximated as
Gaussian with mean x̂+

k+1 and covariance matrix P̂xx,k+1 to
start the next iteration from Equation (17), where the DA
variables related to the noises are discarded and a new state
deviation vector is initialized.

SACE-c-η-µ contain three tuning parameters to enhance
the performances of classic estimators. In fact, SACE-1-1-0
reduces to the extended Kalman filter and SACE-2-1-0 is the
Gaussian Second Order Filter. The polynomial estimator better
weights the information from the measurement by computing
high order central moments. The increase in accuracy is paid
by an increase in computational effort, which practically limits
the filter’s order selection. The highest polynomial order the
filter has to compute (in the evaluation of Pρy[µ] ) is (2η+µ)c.

The computational time required by the filter depends on the
selection of its three tuning parameters and on the dimension
of the state vector. SACE-c-η-µ is not suitable for extremely
large systems because of the exponential grow in the number
of monomials in the Taylor expansion [40]. An in-depth
analysis of the computational time of filters developed in
the DACE2.0 framework is presented in [41]. The reference
portraits an exhaustive analysis of the execution time on
the BeagleBone Black (BBB) Single Board Computer, with
particular focus on the duty cycles of filter execution on BBB
and its dependency on the Taylor truncation order.

IV. THE MULTIPLE MODELS SPACE AND COVARIANCE
ESTIMATION FILTER

SACE-c-η-µ approximates the time propagation of the state
with one single polynomial representation of the flow. How-
ever, as the Taylor polynomial series gets further away from
the expansion center, it becomes less accurate. Therefore,
when the initial uncertainties of the state distribution are ex-
tremely large, a single polynomial map may not be sufficient to
truthfully describe the predicted PDF [37]. Splitting the initial
uncertainties in multiple (smaller) sub-domains aids the filter
in reaching convergence. Thus, a second filter called Multiple
Models Space And Covariance Estimation Filter, SACEMM-
c-η-µ, merges SACE-c-η-µ with the GMM formulation. In
the DA framework, multiple models translate to multiple
polynomials.

A. Initialization

The initial state distribution is assumed to be Gaussian
x0 ∼ N (x̂0,P0). The initialization of the models follows
an analogy with the unscented transformation [5]. Therefore,
the initial domain is divided into θ = 2n + 1 models, where
n is the number of states. Each ith model is a Gaussian
with mean x̂0,{i} and covariance P0,{i}. Being symmetric, the
state covariance matrix can be elaborated into its eigenvalue
decomposition

P0 = VDVT (45)

where V is the matrix of eigenvectors that describes the ori-
entation of the uncertainty ellipsoids, and the diagonal matrix
of eigenvalues D describes the magnitude of the uncertainties.
The mean of each Gaussian kernel is selected as

x̂0,{0} = x̂0 (46)
x̂0,{j} = x̂0 + VDj j = 1, . . . , n (47)
x̂0,{j} = x̂0 + VDj−n j = n+ 1, . . . , 2n (48)

where Dj indicates the jth column of the matrix. The centers
of the models lie on the principal axes and their initial weights
are proportional to their probability w.r.t. the initial distribution

ω0,{i} =
(2π)

−n/2

W0

√
det P0

exp

(
−1

2

(
x̂0,{i} − x̂0

)T
P−10

(
x̂0,{i} − x̂0

))
(49)

W0 =

θ−1∑
i=0

ω0,{i} (50)

whereW0 normalizes the weights such that their sum is unity.
The models are assumed to share the same covariance, they
all have the same initial level of uncertainty

P0,{j} = P0 + x0x
T
0 −

θ−1∑
i=0

ω0,{i}x0,{i}x
T
0,{i} (51)

with j = 0, . . . , θ − 1. Therefore, at the beginning of the first
iteration, the initial Gaussian distribution has been divided in
θ smaller Gaussian kernels x0,{i} ∼ N (x̂0,{i},P0,{i}) with
the same covariance matrix and means on the principal axes,
selected as sigma points from the unscented transformation.
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B. Prediction

The models have been initialized as Gaussian Kernels.
SACEMM-c-η-µ applies SACE-c-η-µ on each kernel like it
were operating by its own. As a consequence, θ different poly-
nomials are created in the DA frameworks and θ polynomial
maps of the flow describe the time propagation of the state.

