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Abstract

New clustering methods are proposed to develop novel particle filters with Gaussian mixture models

(PFGMM). In the PFGMM, the propagated samples are clustered to recover a Gaussian mixture model

(GMM) using a clustering algorithm, which plays a fundamental role in the filter’s performance. Two

clustering methods are introduced that simultaneously minimize the covariance of each of the GMM

components and maximize the likelihood function. Under the scenarios considered in this paper, it is

shown through numerical simulation that the PFGMMs with the proposed clustering algorithms lead to

better performance than the PFGMM employing the K-means or the expectation-maximization (EM)

algorithms as well as the regularized particle filter (RPF) and the Gaussian sum particle filter (GSPF).

I. INTRODUCTION

Filters estimate the state of a dynamic system from a series of noisy measurements. For linear

dynamical systems corrupted by additive Gaussian noise, the Kalman filter provides an optimal

solution to the minimum mean-square error estimation problem [1]. In practice, however, the

nonlinearity and non-Gaussianity in many systems of practical interest make the Kalman filter

inapplicable in its basic form. To deal with nonlinear systems, linear estimators of nonlinear

systems such as the extended Kalman filter (EKF) [2] and the unscented Kalman filter (UKF)

[3] have been developed under the assumption that all distributions are Gaussian. Furthermore,

nonlinear filters such as the Gaussian sum filter (GSF) [4], the particle filter (PF) [5], the Gaussian

sum particle filter (GSPF) [6], and the PF with Gaussian mixture models (PFGMM) [7] have

been used for highly nonlinear/non-Gaussian problems.
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The PFGMM algorithm recently proposed by [8] has shown that it successfully estimates the

states of a highly nonlinear system while other filters such as the GSF, bootstrap PF (BPF),

auxiliary PF (APF), and regularized PF (RPF) diverge. In the PFGMM, the propagated samples

are clustered to recover a Gaussian mixture model (GMM) representation of the prior probability

density function (PDF). Ref. [7] demonstrated that the filter’s density converges in probability

to the true filter density under the assumption of a perfect clustering scheme, implying the filter

performance strongly depends on the performance of a clustering method. Popular clustering

algorithms such as the K-means algorithm and expectation-maximization (EM) algorithm for

GMMs have been applied to the PFGMM [7], [8].

The first PFGMM algorithm proposed, the Particle Gaussian Mixture Filter [7], utilizes K-

means clustering which produces separated clusters for each Gaussian component of the GMM.

When K is a fixed preassigned number of clusters, the K-means algorithm minimizes within-

cluster-sum-of-squares (WCSS) (i.e. variance) by partitioning the data set into the K clusters.

As a result, the covariance of each cluster generated by the K-means algorithm is as small as

possible. A small covariance of each Gaussian mixture component is desirable outcome as the

GSF is globally optimal only for linear systems and GMM distributions. In the presence of

nonlinearities, typically, the smaller the covariance of a component, the smaller the nonlinear

effects of the measurement function in the likely realizations of that component, and hence the

better the performance of the GSF.

Although it produces components with small covariance, the K-means algorithm does not

guarantee an accurate GMM representation of the prior PDF. The EM algorithm for GMMs,

produces a better approximation of the prior distribution by maximizing the likelihood function

with respect to the clustering parameters, which are the means, covariance matrices, and weights

of the components of a GMM. The K-means algorithm is a special case of the EM algorithm for

GMMs in which all mixture weights are equal and all covariance matrices have spherical forms.

The EM algorithm produces larger covariances than K-means, since it is not a hard clustering

algorithm and allows for the components to overlap.

In this work, we propose two novel clustering algorithms to merge the benefits of K-means

and EM and apply them to the PFGMM to improve its estimation performance. The two new

types of clustering methods simultaneously minimize the covariance for each of the components

of a GMM and maximize the likelihood function based on a fuzzy C-means (FCM) clustering

algorithm [9]. The FCM algorithm is closely related to the K-means algorithm and EM algorithm



for GMMs. In FCM clustering, the data points can belong to more than one cluster with different

membership grades between 0 and 1. These membership grades represent the degree to which

data points belong to the different clusters. The standard FCM algorithm, which is also referred

to as soft K-Means algorithm, employs a weighting exponent on each fuzzy membership. The

weighting exponent is also called the fuzzifier since it determines the level of the fuzziness of

clustering. Unlike the approach of the standard FCM algorithm, the FCM algorithm can also

be regarded as regularization of the K-means algorithm with a maximum entropy method [10].

Based on the new aspect of the FCM algorithm, Ref. [11] proposed the FCM with regularization

by Kullback-Leibler information (KLFCM), which is similar to the EM algorithm for GMMs.

