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Abstract This paper presents a new approach to Maximum A Posteriori
(MAP) estimation for Hamiltonian dynamic systems. By representing prob-
ability density functions through Taylor polynomials and using Differential
Algebra techniques, this work proposes to derive the MAP estimate directly
from high order polynomials. The polynomial representation of the posterior
probability density function leads to an accurate approximation of the true
a posterior distribution, that describes the uncertainties of the state of the
system. The new method is applied to a demonstrative orbit determination
problem.
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1 Introduction

The Maximum A Posteriori (MAP) estimate is given by the peak of the prob-
ability density function conditioned on the value of the measurements, also
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known as the posterior distribution, which is typically calculated using Baye’s
rule. In the well-known linear and Gaussian case, the posterior distribution
remains Gaussian at all times and it can be fully described by its mean and
covariance matrix, which are calculated using the Kalman filter equations [1,
2]. For this type of problems, Linear Minimum Mean Square Error (LMMSE)
estimation coincides with the MAP estimation. Most problems of practical
interest to aerospace engineering applications, such as orbit determination [3],
contain nonlinearities in the dynamics and/or measurements which inevitably
result in a non-Gaussian posterior distribution. In these situations, LMMSE
and MAP produce different estimates and a closed form solution of either is
typically unavailable.

Many techniques have been developed to deal with nonlinearities in the
estimation problem. The most exploited estimation algorithm is the Extended
Kalman Filter (EKF) [4]. The EKF is based on linearization of the dynamics
and measurement equations around the most current estimate and applies the
Kalman filter equations to the linearized system. In problems with high non-
linearities, including certain orbit determination applications, the linearization
assumption may fail to provide a valid estimate [5]. Other approaches for es-
timation of nonlinear systems have been implemented, such as the Unscented
Kalman filter (UKF) [6,7]. Through the true nonlinear propagation of care-
fully chosen deterministic points (sigma points), the UKF can achieve superior
performance with respect to the EKF.

Park and Scheeres [8,9] developed higher order filters that uses state tran-
sition tensors (STT) in the filter’s prediction step that fully relies on the non
linear mapping of the means and covariance matrices to more accurately rep-
resent the uncertainty with respect to the EKF. Valli et al.[10] recreated Park
and Scheeres’s work using Differential Algebra (DA) [11,12], thus eliminating
the need to evaluate high order tensors directly.

This work introduces a new nonlinear filter for Hamiltonian systems [13]
that approximates the probability distribution functions through Taylor ex-
pansion polynomials using DA. The time propagation of the Hamiltonian dy-
namics and the measurement update phases of the filter operate directly on the
probability density function (PDF). The MAP estimate is then found by poly-
nomial maximization. The Taylor polynomials are kept centered on the most
recent estimate. Lastly, an estimate of the estimate’s uncertainty is provided
through Monte Carlo integration techniques.

2 Maximum A Posteriori Estimation

Let px(x) be the probability density function (PDF) of a random vector x,
called the state, that it is not directly sample-able and whose outcome we
are interested in estimating; and let y be another random vector, called the
measurement, that possesses a joint distribution with x and that it is available
to be sampled. The conditional distribution of x given y, denoted as px|y(x|y)
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is given by Baye’s rule

px|y(x|y) =
py|x(y|x) px(x)

py(y)
(1)

where px|y(x|y) is called posterior distribution, px(x) prior distribution, and
py|x(y|x) = L(x|y) likelihood function.

The Maximum A Posteriori estimate x̂ is the, possibly not unique, value
of x that maximizes the posterior distribution

x̂ = max
x

px|y(x|y) (2)

We notice that the denominator of Eq. (1) does not contain x, therefore an
equivalent optimization problem is to maximize the un-normalized posterior
distribution, i.e. the joint distribution of x and y: px,y(x,y) = py|x(y|x) px(x).

x̂ = max
x

px,y(x,y) (3)

Rather than maximizing the joint distribution directly, it is often convenient
to maximize its logarithm:

x̂ = max
x

(
log px(x) + log py|x(y|x)

)
(4)

where py|x(y|x) is the likelihood logL(y|x).