Pk,{i} = Sk,{i}S
T
k,{i} (52)

δxk,{i} = xk,{i} − x̂k,{i} (53)
xk,{i} = xk,{i}(δxk,{i}) = x̂k,{i} + Sk,{i}δxk,{i} (54)

x−k+1,{i} = x−k+1,{i}(δxk,{i}) = f
(
xk,{i}(δxk,{i})

)
(55)

with i = 0, . . . , θ − 1. Multiple Taylor series expansions
improve the approximation accuracy of the polynomial maps
since, at the boundaries, deviations are closer to their relative
centers. Following SACE-c-η-µ for each model, the process
noise is mapped on each polynomial expansion

vk,{i} = Tkδvk,{i} (56)

x−k+1,{i}(δxk,{i}, δvk,{i}) := x−k+1,{i}(δxk,{i}) + Tkδvk,{i}
(57)

and a measurement polynomial is evaluated for each kernel

wk+1,{i} = Uk+1δwk+1,{i} (58)
yk+1,{i} = yk+1,{i}(δxk,{i}, δvk,{i})

= h
(
x−k+1,{i}(δxk,{i}, δvk,{i})

)
(59)

Measurement noise is added in the DA framework

yk+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}) :=

yk+1,{i}(δxk,{i}, δvk,{i}) + Uk+1δwk+1,{i} (60)

such that the prediction step is completed for each Gaussian
kernel.

C. The State and Covariance Polynomial Update

The prediction step has been exploited by the introduction
of multiple polynomials. In the update step, each kernel
undergoes the polynomial update for the state and for the
covariance described by SACE-c-η-µ. Therefore, after having
selected η and µ as the orders for the polynomial estimators,
the state posterior estimate and the conditional covariance of
each model are evaluated as

x+
k+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}) = x−k+1,{i} +K{i}dỸ{i}

(61)

x̂+
k+1,{i} = E

{
x+
k+1,{i}(δxk,{i}, δvk,{i}, δwk+1,{i}

}
(62)

and

ρ̂+
k+1,{i} = ρ̂−k+1,{i} + G{i}


ỹk+1,{i} − ŷk+1,{i}

ỹ
[2]
k+1,{i} − ŷ

[2]
k+1,{i}

. . .

ỹ
[µ]
k+1,{i} − ŷ

[µ]
k+1,{i}

 (63)

P̂xx,k+1,{i} = matrix(ρ̂+
k+1,{i}) (64)

with i = 0, . . . , θ−1. Every Kalman gain and expectation has
been calculated according to the polynomial estimator theory

and using Table I, since each deviation is interpreted as a
standard normal random vector.

The influence of each ith Gaussian to the posterior PDF
needs to be updated as well. The posterior distribution of the
probability of each Gaussian given the measurements can be
evaluated using Bayes’ rule. Therefore, the updated weight of
each model is proportional to its measurement likelihood. Let
us define with P (yk+1|i,Yk) the probability of ỹk+1 to be
the outcome from the ith Gaussian:

P (ỹk+1|i,Yk) =
(2π)

−m/2√
det Pyy,{i}

exp

(
−1

2

(
ỹk+1 − ŷk+1,{i}

)
P−1yy,{i}

(
ỹk+1 − ŷk+1,{i}

))
(65)

where Yk indicates all the measurements realizations up to
time step k. The weight update formulation is derived, for the
ith kernel, as

ωk+1,{i} = P (i|Yk+1) =

= P (i|ỹk+1,Yk)