Inspired from the standard FCM and KLFCM algorithm, in this paper we propose two types of

clustering methods specifically designed to improve the performance of the PFGMM.

The remainder of the paper is organized as follows. Sections II and III describe the PFGMM

and the FCM algorithm, respectively. Then, the new clustering algorithms are proposed in

Section IV. Section V presents simulation results of the proposed algorithms, followed by some

concluding remarks on the new methodologies and the results.

II. PARTICLE FILTER WITH GAUSSIAN MIXTURE MODELS

In the PFGMM [8], each algorithm’s iteration starts from the knowledge of the prior distribu-

tion p(xk−1|Y k−1) which is approximated by N independent and identically distributed (i.i.d.)

samples x(i)
k−1

p(xk−1|Y k−1) ≈
N∑
i=1

1

N
δ(xk−1 − x(i)

k−1) (1)

where k indicates the discrete time step, δ(·) is the Dirac delta function, and Y k−1 is the set of

all measurement vectors {y1, · · · ,yk−1} where yk−1 is a measurement vector at the time step

k− 1. Following the same procedure as particle filters [5], a set of samples at the next time step

is generated using the Markov transition kernel p(xk|xk−1). The Markov kernel is defined by

the dynamics of a system and the known statistics of the process noise.

The next step of the algorithm is to cluster the particles into Gaussian mixtures using a

clustering algorithm such as the K-means algorithm or the EM algorithm for GMMs and the

propagated distribution is then expressed as follows:

p(xk|Y k−1) ≈
K∑
j=1

ω
(j)
k|k−1n(xk; x̂

(j)
k|k−1, P

(j)
k|k−1) (2)



where K is the predetermined number of clusters, n(x|x̂, P ) represents the Gaussian PDF with

mean x̂ and covariance P ; and ω(j)
k|k−1, x̂

(j)
k|k−1, and P (j)

k|k−1 are the weight, mean, and covariance

matrix of the ith Gaussian component calculated by the K-means or EM clustering algorithm.

The K-means and EM algorithm are similar in the sense that they use an iterative refinement

approach to find the optimal clusters. The K-means is a hard clustering algorithm, which means

each particle is associated uniquely with one cluster, as such it uses only the points in the

same cluster to update each component’s mean. The EM algorithm performs a soft assignment

and approximates the PDF of xk with several Gaussian components having different means,

covariance matrices, and weights. The details of the K-means and EM algorithm are explained

in [12].

Finally, we incorporate measurement information by updating the means, covariance matrices,

and weights of all the components in the same way as the measurement update of the GSF. We

then draw N i.i.d. samples from the updated GMM which is the posterior distribution. These

samples are the starting point for the next iteration. The details of the measurement update of

the GSF and the algorithm to draw N i.i.d. samples from a GMM are well known and can be

found, for example, in [13]. The flow chart of the PFGMM is described in Fig. 2

III. FUZZY C-MEANS CLUSTERING

The standard FCM and the KLFCM algorithm are reviewed in this section. In the standard

FCM algorithm, the aim of the algorithm is to minimize the objective function which is defined

as follows [9]:

Jm =
N∑
i=1

C∑
j=1

(uij)
mdij (3)

where C is the preassigned number of clusters and m is the weighting exponent for the fuzzi-

fication of memberships, m ≥ 1. uij denotes the membership value of the ith data sample for

the jth cluster and all membership values have the following constraints:

uij ≥ 0,∀i, j,
C∑
j=1

uij = 1 (4)

The dissimilarity function dij which is a measure of the Euclidean distance between ith data

sample x(i) and the center of the jth cluster µj is expressed as follows:

dij =
(
x(i) − µj

)T (
x(i) − µj

)
(5)
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Fig. 1. The flow chart of the PFGMM

The optimal values of the clustering parameters uij and µj are calculated using a fixed-point

iteration scheme, which is similar to the EM algorithm for GMMs. The algorithm is summarized

as follows:

1. Initialize the membership values uij and set the objective function value to infinity.

2. Calculate the cluster centers µj using the current membership values.

µj =

∑N
i=1(uij)

mx(i)∑N
i=1(uij)

m
(6)

3. Estimate the new membership values uij using the current cluster centers to minimize the

objective function.

uij =

[
C∑
k=1

(
dij
dik

) 1
m−1

]−1
(7)

4. Evaluate the objective function and check for convergence of it. If the convergence criterion

is not satisfied, replace the old membership values with the new ones and return to step 2.



After a number of iterations, the clustering parameters are optimized to minimize the objective

function.