3 Uncertainty Evolution of Hamiltonian Systems

Assume the state vector time evolution is governed by the following ordinary
differential equation (ODE)

ẋ(t) = f(t,x); x(t0) = x0 (5)

let’s denote the solution flow as x(t) = φ(x0; t, t0); clearly

∂

∂t
φ(x0; t, t0) = f(t,φ(x0; t, t0)) (6)

The solution flow has the following properties

φ(x0; t0, t0) = x0 (7)

φ(φ(x0; t, t0); t0, t) = x0 (8)

this second property just states that the functional inverse is obtained by
inverting the time arguments (exactly like the state transition matrix)

xf = φ(x0; tf , t0) (9)

x0 = φ(xf ; t0, tf ) (10)
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From

φ(φ(x0; t, t0); t0, t) = x0 (11)

we have that

d

dt
φ(φ(x0; t, t0); t0, t) = 0

=
∂

∂t
φ(φ(x0; t, t0); t0, t) +

∂

∂ξ
φ(ξ; t0, t)

∂

∂t
φ(x0; t, t0) (12)

or
∂

∂t
φ(x; t0, t) = − ∂

∂ξ
φ(ξ; t0, t)

∣∣∣∣
ξ=x

f(t,x) (13)

Taking the initial condition x0 as a random vector with PDF px0
(x0), the

PDF evolves in time according to the Fokker-Plank-Kolmogorov (FPK) [14]
equation without diffusion (also known as Louville equation)

∂px(t)(x, t)

∂t
= −

n∑
i=1

∂
(
fi(x, t) px(t)(x, t)

)
∂xi

= −
n∑
i=1

fi(x, t)
∂px(t)(x, t)

∂xi
−

n∑
i=1

px(t)(x, t)
∂fi(x, t)

∂xi

= −
∂px(t)(x, t)

∂x
f(x, t)− px(t)(x, t) trace

(
∂f(x, t)

∂x

)
(14)

For Hamiltonian systems the Jacobian of f is traceless and we are finally left
with the well known result that the total time derivative of the PDF is zero
for a Hamiltonian system:

∂px(t)(x, t)

∂t
+
∂px(t)(x, t)

∂x
ẋ =

dpx(t)(x, t)

dt
= 0 (15)

hence for all t

px(t)(x, t) = px(t0)(φ(x; t0, t), t0) = px0(φ−1(x; t, t0)) (16)

This is easy to show since

dpx(t)(x, t)

dt
=
dpx0

(φ(x; t0, t))

dt

=
∂px0(ξ)

∂ξ

(
∂φ(x; t0, t)

∂t
+
∂φ(x; t0, t)

∂x
f(t,x)

)
(17)

However, the term in parenthesis is identically zero because of Eq. (12), so the
FPK equation is satisfied.



Title Suppressed Due to Excessive Length 5

4 Differential Algebra

The key idea of DA is to define algebraic operations between polynomials
similar to those commonly used with real numbers [15] by suppling the tools
to compute the derivatives of functions within a computer environment [16].
More specifically, by substituting the classical implementation of real algebra
with the implementation of a new algebra of Taylor polynomials, any func-
tion of n variables is expanded into its Taylor polynomial up to an arbitrary,
user-defined, order c. A possible representation of analytic functions in a com-
puter environment is an approximation achieved with a collection of points,
Differential Algebra is a different representation of functions given by the co-
efficients of monomial basis functions. Using this framework in a computer
environment allows to treat functions and their operations similarly to how
real numbers are typically handled. Real numbers cannot be treated, in gen-
eral, in a computer environment, and they are approximated via truncation by
floating point (FP) numbers with a finite number of digits. Referring to Figure
1 [17,18], let us consider two real numbers a and b and their floating point
approximation ā and b̄ respectively. Given any operation “∗” in the set of real
numbers, an adjoint operation “ ~ ” is defined in the set of FP numbers such
that the diagram in the figure commutes. Consequently, transforming the real
numbers a and b into their FP representation and operating on them in the
set of FP numbers returns the same result as carrying out the operation in the
set of real numbers and then transforming the result into its FP representa-
tion. In a similar way, consider the right part of the figure, where two c times
differentiable functions f and g are given. In the DA framework, the computer
operates on them using their cth order Taylor expansions, F and G, respec-
tively. The operations performed in the space of Taylor polynomials return the
same result as operating on f and g in the original space and then extracting
the resulting Taylor series expansion. Therefore, once a center point for the
Taylor polynomial expansion is selected, any function can be represented by
a matrix of coefficients and exponents that define the polynomial itself.