=
P (i, ỹk+1|Yk)

P (ỹk+1|Yk)

=
P (i, ỹk+1|Yk)∑θ−1
j=0 P (j, ỹk+1|Yk)

=
P (ỹk+1|i,Yk)P (i|Yk)∑θ−1

j=0 P (j, ỹk+1|Yk)

=
P (ỹk+1|i,Yk)∑θ−1

j=0 ωk,{j}P (ỹk+1|j,Yk)
ωk,{i} (66)

where the denominator normalizes the weights such that they
sum to unity. Equation (66) is recursive and modifies the
importance of each model based on how likelihood it could
have generated the measurement outcome.

The filtering algorithm has ended and it can start the
following iteration from x̂+

k+1,{i}, P̂xx,k+1,{i}, and ωk+1,{i}
for each model. However, the weighted state estimate, x̄, and
covariance, P̄, are calculated for downstream users and they
are used to assess the performance of the filtering technique.

x̄ =

θ∑
i=0

ωk+1,{i}x̂
+
k+1,{i} (67)

P̄ = −x̄x̄T +

θ∑
i=0

ωk+1,{i}

(
P̂xx,k+1,{i} + x̂+

k+1,{i}x̂
+T
k+1,{i}

)
(68)

Once again, for basic parameters, SACEMM-c-η-µ reduces
to well-know filters: in fact, picking SACEMM-1-1-0 reduces
to the GSF. The computational complexity of SACEMM-c-η-µ
is approximately θ times bigger when compared to SACE-c-
η-µ. Therefore, it is advised to operate the multiple models
technique when the initial state uncertainties are particularly
large, or when the time step is long enough that one polyno-
mial approximation is not sufficient to adequately represents
the flow of the dynamics. Therefore, for problems with high
initial uncertainty, SACEMM-c-η-µ can be used for the first
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few iteration steps and then replaced with SACE-c-η-µ once
the sate error covariance has decreased.

V. NUMERICAL EXAMPLES

The proposed filtering techniques have been applied to three
different scenarios. First, a scalar application gives a visual
representation of how the new update algorithm works and
highlights the innovative features as compared to other esti-
mators. The second problem consists in a tracking application
where the system undergoes the highly nonlinear dynamics
of a Lorenz96 system. The third application uses Lorenz63
dynamics to underline the benefits of the multiple model
filtering technique.

A. Scalar Problem

A simple scalar problem is presented here to highlight the
improvements of the new filtering technique by estimating the
conditional covariance. It has already been proven that high
order polynomial estimators are a better approximation of the
true MMSE [29]. However, the presented example underlines
the matching between state and covariance for each different
realization of the measurement.

Define a normal prior state distribution x ∼ N (1, 0.02) and
a measurement

y = 1/x+ ν (69)

where ν ∼ N (0, 0.003) is independent from x and represents
the measurement noise.

Figure 1 shows the true joint distribution of x and y
represented using 105 points (gray dots in the figure). The
figure compares SACE-c-η-µ and SACEMM-c-η-µ with a few
common estimators: the EKF, the UKF, the GSF, the Iterated
Extended Kalamn Filter (IKF) [42], the Particle Filter (PF),
and the high-order extended Kalman filter (DAHO-k) [35].
The first row of graphs (EKF, UKF, DAHO-3) contains linear
estimators, therefore their representation on the (x, y) plane is
a straight line, shown in red. The slope of the red line is the
Kalman gain, whose optimal value is PxyP−1yy . The different
slope shown by the different linear estimators is due to the
different approximation each linear filter employs to evaluate
the moments. The EKF applies basic linearization (Jacobians),
the UKF uses the unscented transformation, and DAHO-3 uses
Taylor polynomials up to the third order. The green lines depict
the filter’s own assessment of the estimation error uncertainty
as a ±3σ boundary. The different evaluation of the moments
leads to a different value on the estimation of the variance, as
it follows Equation (2). The green lines share the same slope
of the corresponding red line: they are just translated left (and
right) by 3σ. These linear filters estimate the same uncertainty
level regardless the measurement outcome and the predicted
covariance value is the mean among all the possible different
realizations.