Fuzziness is the level of overlap between clusters (more overlap equals less defined or fuzzier

boundaries). In the standard FCM algorithm the weighting exponent m determines the level of

the fuzziness of clustering, so it is also called fuzzifier [9]. In other words, the partition is getting

fuzzier as the fuzzifier has a larger value. On the other hand, the memberships uij converges to

0 or 1 when the fuzzifier m has the minimum value of one, which means the FCM algorithm

reduces exactly to the K-means algorithm.

In addition, the FCM algorithm is closely related to the EM algorithm for GMMs. Ref. [14]

defined a fuzzy covariance matrix for the FCM algorithm so that different clusters can have

different geometric shapes in the clustering. Moreover, Ref. [10] shows that the FCM algorithm

can be regraded as the regularization of the K-means algorithm with a maximum entropy

method, and Ref. [11] demonstrates that the EM algorithm of the GMMs can be casted as

a penalized version of the hard means clustering algorithm. As a result, the FCM clustering

with the regularizer by Kullback-Leibler (KL) information, called KLFCM, can be made the

same algorithm as the EM algorithm for GMMs [15]. The objective function of the KLFCM is

expressed as follows:

JKL =
N∑
i=1

C∑
j=1

uijd
′
ij + λ

N∑
i=1

C∑
j=1

uij log
uij
πj

+
N∑
i=1

C∑
j=1

uij log |Σj|

−
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

] (8)

where the dissimilarity function d′ij of the KLFCM is the Mahalanobis distance,

d′ij =
(
x(i) − µj

)T
Σ−1j

(
x(i) − µj

)
(9)

and λ is the fuzzifier, λ ≥ 0. Σj and πj are the covariance matrix and weight of the jth cluster,

and ηi and τ are Lagrangian multipliers whose corresponding terms respectively indicate the

constraints on membership values and weights.

The necessary conditions for optimality of (8) are derived as follows:

µj =

∑N
i=1 uijx

(i)∑N
i=1 uij

(10)

Σj =

∑N
i=1 uij(x

(i) − µj)(x(i) − µj)T∑N
i=1 uij

(11)



πj =
1

N

N∑
i=1

uij (12)

where

uij =
πj exp

(
− 1
λ
d′ij
)
|Σj|−1/λ∑C

k=1 πk exp
(
− 1
λ
d′ik
)
|Σk|−1/λ

(13)

The iteration rule is equivalent to the standard FCM algorithm. In the KLFCM algorithm, the

fuzzifier λ tunes the degree of fuzziness of the membership values. For instance, all memberships

are getting closer to 1/C as we are putting more weight on the relative entropy term. Thus, the

larger the fuzzifier, the fuzzier the memberships. The KLFCM algorithm is the same as the EM

algorithm for GMMs when the fuzzifier λ is equal to 2.

IV. CLUSTERING METHODS FOR PFGMM

This section presents two different clustering methods to simultaneously minimize the co-

variance for each of the components of a GMM and maximize the likelihood function for the

PFGMM. Both these features are key contributors to PFGMM estimation performance.

A. KLFCM with Weighting Exponent

The objective function of the KLFCM with the fuzzification coefficient 2 is expressed as

follows:

JKL2 =
N∑
i=1

C∑
j=1

uij log uij

+
N∑
i=1

C∑
j=1

uij

[
log

1

πj
− log

(2π)−dx/2

(2π)−dx/2|Σj|−1/2
exp

(
−1

2
d′ij

)]

−
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

]
(14)

which is equivalent to the following function:

JKL2 =
N∑
i=1

C∑
j=1

uij log uij +
N∑
i=1

C∑
j=1

uijd
′′
ij −

N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

]
(15)

where dx is the dimension of the state x and the dissimilarity function d′′ij is defined as follows:

d′′ij = log

(
1

(2π)−dx/2πjn(x(i)|µj,Σj)

)
(16)

The first term (i.e., entropy term) of the objective function does not have the fuzzifier λ because

it is set to be equal to 2. Therefore, the modified KLFCM algorithm with the objective function



could only act as the EM algorithm. To assign the hard clustering property of the K-means to

the modified algorithm, we make it include a new fuzzifier. If the new fuzzifier λ′ is added to

the first term, it has the same form as the FCM algorithm with a maximum entropy method,

and the updating rule of the membership values are expressed as follows [10]:

uij =
exp

(
− 1
λ′
d′′ij
)∑C

k=1 exp
(
− 1
λ′
d′′ik
) =

π
−1/λ′
j exp

(
− 1

2λ′
d′ij
)
|Σj|−1/2λ

′∑C
k=1 π

−1/λ′
k exp

(
− 1

2λ′
d′ik
)
|Σk|−1/2λ′

(17)