Fig. 1: Analogy between the FP representation of real numbers in a computer
environment (left) and the algebra of Taylor polynomials in the DA framework
(right) [17,18] .
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Hence, algebraic operations in the space of the truncated Taylor series ex-
pansion are defined such that they approximate the operations on the function
space Cr(0) of r times differentiable functions at 0. Figure 2 illustrate the pro-
cess [19,20]. The expression 1/(x + 1) is evaluated once in Cr(0) (top) and
then in the DA framework with truncation order 3 (bottom). Starting from
the identity function x, one is added to get the function x + 1, the represen-
tation of which is fully accurate in the DA framework as it is a polynomial of
order 1. The multiplicative inversion is now performed, resulting to the func-
tion 1/(1 +x) in Cr(0). This function is not a polynomial anymore and it gets
automatically approximated in the DA arithmetic by its truncated Taylor ex-
pansion around 0, given by 1−x+x2−x3. Note that, by definition of the DA
operations, the diagram for each single operation commutes. The same result
is reached by first Taylor expanding a Cr(0) function (moving from the top to
the bottom of the diagram) and then performing the DA operation (moving
from left to right), or by first performing the Cr(0) operation and then Taylor
expanding the result [19,20].

Fig. 2: Evaluation of the expression 1/(1+x) in Cr(0) and in the DA arithmetic
[19,20] .

In addition to algebraic operations, the DA framework can be endowed with
natural differentiation and integration operators, completing the structure of
a differential algebra. For example, the evaluation of the gradient of a function
can be performed by working directly on the single monomials of a polynomial,
without the need of evaluating derivatives numerically or symbolically.

Of particular interest is the efficient calculation of Taylor polynomial ex-
pansions of the flow of ordinary differential equations as a function of its initial
conditions. Numerical ODE solvers are based on algebraic operations, involv-
ing the evaluation of the derivatives at several integration points. Starting
from the DA representation of the initial conditions, x0, and carrying out all
the evaluations in the DA framework, the flow of an ODE is obtained at each
step as its Taylor expansion centered at the initial conditions. Given an ODE
in the form

ẋ = f(x) (18)

with initial condition x̂0 at time t0, the dynamical system can be solved directly
in the DA framework. This is achieved by replacing the operations in a classical
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integration scheme, including the evaluation of the right hand side, by the
corresponding operation in the DA framework . Therefore, after initializing
the initial condition in the DA framework

x0(δx0) = x̂0 + δx0 (19)

where δx0 is the DA variable that represents the deviation form the center
of the polynomial, the DA ODE integration allows the propagation of the
Taylor series expansion of the flow forward in time, up to any final time tf .
Any explicit ODE integration scheme can be rewritten as a DA integration
scheme in a straight forward way. For the particular case regarding this paper,
a DA version of the 7/8 Dormand-Prince Runge-Kutta scheme is used. The
main advantage of the DA-based approach is that there is no need to derive,
implement and integrate variational equations in order to obtain the high
order expansions of the flow [21]. As this is achieved by merely replacing
algebraic operations on floating-points numbers by DA operations, the method
is inherently ODE independent [20]. The results is a polynomial representation
of the flow, which can be represented as

xf (δx0) = x̂f +Mx̂0

0→f (δx0) (20)

where x̂f indicates the constant part of the polynomial (zeroth order term),
which is equivalently calculated propagating the initial condition x̂0 to the
final time tf . Mx̂0