The second row of graphs in Figure 1 shows nonlinear
estimators. The GSF has been implemented with 3 models,
which allows the estimator function, red line, to follow the
curved shape of the posterior distribution. However, when the
likelihood of one model becomes predominant with respect to

the others, the GSF behaves similarly to the EKF: this aspect is
mostly evident near the tails of the distribution. The estimated
covariance of the GSF is a function of the measurement
because it is evaluated as a weighted mean among all the
models, whose importance weight is based on their likelihood.
However, the ±3σ green lines show the same problems
connected with linear estimators: the lines are able to change
slope when the models have approximately the same weight,
otherwise they are straight. Furthermore, since the GSF can
be intended as multiple EKFs with reduced subdomains, the
filter shows the same behavior of the linear estimator at
the edges of the posterior PDF. The IKF performs multiple
updates to repeatedly calculate the measurement Jacobian each
time linearizing with respect to the most current estimate.
The IKF minimizes a nonlinear Least Square performance
index that, for appropriate probability distributions functions,
approximates the Maximum A Posteriori (MAP) estimate. As
such, the IKF is a nonlinear estimator, and its red line follows
the bend of the posterior distribution, setting on the most
likely value of x for each measurement outcome y. The ±3σ
green lines correctly bound the distribution; however, the IKF
is not necessary an unbiased filter and choosing the peak of
the posterior distribution does not necessarily minimize the
mean-square error. Hence the IKF’s mean square error is often
larger than filters based on the MMSE principle [43]. The third
nonlinear estimator presented in Figure 1 is the particle filter.
Particle filters are accurate nonlinear estimators that use an
ensemble of weighted particles to calculate the state estimate.
The weight of each particle depends on its measurement
likelihood. Both the state estimate and the predicted error
covariance are (nonlinear) functions of the measurements. The
graph shows that the PF estimates do not form well defined
lines, but the state and covariance estimate values depend on
the randomness of the data. In other words, while in the EKF
the state estimates from two separate updates with the same
measurement outcome give exactly the same value, two PF
estimates depend on the randomness of the initial ensemble
used to generate them. Consequently, the green and red “lines”
of the PF become thicker as moving towards the tails of the
posterior distribution.

In the third row SACE-3-5-2 and SACEMM-3-5-2 are
reported. The 5th order polynomial estimator is able to follow
the curved shape of the joint distribution and it accurately
approximates the true MMSE. The optimal MMSE is the
conditional mean, which visually is the line that divides in
half the distribution of y, as horizontal spread of points, for
each value of x. Therefore, while EKF, UKF and DAHO-3
can be interpreted as different linear approximation of the true
MMSE, SACE-3-5-2 represents a 5th order approximation,
which shows a more accurate result. By increasing the es-
timator order η to infinity, SACE-c-η-µ would asymptotically
reach the true MMSE. The green lines related to SACE-3-5-
2 show how the uncertainty level has become a (nonlinear)
function of the measurement. The ±3σ boundary increases
and tightens depending on the horizontal spread of samples
around the estimator function. For example, when the current
measurement is y = 1, SACE-3-5-2 gives its estimate with a
level of uncertainty that matches the spread of the gray points
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on the line y = 1. When the sensor gives y = 2, SACE-3-
5-2 outputs a level of confidence in its estimate higher than
in the previous case, since the spread of the gray samples
around its estimate at y = 2 is tighter. Therefore, the estimated
covariance of the filter is a function of the measurement and
the performance improves drastically because the uncertainties
level always matches the estimate, providing a more reliable
outcome. There appears to be no influential benefits in apply-
ing the multiple model polynomial estimator: SACEMM-3-5-2
behaves similarly to its single model counterpart and shares
the same features. However, at the tails of the distribution,
SACEMM-3-5-2 estimated conditional covariance better fol-
lows the distribution of the samples.