Although the memberships become less fuzzier as the fuzzifier λ′ is smaller, it simultaneously

loses the property of the EM algorithm since the fuzzifier changes and distorts the Gaussian

distributions. Consequently, the new fuzzifier makes the modified algorithm very similar to the

KLFCM algorithm. To cope with the problem, we can change the objective function into the

standard FCM form by removing the first term and introducing the weighting exponent (m ≥ 1)

on the membership values. Then, the modified objective function is expressed as follows:

JKL2′ =
N∑
i=1

C∑
j=1

(uij)
md′′ij −

N∑
i=1

η

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

]
(18)

The updating rules for the means, covariance matrices, weights of all clusters and memberships

are then derived as follows:

µj =

∑N
i=1(uij)

mx(i)∑N
i=1(uij)

m
(19)

Σj =

∑N
i=1(uij)

m(x(i) − µj)(x(i) − µj)T∑N
i=1(uij)

m
(20)

πj =
1

N

N∑
i=1

(uij)
m (21)

and

uij =

[
C∑
k=1

(
d′′ij
d′′ik

) 1
m−1

]−1
(22)

The proposed algorithm maximizes the log likelihood function, which is the same as the EM

algorithm for GMMs. Moreover, the memberships are proportional to the exponential of the log

likelihood function of the GMM. In other words, even if the weighting exponent m is changed

to tune the level of the fuzziness of the clustering, the form of the log likelihood function (i.e.,

GMM) in the memberships is maintained. Therefore, the degree of fuzziness of the memberships

can be determined by the weighting exponent m with retaining the property of the EM algorithm.

As in the standard FCM algorithm, the partition becomes more distinct as the fuzzifier m has



a smaller value. When m is set to be very close to the minimum value of 1, however, most of

the memberships converges to 0 or 1, thus making some weights of the clusters zero [9]. As

a result, the covariance for the rest of the components of a GMM is increased. To prevent this

problem, a regularization term with a positive parameter κ is included in the objective function

as follows:

JmKL =
N∑
i=1

C∑
j=1

(uij)
md′′ij − κ

N∑
i=1

C∑
j=1

log (πj)−
N∑
i=1

η

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

]
(23)

By introducing this new regularization term, all the weights of the clusters are getting closer to

1/C as the value of κ is lager because the sum of πj with respect to C is constrained to be 1.

The updating rule for the weights of the clusters is then changed into

πj =
2
∑N

i=1(uij)
m + κN

2
∑N

i=1

∑C
j=1(uij)

m + κNC
(24)

and the others (19), (20), and (22) remain the same. The proposed algorithm is named the

KLFCM clustering with weighting exponent (mKLFCM).

B. KLFCM with Ridge Regularization

Another proposed clustering method is to add a new regularization term to the objective

function of the KLFCM with the fuzzification coefficient 2. Regularization is one of the most

important concepts in machine learning (ML) and the most well known regularization techniques

are ridge and least absolute shrinkage and selection operator (LASSO) regularization: the two

regularization techniques are used to reduce the magnitude of irrelevant coefficients of a model

and avoid overfitting [16]. As done in ridge regularization, a new regularization term is added

to (8) with the fuzzification coefficient 2 in order to restrict the determinant of the covariance

of each cluster to the determinant of the total covariance divided by the number of total clusters

as follows:

JRKL′ =
N∑
i=1

C∑
j=1

uijd
′
ij + α

N∑
i=1

C∑
j=1

log

(
|Σj| −

|ΣT |
C

)2

+ 2
N∑
i=1

C∑
j=1

uij log
uij
πj

+
N∑
i=1

C∑
j=1

uij log |Σj| −
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

] (25)

where α is the penalty parameter and ΣT is the covariance matrix of the total samples. To put

it another way, the new clustering algorithm minimizes the following objective function:

JKL2 subject to
C∑
j=1

log

(
|Σj| −

|ΣT |
C

)2

< Rc (26)
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Fig. 2. Geometric interpretation of the new regularizer

where JKL2 is given by (15) and Rc is a parameter. Fig. 2 shows an example of how the new

regularization term in the objective function can be geometrically interpreted when the number

of clusters is 2. If the new regularization term does not exist (i.e. α = 0), which means there is no

inequality constraint, the center of the ellipse will be the optimal value of the determinant of the

each cluster’s covariance. Fig. 2 shows, however, the optimal values for the covariance matrices

of the objective functions in (25) and (26) are given by the first point at which the ellipse (blue)

contacts the constraint region (orange) due to the new regularizer (the inequality constraint). As

a result, the large value of α (the smaller value of Rc) will shrink the determinants of all the

covariance matrices towards the same value (|ΣT |/C).