0→f (δx0) is the (forward) polynomial map and contains all
the non-zero-order terms of the expansion. The map is centered at the initial
condition x̂0, and describes how a perturbation at the initial time δx0 maps
to the final condition xf (δx0). The map uses the monomial basis in the δx0

variable to describe the flow of the dynamics. The result is an automatic Tay-
lor series expansion of the result of the numerical method, i.e. the numerical
approximation of the flow, with respect to any quantity that was initially ini-
tialized as a DA variable. Therefore, an efficient implementation of DA allows
to obtain high-order expansions with limited computational time [19]. This
approach results in potentially replacing thousands of integrations with eval-
uations of the Taylor expansion of the flow. As a result, in many applications,
the computational time reduces considerably without any significant loss in
accuracy [17].

For a more complete and detailed explanation on Differential Algebra,
please refer to the references. This works uses the Differential Algebra Core
Engine (DACE2.0) software tool [18,20].

5 The Differential Algebra Maximum A Posteriori filter (DAMAP)

Given the following discrete time state-space model

xk+1 = φ(xk; tk+1, tk) (21)

yk+1 = h(xk+1) + ηk+1 (22)
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where φ is the process model, xk is the n-dimensional state vector at time-step
k, yk+1 is the m-dimensional measurement vector at time-step k+ 1, and h is
the measurements function. The measurement noise ηk is a Gaussian random
sequence with covariance

E
{
ηiη

T
k

}
= R δik (23)

The initialization of the filtering algorithm is performed by assuming a
normal prior distribution of the state with mean x̂0 and covariance P0.

px0
(x0) =

1

(2π)n/2
√

det P0

exp

(
−1

2
(x0 − x̂0)TP−10 (x0 − x̂0)

)
(24)

Since Differential Algebra works with deviations from the mean, the DA vari-
able is initialized as

δx0 = x0 − x̂0 (25)

By considering the logarithm of the distribution, the prior can be expressed
as a quadratic form.

Ξx̂0
(δx0) = −1

2
δxT

0 P−10 δx0
+
= log px0

(x̂0 + δx0) = log px0
(x0) (26)

where the symbol
+
= is introduced to indicate equality modulo an additive

constant. Notice that setting the order of the Taylor polynomial expansion of
the flow’s φ and the measurement h to c, results in a representation of the
distribution Ξx̂0

(δx) being a Taylor polynomial of order 2c centered at x̂0.

5.1 Time Propagation

The prediction part of the filter starts with the time propagation of the dis-
tribution. Assume that the state evolution is Hamiltonian

ẋ(t) = f(t,x) (27)

then, from the prior results, we have that (dropping the explicit time depen-
dency)

pxk+1
(xk+1) = pxk

(φ−1(xk; tk+1, tk)) (28)

The aim is to get the polynomial approximation of the inverse of the flux
through DA techniques. Suppose that the integration of ẋ(t) = f(t,x) from
tk to tk+1 is performed using a polynomial approach, a c-th order Taylor
polynomials, and that the initial condition x+

k (the superscript + indicates
the state is from the posterior distribution) is given by a deterministic center
x̂+
k and a deviation δxk

x+
k = x̂+

k + δxk (29)



Title Suppressed Due to Excessive Length 9

Under these assumptions, the propagated state using DA is given by

x−k+1 = x̂−k+1 +Mx̂+
k

(k→k+1)(δxk) (30)

where

x̂−k+1 = φ(x̂+
k ; tk+1, tk) (31)

The map can be inverted using an algorithm in the DACE2.0 library based on
fixed point iterations [22] to obtain