The accuracy level reached by each filter is compared in
Figure 2, where the results of a RMSE analysis is reported.

RMSE =

√∑Nsamples
i=1 (xi − x̂+i )2

Nsamples
(70)

The RMSE of each estimator is evaluated using the entire
set of 105 points. The bars show that SACE-3-5-2 is the
most accurate filter while the linear estimators are the least.
However, a more precise approximation of the measurement
equation leads to a smaller RMSE and to a more precise
estimate, as proven by DAHO-3 (3rd order Taylor polynomial)
being the most accurate among the other linear estimators.
The IKF shares the same accuracy level as DAHO-3, while
the other nonlinear estimators have lower RMSE. Two PF
implementations are shown with different number of particles;
103 and 104. It has error levels comparable with SACE-3-5-
2, and the PF with 104 particles has a heavier computational
burden. Figure 2 reports, in orange, the average GPU time of
each estimator, evaluated among all the 105 runs shown in
Figure 1. As expected, PF-1e4 has the highest computational
time, while linear estimators have the lowest. SACE-3-5-2
achieves the best accuracy levels comparable to sample-based
filters in a shorter amount of time, although the performance
of all nonlinear filter is very similar in this simple motivating
example.

The proposed scalar problem shows no significant difference
between SACE-c-η-µ and SACEMM-c-η-µ. Let us increase
the prior uncertainty level to x ∼ N (1, 0.03) in order to
underline the benefits of having multiple models. Figure 3
shows the estimator function and confidence level of the
two filters, among with the joint distribution. SACE-3-5-2
outputs an unphysical results for the predicted conditional
covariance of the state: a negative value of σ2. The initial
prior uncertainties are excessively large to allow the filter
to work properly. On the left tail of the join distribution,
the variance becomes negative and that is represented by
the green lines overlapping the red one, tp show that the
filtering algorithm is not functioning correctly. SACEMM-3-
5-2, on the other hand, has no issues in estimating correctly
both the state and the covariance for all possible outcomes
of the measurement. The green lines bound the samples of
the joint distribution narrowing and widening as needed. The
correct result is connected to the reduced initial covariance
associated to each model, which increases the filter robustness
and performance.

The proposed problem underlines a couple of characteristics
of the proposed algorithms. Unlike the linear and Gaussian
case, the conditional covariance and the estimation error
covariance are different. Linear filters employ the estimation
error covariance which expresses the average spread of the
estimation error over all possible measurement realizations.
This is a good metric, but once a measurement is actually
available to process, the covariance conditioned on the actual
measurement outcome is a more informative quantity, because
it provides the spread of the estimation error for the actual
value of y. In fact, the conditional covariance is a (nonlinear)
function of the measurement whose evaluation is usually non
feasible. SACE-c-η-µ and SACEMM-c-η-µ use a polynomial
estimator to approximate the function, achieving better results
with respect to filters that do not.

B. Lorenz96 System

The performance of the proposed filter is tested on a
Lorenz96 example [38] where the state dynamics are

dxi(t)

dt
= xi−1(t)(xi+1(t)−xi−2(t))−xi(t)+F+νi(t) (71)

with i = 1, . . . , 4, since x(t) is selected to be four-
dimensional. The following conventions are used: x−1(t) =
xn−1(t), x0(t) = xn(t), and x1(t) = xn+1(t). The term
F is a constant external force with value chosen equal to
eight, since it introduces a chaotic behavior in the system.
The initial condition is assumed to be Gaussian, with mean
x̂ =