The updating rules for the clustering parameters of (25) are the same as those of (8) with λ = 2

except for the covariance matrices. For the new objective function (25), the updating rule for the

covariance matrices is not fixed because it varies depending on the dimension of state. Therefore,

to find the consistent closed-form solution for the updating rule of the covariance matrices, we

substitute Σj with βjMj where |Mj| = 1, βj = |Σj|1/dx . Then, the objective function (25) can



be changed into the following equivalent objective function:

JRKL =
N∑
i=1

C∑
j=1

uijd
′
ij + α

N∑
i=1

C∑
j=1

(
D

βj
− 1

)2

+ 2
N∑
i=1

C∑
j=1

uij log
uij
πj

+
N∑
i=1

C∑
j=1

uij log |Σj| −
N∑
i=1

ηi

[
C∑
j=1

uij − 1

]
− τ

[
C∑
j=1

πj − 1

]
−

C∑
j=1

ξj log |Mj|

(27)

where ξ1, · · · , ξC are Lagrangian multipliers and

D =

(
|ΣT |
C

)1/dx

(28)

Then, the updating rules for the Mj and βj are derived as follows:

Mj =

∑N
i=1 uij(x

(i) − µj)(x(i) − µj)T

|
∑N

i=1 uij(x
(i) − µj)(x(i) − µj)T |1/dx

(29)

βj =
1

2dx
∑N

i=1 uij

[
A−B +

√
(A−B)2 + C

]
(30)

where

A =
N∑
i=1

uij
(
x(i) − µj

)T
M−1

j

(
x(i) − µj

)
(31)

B = 2αND (32)

and

C = 8αdxND
2

N∑
i=1

uij (33)

The proposed algorithm is named the KLFCM clustering with ridge regularization (RKLFCM).

C. Analysis of the Proposed Clustering Methods

In the mKLFCM clustering algorithm, it is crucial to select the most appropriate weighting

exponent m which determines the performance of the PFGMM. It is desirable for the PFGMM

to have an accurate GMM representation of the prior PDF while each component has a small

enough covariance matrix such that nonlinear measurements can be accurately approximated by

linearization in the support of each component. In this paper, we investigate the impact of the

weighting exponent on the clustering algorithm and find the optimal value for the PFGMM based

on the biggest determinant of the covariance matrix of the components and the Jensen-Shannon

distance (JSD). Note that the smaller the biggest determinant of the covariance matrix, the better



the performance of the PFGMM. The JSD, which is a metric, is used to measure the similarity

between two probability distributions and given by

J(px||qx) =

√
1

2
DKL(px||mx) +

1

2
DKL(qx||mx) (34)

where

DKL(px||qx) =
∑
x∈S

px(x) log

(
px(x)

qx(x)

)
(35)

mx =
1

2
(px + qx) (36)

and S is the support for x, and px and qx are two different probability distributions. As the

difference between the two distributions becomes smaller, the JSD also gets smaller.

To analyze the impact of the weighting exponent on the clustering algorithm, a Monte Carlo

analysis is performed with 100 simulations. For each simulation, 10,000 particles are drawn from

the two-dimensional normal distribution. The mKLFCM uses 3 clusters and the parameter κ is

set to be 0.05. Fig. 3 shows the normalized maximum value of determinant and JSD according

to the weighting exponent and the original values are listed in Table I. As mentioned above, the

greater the weighting exponent is, the lower the JSD value becomes. However, the maximum

value of the determinant of covariance also tends to increase with the weighting exponent. Fig. 3

shows that the optimal value of the weighting exponent is 1.216 when samples are from a normal

distribution. In addition, Table I implies that as the weighting exponent is larger, the maximum

value of determinant approaches to 1, which is the determinant of the sample covariance. Overall,

the mKLFCM behaves like the K-means algorithm as the weighting exponent decreases, whereas

it functions like the EM algorithm as the weighting exponent increases.

A key element of the RKLFCM is how to determine the penalty parameter α. A Monte

Carlo analysis with the same simulation conditions as above is performed. Fig. 4 presents the

TABLE I

ANALYSIS OF THE WEIGHING EXPONENT IN THE MKLFCM

1.05 1.10 1.15 1.20 1.25 1.30 1.35

Maximum determinant 0.2302 0.2510 0.2848 0.3690 0.5686 0.9484 0.9737

JSD 1.8440 1.6716 1.4339 0.9991 0.4598 0.1415 0.1318
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Fig. 3. Analysis of the weighing exponent in the mKLFCM

normalized maximum value of determinant and JSD according to the penalty parameter and the

original values are illustrated in Table II. As the penalty parameter increases, the maximum value

of determinant decreases. Table II shows that the maximum value of determinant approaches to

1/3 which is ratio of the sample covariance to the number of clusters used for the algorithm.