W x̂−
k+1

(k+1→k)(δxk+1) =
(
Mx̂+

k

(k→k+1)(δxk)
)−1

(32)

using the properties of Hamiltonian systems, Equation (16),

pxk+1
(xk+1) = pxk+1

(x̂−k+1 + δxk+1) = pxk

(
x̂+
k +W x̂−

k+1

(k+1→k)(δxk+1)

)
(33)

Taking logarithms and ignoring constant terms

Ξ−
x̂−
k+1

(δxk+1)
+
= log pxk+1

(x̂−k+1 + δxk+1) (34)

= log pxk
(x̂+
k +W x̂−

k+1

(k+1→k)(δxk+1)) (35)

+
= Ξ+

x̂+
k

(
W x̂−

k+1

(k+1→k)(δxk+1)

)
(36)

where Ξ+

x̂+
k

(δxk) is the Taylor polynomial approximation of the logarithm

of the posterior distribution of xk (modulo a constant) centered at x̂+
k and

Ξ−
x̂−
k+1

(δxk+1) is the Taylor polynomial approximation of the logarithm of the

prior distribution of xk+1 (modulo a constant) centered at x̂−k+1.

5.2 Measurements Update

We assume that the measurement yk is a (possibly) nonlinear function of the
state xk corrupted by zero-mean, additive Gaussian noise ηk ∼ N (ηk; 0,Rk)

yk = h(xk) + ηk (37)

The Likelihood is defined as

L(yk+1|xk+1) = N
(
yk+1; h(xk+1),Rk+1

)
(38)

The state is reinitialized as a DA

x−k+1 = x̂−k+1 + δxk+1 (39)
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and the measurements are evaluated in the DA framework

yk+1 = hk+1(x−k+1) = ȳk+1 +Mx̂−
k+1(δxk+1) (40)

We then achieve the Taylor approximation of the log-likelihood (order 2c)

Λx̂−
k+1

(δxk+1) = −1

2
(yk+1 − ȳk+1 −Mx̂−

k+1(δxk+1))TR−1k+1(yk+1 − ȳk+1 −Mx̂−
k+1(δxk+1))

+
= logL(yk+1|x−k+1) (41)

where, again, the zeroth order term of the polynomial is neglected. The fil-
ter could operate even with the introduction of non-Gaussian measurement
noise, as long as the noise’s PDF is known and its logarithm taken. The MAP
estimate is obtained from the maximum of the following function

Ξ+

x̂−
k+1

(δxk+1) = Ξ−
x̂−
k+1

(δxk+1) + Λx̂−
k+1

(δxk+1) (42)

+
= log pxk+1|Yk+1

(x−k+1|Yk+1) (43)

where the notation Yk+1 indicates all measurements yj up to and including
j = k + 1. Ξ+

x̂−
k+1

(δxk+1) is the Taylor polynomial approximation of the log-

arithm of the posterior distribution of xk+1 (modulo a constant) centered at

x̂−k+1.
Working directly on the logarithm of PDFs improves the convergence of

the polynomials [23] and reduces the computational cost from the machine: a
large amount of multiplications is substituted by simpler and fewer additions.

5.3 Maximization

In order to find the MAP estimate, we need to find the deviation that maxi-
mizes the posterior distribution:

δx̄k+1 = arg max
δxk+1

Ξ+

x̂−
k+1

(δxk+1) (44)

Maximization in the DA framework is performed at first by searching for the
zero of the gradient of the posterior obtained using DA as

Θ(δxk+1) = ∇Ξ+

x̂−
k+1

(δxk+1) (45)