[
F F F + 0.01 F

]T
and diagonal covariance ma-

trix, with the same standard deviation for each component of
the state: σx = 10−3. The process noise is assumed to be
Gaussian and uncorrelated among states, with known standard
deviation σν = 10−3. The dynamics are propagated at 2 Hz
for a total of 20 seconds. The measurement are obtained each
time step according to the following model

yk = Hx(tk) + µk, Hi,j =

{
1 j = 2i− 1

0 otherwise
(72)

with i = {1, 2} and j = {1, 2, 3, 4}. In other words,
the sensors observe the components of the state with odd
indices. Measurement noises are assumed to be Gaussian and
uncorrelated within each other and with the process noise.
The standard deviation is selected as σµ = 0.5: this value is
particularly high and filters based on linear estimators are not
able to track the state of the system and achieve convergence
[29].

Figure 4 shows the Monte Carlo analysis results performed
with SACE-2-3-2 on the presented application. The figure
shows, for each ith component of the state, the estimation
error of each realization (gray lines), calculated as

εj,i = xj,i − x̂j,i (73)

for each jth time step. A total of 100 realizations are reported.
Figure 4 describes the error means, in black, and the error
standard deviations, as 3σ values, in blue. The black lines
show that SACE-c-η-µ is an unbiased filter, as expected from
the theory of MMSE estimation. The predicted error standard



10

Fig. 1. Comparison among different estimators. Posterior distribution (gray), the estimator functions (red), and their confidence levels (green).

deviation, continuous blue line, is evaluated directly from
the updated covariance matrix, by taking the square root of
the diagonal terms. The effective performance of the filter is
assessed by the sample standard deviation of the Monte Carlo
estimation errors, dashed blue lines. At each time step, the
actual error covariance of the filter is evaluated by working
directly on the samples. The consistency of SACE-2-3-2 is
established by the overlapping of the dashed and continuous
blue lines, which proves that the filter can correctly predict its
own uncertainty levels.

The performance comparison among different filters is
shown in Figure 5 through another Monte Carlo analysis
conducted with 100 runs. The figure shows, for each filter, the
comparison between the effective and predicted error covari-
ance. The continuous lines represent the filter own estimate
of the error standard deviation, calculated directly form the

updated covariance matrix as the square root of its trace:

σ̄ =

√
tr(P̂xx) (74)

The dashed lines represent the effective error standard devi-
ation derived from the Monte Carlo analysis. A consistent
filter has the matching between its dashed and continuous line,
meaning that the estimated uncertainty level reflects the actual
error standard deviation. The top graph in Figure 5 shows how
linear estimators, the EKF, UKF, and DAHO-2, diverge (and
break down) while trying to track the state of the system.
The measurement noise level is excessively large and a linear
dependence on the measurement outcome is not sufficient to
achieve a correct estimate. The EKF lines also represent the
behavior of the IKF: since measurement is linear measurement
the IKF reduces to the EKF. The UKF and DAHO-2 use,
respectively, the unscented transformation and second order
Taylor polynomial to improve the prediction step of the filter
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Fig. 2. Comparison of RMSE and computational time among different estimators.

and have a more accurate propagated state prior distribution.
However, the update step is still linear and highly influenced
by the noise standard deviation that prevents the evaluation
of a reliable Kalman gain. The polynomial estimator better
weights the information from the measurements using high
order moments and it achieves convergence and consistency.
Therefore, SACE-2-3-0, in blue, and SACE-2-3-2, in red,
correctly estimate the state of the system along the whole
simulation. The bottom graph in Figure 5 zooms in for the
performance of SACE-c-η-µ for the two different sets of
parameters. SACE-2-3-0 shows a filter whose estimate is a
polynomial function of the measurement and its estimated co-
variance is evaluated as a mean among all possible resolutions;
it is not influenced by the measurement outcome. SACE-2-
3-2, on the other hand, improves accuracy by estimating the
covariance giving it the same importance reserved to the state.
Thus, the red lines settle below the blue ones for the whole
simulation, since the predicted error standard deviation better
matches the conditional mean.