On the other hand, the JSD value tends to increase with the penalty parameter. As can be

seen in Fig. 4, 0.1414 is the optimal value of the parameter when samples are drawn from a

normal distribution. To summarize: the RKLFCM becomes similar to the EM algorithm as the

weighting exponent decreases, whereas it operates in a similar way of the K-means algorithm

as the weighting exponent increases.

V. NUMERICAL RESULTS

To evaluate the clustering algorithms proposed in this paper, three different examples are

considered: a simple motivating example (used in Refs. [17], [18]), the vector nonstationary

TABLE II

ANALYSIS OF THE PENALTY PARAMETER IN THE RKLFCM

0.0001 0.001 0.01 0.1 1 10 100

Maximum determinant 0.7774 0.7714 0.7179 0.5032 0.3567 0.3355 0.3334

JSD 0.2338 0.2365 0.2654 0.4917 0.8018 0.8691 0.8766
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Fig. 4. Analysis of the penalty parameter in the RKLFCM

growth model (used in Refs. [19], [20]), and a Lorenz96 system (used in Refs. [7], [21]).

A. Single Step Example

Consider the following simple motivating example. An initial bivariate normal random vector

x0 is distributed as

x0 ∼ n

x0;

−3

0

 ,
 1 −0.1

−0.1 0.4

 (37)

and a range measurement of 1.5 with measurement noise variance of 0.01 is available. Fig. 5

shows contour plots of the given prior and likelihood distribution, and Fig. 6 presents a contour

plot of the true posterior distribution. The measurement is nonlinear so that it causes the banana-

shaped posterior distribution which is cannot be accurately estimated by linear estimators such

as EKF and UKF [17], [18].

In this example, we compare the clustering performances of the four different clustering meth-

ods; the K-means algorithm, the EM algorithm for GMMs, and the two algorithms proposed here

[mKLFCM and RKLFCM]. We test the clustering algorithms to see whether they approximate (a)

the prior distribution by a GMM, (b) the nonlinear measurement function by a linear function

for the measurement update of each component, and (c) the true posterior distribution by an

updated GMM.

For Case (a) and (c), the JSD is used to measure the distance between the true distribution and

approximated distribution by a GMM. Moreover, for each Gaussian component, the approximated



Fig. 5. Prior and measurement distribution for example 1
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Fig. 6. True posterior distribution for example 1

posterior distribution of the EKF solution is compared to that of the second-order EKF (SEKF)

solution using the JSD for Case (b) in order to check whether the linearization of the measurement

function is valid in a region of the component [17]. If the covariance of a component is small

enough such that the nonlinearities of the measurement function are negligible, then the difference

between the distributions will be small. For Case (b), the weighted sum of the JSD values is

used for a GMM with the weights of all the components.

All of the clustering algorithms use 30 clusters with 10,000 particles. The proposed clustering

algorithms use the following tuning parameters: m = 1.216 and κ = 0.05 for the mKLFCM,

and α = 0.1414 for the RKLFCM. For the EM, mKLFCM, and RKLFCM algorithm, the



TABLE III

MONTE CARLO AVERAGED JSD FOR EXEMPLE 1 (100 SIMULATIONS)

K-means EM mKLFCM RKLFCM

Case (a) 2.6467 0.5866 1.5423 0.7044

Case (b) 2.3689 5.8114 3.4402 4.5364

Case (c) 6.2189 6.0616 5.2056 5.0687

initial clustering parameters are selected using the K-means algorithm [12]. A Monte Carlo

analysis is performed with 100 simulations and the averaged JSD values for all of the cases

are listed in Table III. For Case (a), the EM algorithm for GMMs and RKLFCM algorithm

are comparable, while the K-Means algorithm results in the worst performance among the four

clustering algorithms. For Case (b), however, the K-means algorithm is better than any of other

algorithms and the EM algorithm gives the worst performance. Finally, Table III shows that, for

Case (c), the proposed algorithms [mKLFCM and RKLFCM] outperform the K-means and EM

algorithm for GMMs, which means the proposed algorithms are more suitable for the PFGMM.