This operation is easily performed in the DA framework by working directly
with the coefficients and the exponents of the polynomial representation of the
distribution. The polynomial approximation of functions leads to fast compu-
tations of derivatives, where the gradient (and Jacobian) are easily calculated
from monomial differentiation rules. The next step is to find the value of δxk+1

that results in a zero gradient. Any algorithm to find the zeros of a nonlinear
function can be used, such as the Newton-Raphson method. The initial guess
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is set to δx
[0]
k+1 = 0 and at each iteration j the Jacobian J of the gradient is

evaluated at δx
[j]
k+1, the next iteration’s value is found as

δx
[j+1]
k+1 = δx

[j]
k+1 − J

−1Θ(δx
[j]
k+1) (46)

and the iterations are stopped when a predetermined exit threshold is reached.
The deviation that maximizes the posterior distribution is therefore evaluated
as the output of the Newton’s method. Rather than perform many iterations
of the Newton-Raphson algorithm, it is convenient to keep the exit threshold
somewhat higher and conclude the maximization in the DA framework. The
output of the Newton-Raphson algorithm is used as an accurate initial guess
for the DA maximization.

Denote withΘ+

x̂−
k+1

(δxk+1) the DA representation of the gradient ofΞ+

x̂−
k+1

(δxk+1).

This DA gradient is a polynomial and we will express it as the sum of its con-
stant part, Θ̄, and the polynomial map MΘ(δxk+1), such that

Θ+

x̂−
k+1

(δxk+1) = ∇Ξ+

x̂−
k+1

(δxk+1) = Θ̄ +Mx̂−
k+1

Θ (δxk+1) (47)

The polynomial map is inverted

W x̂−
k+1

Θ (δxk+1) =

(
Mx̂−

k+1

Θ (δxk+1)

)−1
(48)

where bothW x̂−
k+1

Θ (δxk+1) andMx̂−
k+1

Θ (δxk+1) are a function of the same vari-
able δxk+1. The deviation δx̄k+1 that results in a zero gradient of Ξ+

x̂−
k+1

(δxk+1)

is obtained evaluating the inverse map at −Θ̄

δx̄k+1 =WΘ(−Θ̄) (49)

Hence, δx̄k+1 is the actual numerical value of variable δxk+1, which indicates
the displacement between the maximum and the center of the series. The
sufficient condition for maximization is verified by further deriving the gradient
and evaluating the derivative value at δx̄k+1.

Therefore, the MAP estimate is given by

x̂+
k+1 = x̂−k+1 + δx̄k+1 (50)

All is left to start the next time propagation is to shift the center of the
Taylor polynomial from the prior estimate to the posterior estimate of the
state, i.e. defining a shift

δx+
k+1 = δx̄k+1 + δxk+1 (51)

Equation (42) is shifted through a simple polynomial evaluation

Ξ+

x̂+
k+1

(δxk+1) = Ξ+

x̂−
k+1

(δx+
k+1) (52)
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where Ξ+

x̂+
k+1

(δxk+1) is the Taylor polynomial approximation of the logarithm

of the posterior distribution (modulo a constant) centered at the MAP esti-
mate. The process is then kept iterative by evaluating, again, the gradient of
the function at the new center and checking for the necessary and sufficient
conditions.

5.4 Mean Square Error Estimation

The three steps above (Time Propagation, Measurement Update, and Maxi-
mization) are all is needed to compute the MAP estimate of the state vector,
and they are applied recursively in time. The estimate is accompanied by
Ξ+

x̂+
k+1

(δxk+1), which expresses the shape of the PDF, but not the scale, hence

the actual uncertainty of the estimate is unknown. When desired, it is possible
to add an additional step to the algorithm to endow it with a mean square
error (MSE) estimate. Since the computation of the MSE is not needed to
close the loop, it can be done asynchronously, at a lower rate, or on demand
when needed.

The acceptance-rejection method [24] is used to draw samples from an
unnormalized PDF. From these samples it is possible to approximate the bias
of the estimate (unlike LMMSE, MAP estimation is typically biased) and the
MSE.