C. Lorenz63 System

The performance of the proposed algorithms is also tested
on a Lorenz63 application [44], [38], a challenging nonlinear
system without process noise. The absence of process noise
causes impoverishments in particle filters typically resulting in
unsatisfactory performance. The state of the system undergoes
the following dynamics

dx1(t)

dt
= α(x2(t)− x1(t)) (75)

dx2(t)

dt
= x1(t)(γ − x3(t))− x2(t) (76)

dx3(t)

dt
= x1(t)x2(t)− βx3(t) (77)

where α = 10, β = 8/3, and γ = 28. For this selection of
parameters, the Lorenz system has chaotic solutions. Almost
all initial points will tend to the invariant set; the Lorenz
attractor. In the presented application, the initial condition

is assumed Gaussian with mean x̂ =
[
10 10 10

]T
and

diagonal covariance matrix, with the same standard deviation
for each component of the state: σx = 2.5. The state is
integrated in time at 30 Hz, with observations taken each time
step. The measurement model consists in the range of the state
from origin

yk =
√
x1(tk)2 + x2(tk)2 + x3(tk)2 + µk (78)

where measurement noise is assumed Gaussian with zero mean
and standard deviation σµ = 1.

Figure 6 shows, on the top, one of the trajectories described
by the state of the system, in its three components. The
Lorenz attractor has two main lobes symmetric with respect
to the x3 axis: the resulting pathway has been labeled as a
“butterfly” shape. A Monte Carlo analysis with 1000 real-
izations with SACEMM-2-5-2 is reported on the bottom of
Figure 6. For each ith component of the state, the estimation
error of each realization is calculated according to Equation
(73), and reported in gray. Analogously with the previous
application, the continuous blue lines represent the predicted
error standard deviations, as 3σ values, of each component,
while the dashed blue lines are the effective error standard
deviations, again as 3σ values, calculated directly from the
Monte Carlo realizations at each time step. The overlapping
between the dashed and the continuous lines indicates that
SACEMM-2-3-2 is a consistent filter able to correctly estimate
its own uncertainties. The black lines are the error means
and they prove the unbiased nature of the proposed filtering
technique, as expected from the MMSE theory.

The performance of the filters have been assessed through
a covariance comparison carried out with multiple Monte
Carlo analysis, each performed with 1000 runs. Figure 7
reports, for each filter, the effective and the predicted error
standard deviation. As shown in previous analysis, the dashed
lines represent the actual uncertainty level of the filter, while
the continuous line are the filter’s own uncertainty estimate,
evaluated according to Equation (74). Figure 7 reports SACE-
c-η-µ and SACEMM-c-η-µ with different sets of parameters.
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Fig. 3. SACE-3-5-2 vs. SACEMM-3-5-2. Posterior distribution (gray), the
estimator functions (red), and their confidence levels (green).

For the basic selection of SACEMM-1-1-0, the filter reduces to
the GSF, where the dynamics are linearized around the current
center of each model and the update is a linear estimator.
The GSF is reported with black lines and it fails to estimate
the state of the system. The effective covariance indicates
divergence and goes out of scale with respect to the predicted
standard deviation.

The state of the system is also estimated with a 104

particles BPF, shown in orange, and the IKF. The IKF diverges
rapidly and is not reported in the figure since the errors
quickly reaches out-of-scale large values. The linearization
of the dynamics employed by the IKF is not sufficient to
correctly propagate the state covariance forward in time. The
divergence of the IKF might be connected to the poor time
propagation. However, this issue might be alleviated by using
the Levenberg-Marquardt algorithm [45]. The BPF performs
better than the GSF but shows convergency problems and
it is not able to achieve an accurate estimate of the state.

Fig. 4. Monte Carlo performance analysis with SACE-2-3-2: 100 runs.

The BPF has issues due to the lack of process noise in the
dynamics. After resampling, the propagated particles are not
spread enough to be an appropriate representation of the prior
uncertainty in order to accurately perform the measurement
update.