Moreover, for Case (c), Fig. 7 displays the PFGMM solutions with the K-means, EM for

GMMS, mKLFCM, and RKLFCM clustering algorithms for a single simulation. Note that the

PFGMM solutions with the four clustering methods succeed in capturing the curvature shape

of the true posterior distribution. If a linear estimator of nonlinear systems such as the EKF or

UKF is used for this example, the curvature shape of the true distribution cannot be replicated by

the first two moments of the estimator. This figure also shows that the PFGMM solutions with

the proposed clustering methods can more accurately adapt to nonlinearities of the measurement

function than the PFGMM with the K-means and EM algorithm for GMMs.

B. Vector Nonstationary Growth Model

Consider the discrete-time highly nonlinear bivariate dynamic system and measurement model

given by [19], [20]

xk+1,1 =
xk,1
2

+ 25
xk,1

1 + x2k,1
+ 8 cos (1.2k) + νk,1

xk+1,2 =
xk,2
2

+ 25
xk,2

1 + x2k,2
+ 8 cos (1.2k) + νk,2

(38)
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(a) PFGMM with the K-means algorithm Posterior
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(b) PFGMM with the EM algorithm Posterior

mKLFCM Posterior Distribution of X
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(c) PFGMM with the mKLFCM algorithm Posterior

RKLFCM Posterior Distribution of X
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(d) PFGMM with the RKLFCM algorithm Posterior

Fig. 7. The PFGMM solutions for Example 1 are shown with the four different clustering algorithms: (a) the JSD value (the

K-means) = 5.6130, (b) the JSD value (the EM algorithm for GMMs) = 5.4898, (c) the JSD value (the mKLFCM) = 4.4212,

and (d) the JSD value (the RKLFCM) = 4.2193.

yk+1,1 =
x2k+1,1 + x2k+1,2

20
+ ηk+1,1

yk+1,2 =
x2k+1,1 − x2k+1,2

10
+ ηk+1,2

(39)

where the process noise νk = [νk,1, νk,2]
T and the measurement noise ηk+1 = [ηk+1,1, ηk+1,2]

T are

assumed to be independent zero-mean Gaussian random variables with variances of Q = 10I2×2

and R = I2×2, respectively, and I2×2 is a 2× 2 identity matrix.

The model is highly nonlinear and the cosine term in the dynamic equation varies with time k.

In this example, a Monte Carlo analysis is performed with 200 simulations, and each simulation



has a time span of k = [0, 100]. The estimation performances of the PFGMM with the four

different clustering algorithms, the RPF, and the GSPF are compared based on the root-means-

square error (RMSE) and the noncredibility index (NCI) [22]. The RMSE for each Monte Carlo

simulation is computed from the true and estimated states at each time k. The NCI metric is

defined as

NCIk =
1

M

M∑
j=1

[
10 log10

(
(xjk − µ

j
k)

T(P j
k)
−1(xjk − µ

j
k)
)

− 10 log10

(
(xjk − µ

j
k)

TΣ−1k (xjk − µ
j
k)
) ]

(40)

where M is the number of Monte Carlo simulations, xjk are the true states, µjk are the estimated

states, P j
k are the filter’s error covariance matrix of the j-th Monte Carlo run, and Σk is the

ensemble error covariance matrix of the estimates at time k computed from the Monte Carlo

samples. The normalized estimation error squared (NEES) [23] is often used for a standard

consistency metric, however, it penalizes optimism much more than pessimism. On the other

hand, the NCI metric is a balanced measure of the consistency of the estimators, i.e., the NCI

metric is a geometric average of 10 times the logarithm of the NEES ratio [22]. Therefore, the

NCI measures the difference between the ideal error covariance matrix Σk and the estimated

error covariance matrix P k. When the difference between the ensemble error covariance matrix

and the filter’s error covariance matrix is small, the NCI value should be zero or nealy zero at all

times. A total of 200 particles is used in all of the algorithms and the UKF measurement update

for 3 clusters is used for the PFGMM. In the GSPF, 3 Gaussian components are employed and

the importance sampling function is obtained from the measurement update step of the UKF.

The tuning parameters for the proposed algorithms and selecting method for initial clustering

parameters are the same as those used in the example 1.