Samples are randomly generated from an importance distribution and then
accepted or rejected based on a selected criteria (Equation (56)). Let start from

pxk+1|Yk+1
(x̂+
k+1 + δxk+1) = K exp

(
Ξ+

x̂+
k+1

(δxk+1)

)
(53)

where K is the normalizing constant and Ξ+

x̂+
k+1

(δxk+1) is the PDF logarithm

modulo a constant. Let g̃(xk+1) denote the importance PDF such that

g̃(x̂+
k+1 + δxk+1) = A exp(g(δxk+1)) (54)

where g(δxk+1) is the exponential part of the distribution and A the corre-
sponding normalizing constant, such that g̃(x̂+

k+1 + δxk+1) integrates to one.
The ratio pxk+1|Yk+1

(xk+1)/g̃(xk+1) must be bounded from above by a con-
stant C > 0; defined as

C ≥ sup
δxk+1

(
pxk+1|Yk+1

(x̂+
k+1 + δxk+1)

g̃(x̂+
k+1 + δxk+1)

)
(55)

After g̃(δxk+1) has been selected for the random generation of samples, the
acceptance-rejection algorithm selects deviations vectors δxk+1, distributed as
Ξ+

x̂+
k+1

(δxk+1), through the following steps.

1 - Generate random samples δx
(i)
k+1 = x

(i)
k+1− x̂+

k+1 where x(i) are distributed
according to g̃(xk+1).
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2 - Generate samples u(i) independent from δx
(i)
k+1 from the uniform distribu-

tion unif(0, 1).
3 - Check the inequality

log u(i) ≤ Ξ+

x̂+
k+1

(δx
(i)
k+1)− g(δx

(i)
k+1)− C̃ (56)

If the condition is true, then the point δx
(i)
k+1 is accepted as belonging to

the distribution pxk+1|Yk+1
(x̂−k+1 + δxk+1); otherwise the point is rejected.

Equation (56) provides the logarithmic form of the classic accept-reject
inequality [24], where C̃ indicates the remaining part of constant C after
having taken the logarithm and simplified terms in A and K. Indeed, by
writing the acceptance-rejection condition in its logarithmic form, Equa-
tion (56) loses all dependence on the normalizing constant A and on the
(estimable) constant K.

The algorithm is repeated until the desired amount of points, N , is reached.
The bias and MSE are evaluated directly from the samples

bias ' 1

N

N∑
i=1

δx
(i)
k+1 (57)

MSE = E
{(

xk+1 − x̂+
k+1

)(
xk+1 − x̂+

k+1

)T} ' 1

N

N∑
i=1

δx
(i)
k+1

(
δx

(i)
k+1

)T
(58)

The choice of an importance distribution that resembles the desired distri-
bution highly reduces the number of rejected points. Drawing samples from
a too-wide distribution leads to the risk of choosing points too far from the
expansion center, where the approximation accuracy of the polynomial series
decreases. On the other side, a too-narrow distribution may lead to an under-
estimate of the MSE.

It is important to re-emphasize that the MSE estimation step is for user-
information only and has no bearings in the calculation of the MAP and the
log-probability Ξ.

6 Numerical Examples

6.1 Range Measurement

The first example proposed is a simple toy problem to highlight the difference
between the Minimum Mean Square Error (MMSE) and the Maximum A
Posteriori (MAP) estimators.

Consider a range measurement problem without time propagation [25],
where the prior is a Gaussian PDF:

x = N
(

x;

[
−3
1

]
,

[
1 0
0 4

])
(59)
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The sensor provides range measurements from the origin

y = ‖x‖+ η

where η is Gaussian, zero mean, and with standard deviation of σ = 0.1.
Figure 3 gives a visual representation of the prior and posterior distributions
of x as well as the likelihood function, given y = 1.

Fig. 3: Prior, likelihood and true posterior probability density functions.

The performance of the Extended Kalman Filter (EKF), Iterated Extended
Kalman Filter (IKF) and the Unscented Kalman Filter (UKF) is shown in
Fig. 4. Figure 4 shows how these three filters approximate the posterior dis-
tribution, parameterized as a Gaussian with mean given by the filter’s state
estimate and covariance matrix given by the filter’s estimate of the estimation
error covariance. The EKF and IKF are not producing a consistent estimate,

Fig. 4: EKF - IKF - UKF approximation of the posterior PDF.

while the UKF produces an overly conservative and not very accurate, esti-
mate.