SACE-c-η-µ is analyzed with the traditional zeroth order
covariance estimation, SACE-2-5-0 shown in green, and with
a second order covariance polynomial estimator, SACE-2-
5-2 in blue. The two filters behave similarly: they both
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Fig. 5. Lorenz96: covariance comparison among different filters.

show convergence with consistency for the first half of the
simulation, and they diverge for the remaining half. At time
step t = 2.2 seconds, the state of the system is near the origin,
in between the two lobes of the Lorenz attractor. This point
is critical because, due to uncertainty, the estimated state may
select the incorrect lobe, while the true state follows the other.
The measurement model, consisting solely in the range, gives
no beneficial information regarding the lobe selection: thus, the
correction terms in the update step do not help tracking the
state along the correct path. Consequently, in some realizations
of the Monte Carlo analysis, the filter is tracking the state
of the system as if it were on the incorrect lobe. The radial
nature of the range measurement provides no information to
the estimator into correcting the estimated state because of
the symmetric nature of the“butterfly” trajectory. Therefore,
both SACE-2-5-0 and SACE-2-5-2 show inconsistency after
the critical point, and the effective standard deviation is bigger
than the predicted one. However, it is worth noticing that the
dashed blue line settles below the dashed green line, indi-
cating an increase in accuracy achieved due to the estimated
covariance being connected with the measurement outcome.
Lastly, SACEMM-2-3-2 is reported in red and it is the only
filter that shows convergency and consistency during the whole
length of the simulation. The introduction of multiple models
improves accuracy especially around the critical point, where
smaller subdomains make it easier for the filter to follow the
right path along the correct lobe. If a model separates from
the others, following the incorrect lobe, it is weighted down in
order to ensure a correct estimation. The division of the system
uncertainties in smaller subdomains helps the filter track the
correct trajectory while the high order polynomial update

Fig. 6. Trajectory and SACEMM-2-3-2 Monte Carlo analysis results. 1000
runs.

ensures excellent accuracy levels. SACEMM-c-η-µ has better
performance than SACE-c-η-µ when the initial uncertainties
of the state of the system are exceptionally high and when the
propagated state PDF is multi-modal.

The second part of Figure 7 reports an analysis on the
computational time requested by each filter. The parameter
τ is evaluated as

τ =
Ti
TGSF

(79)

where Ti is the computational time of the ith filter, with
i={GSF, BPF, SACE-2-5-0, SACE-2-5-2, SACEMM-2-3-2}.
Therefore, the τ bar expresses the relative computational
effort among the different filters for theis application. The
τ analysis shows that the BPF is the computational heaviest
filter, while the computational time requested by SACE-c-η-µ
and SACEMM-c-η-µ changes depending on the selection of
their parameters.
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Fig. 7. Lorenz63: covariance comparison and time analysis among different
filters.

VI. CONCLUSIONS

A novel filter based on a double estimator has been pre-
sented. The new technique estimates the conditional mean
and the conditional covariance of the posterior distribution by
applying, sequentially, two polynomial estimators, using the
same measurement outcome. The new approach better matches
the estimated state with its error standard deviation, which is
now a polynomial function of the measurement. Therefore, the
newly proposed filter is able to reduce the error uncertainty
when the posterior distribution gets narrower around a low
probability realization of the measurement. In turn, the better
representation of the uncertainty produces a better estimate of
the state during the subsequent measurement updates.

Three numerical examples have been reported. The scalar
application gives a visual representation of the benefits of
the polynomial approximation of the true MMSE and its
covariance. Thus, the higher the order of the updates, the
more precise the relative state estimate and its covariance.
The vectorial application underlines the benefits of predicting
the covariance by considering its estimation as working with
an augmented state. The new state estimate improves in

accuracy and a smaller error standard deviation is obtained.
The multiple model filter is more robust against high initial
standard deviations and multi-modal distributions.
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