Fig. 8 shows the RMSE and the absolute NCI value of the 200 simulations. The time-averaged

value of the RMSE and NCI of the six algorithms are described in Table IV. The proposed

algorithms outperform the K-means and EM algorithm for GMMs in terms of accuracy and

consistency. Moreover, the figure shows that the PFGMMs perform better than the RPF and

GSPF both in the accuracy and consistency. The computation time for filtering run in MATLAB

on a 3.2 GHz hexa-core Windows operation systems is also presented in Table IV. In terms of

computation time, the proposed algorithms are cheaper than the EM algorithm for GMMs and

RPF while the best performance is produced with the GSPF algorithm.
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Fig. 8. The average RMSE and the absolute NCI value for 200 Monte Carlo simulations for Example 2

TABLE IV

MONTE CARLO AVERAGED RMSE, NCI, AND COMPUTATION TIME FOR EXAMPLE 2 (200 SIMULATIONS)

RMSE NCI Computation time

RPF 11.7031 49.4944 1.4342

GSPF 12.4174 60.0373 0.2075

K-Means 8.7378 3.6591 0.4889

EM 8.2914 2.7653 1.0130

mKLFCM 7.6699 1.0270 0.7232

RKLFCM 7.6417 0.9482 0.6525

C. Lorenz96 System

In this scenario, the RPF, the GSPF, and the PFGMM with the four different clustering

algorithms are applied to a Lorenz96 system [7], [21]. The dynamics of the Lorenz96 system is

expressed as follows:

ẋi(t) = xi−1(t)
(
xi+1(t)− xi−2(t)

)
− xi(t) + F + νi(t) (41)

yk = H X(tk) + ηk, Hi,j =

1, j = 2i− 1

0, otherwise
, for i = 1, · · · , 20, j = 1, · · · , 40 (42)

where xi(t), i = 1, 2, · · · , 40, represents the components of the 40th-dimensional vector X(t).

In the dynamics equation, the following conventions are used: x−1 = xN−1, x0 = xN , and



TABLE V

MONTE CARLO AVERAGED RMSE, NCI, AND COMPUTATION TIME FOR EXAMPLE 3 (100 SIMULATIONS)

RMSE NCI Computation time

RPF 21.7334 7.0335 4.6449

GSPF 23.3898 30.9887 2.2909

K-Means 19.2611 0.3896 2.1983

EM 19.0662 0.4747 3.0462

mKLFCM 18.9772 0.3343 2.3537

RKLFCM 18.6428 0.4683 2.8197

x1 = xN+1. The constant external force, F , is selected equal to 8 to cause chaotic behavior in

the system. The dynamics is propagated for 10 seconds at 20 Hz, tk = 1, 2, · · · , 200, and fourth

order Runge-Kutta integration is implemented with a step size of 0.05 second. The process noise,

νi(t), remains constant over each 0.05 second interval without correlation between the intervals.

The discrete linear measurements are available at 1 Hz and measure only the components of the

state vector that have odd indices. It is assumed that the process noise and measurement noise,

ηk, are uncorrelated, white, zero mean, and with covariance matrices given by Q = 10−2 and

R = 10−2I20×20, respectively. The initial distribution of the system is assumed to be Gaussian

distribution with µ0 = F [1, 1, · · · , 1]T and P0 = 10−3I40×40.

A Monte Carlo analysis is performed with 100 simulations to evaluate the performance of

the RPF, GSPF, and PFGMMs with 2000 particles for the Lorenz96 system. The PFGMMs

use 5 clusters and the GSPF uses 5 Gaussian components. The other conditions for all of the

algorithms are the same as those used in the example 2. Figure 9 shows the time history of

the RMSE and the absolute NCI value of 100 simulations. The results show that the PFGMMs

have better performance than the RPF and GSPF in terms of accuracy and consistency. The

quantitative results representing the accuracy, consistency, and computation time of the filters

are listed in Table V. The proposed algorithms outperform the K-means and EM algorithm for

GMMs in terms of accuracy. Moreover, in terms of computation time, the proposed algorithms

are faster than the EM algorithm for GMMs and RPF while the best performance is produced

with the K-means algorithm.
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Fig. 9. The average RMSE and the absolute NCI value for 100 Monte Carlo simulations for Example 3

VI. CONCLUSIONS

In this paper, two new clustering algorithms are proposed whose performance index minimizes

the covariance of each of the components of a Gaussian mixture model and maximizes the

likelihood function simultaneously. The two new clustering algorithms are based on fuzzy C-

means with regularization by Kullback-Leibler information. The objective function of the first

method has the same form of the standard fuzzy C-means algorithm with an added weighting

exponent. In the second method, a new regularization term is included in the objective function

of the baseline algorithm. As a result, both of the proposed clustering algorithms compensate for

the drawbacks of the K-means and expectation-maximization algorithm for the particle filter with

Gaussian mixture models. Three numerical examples show that the particle filter with Gaussian

mixture models with the proposed clustering algorithms provide better performance than the

particle filter with Gaussian mixture models with the K-means or expectation-maximization

algorithm as well as the regularized particle filter and the Gaussian sum particle filter in terms

of the accuracy and consistency.
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