Fig. 5 shows DAMAP’s approximation of the posterior distribution for
different truncation orders c of the Taylor polynomial expansion, achieved by
applying the measurement update algorithm (Equation 42 ).

The polynomial truncation order is added to the name of the filter, DAMAP-
c. As an example, DAMAP-2 indicates that the polynomial approximation of
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Fig. 5: DAMAP-c approximation of the posterior PDF with different expansion
orders.

the state is second order, and consequently the approximation of the log-
probability function is 4. As expected, DAMAP-1 behaves exactly like the
EKF, being based on the simple linearization of the measurement function.
As the order increases, the true PDF approximation improves. DAMAP-8
achieves an excellent representation of the posterior distribution.

Fig. 5 shows the contour lines of the PDF, meaning that there might be
a different scaling factor between DAMAP’s function and the true one. The
scaling factor can be calculated through Monte Carlo integration using impor-
tance sampling. Importance samples, x(i) are not drawn directly from p(x),
but from an importance distribution π(x), over the same support S. Getting
i.i.d (independent and identically distributed) samples from π(x)

E {f(x)} =

∫
S
f(x)p(x)dx =

∫
S
f(x)

p(x)

π(x)
π(x)dx ≈ 1

N

N∑
i

f(x(i))
p(x(i))

π(x(i))

(60)

which is valid as long as π(x) 6= 0 for all values for witch p(x) 6= 0.



16 Simone Servadio et al.

To calculate the normalizing scaling constant K, we set f(x) = 1 inside
the expectation in Eq. (60) such that the constant is approximated as

1

K
=

∫
exp (Ξ(x)) dx =

∫
exp (Ξ(x))

π(x)
π(x)dx ≈ 1

N

N∑
i=1

exp
(
Ξ(x̃(i))

)
π(x̃(i))

(61)

Fig. 6 shows the results of applying importance sampling to the PDF ob-
tained from DAMAP-8. After scaling, the peak of the approximated mode
differs only 1.2% from the correct value, proving that the distribution has
been correctly normalized. The importance distribution π(x) used is Gaussian
with mean given by the DAMAP-8 estimate and covariance equal to that of
the prior distribution’s, Equation (59).

Fig. 6: Mode comparison after importance samplings normalization.

Lastly, DAMAP-c can provide an estimate of the mean square error of
the state estimate. In this example, the sampling distribution to calculate the
MSE is a uniform distribution centered at the MAP estimate with amplitude
1.5 times the prior PDF’s standard deviation. Fig. 7 shows the comparison
between the covariance and MSE ellipses between the true distribution and
DAMAP-8 approximation. The figure reports in red dots the points that the
algorithm accepts for the true distribution, while the blue circles are the ones
from the polynomial series. The covariance and the MSE has been evaluated
through Monte Carlo calculation according to Equation (58), with 1 million
sample points. The figure demonstrate the consistency of the estimation from
DAMAP-c and the robustness of the MSE prediction, especially when com-
pared with the covariances of the other filters from Fig. 4. Moreover an esti-
mate of the estimation bias, consisting in the distance between the red point
(DAMAP-8 MAP) and the blue point (DAMAP-8 mean), is obtained with
Equation (42).



Title Suppressed Due to Excessive Length 17

Fig. 7: Covariance and MSE comparison True vs. DAMAP-c.

6.2 Orbit Determination

The proposed filter has been tested on an orbit determination problem. The
equations of motion governing the spacecraft are associated to the Keplerian
dynamics

r̈ = − µ
r3

r (62)

where r is the position vector and µ is the Earth gravitational parameter.
Following the example from [26], the problem has been normalized to be non-
dimensional with length scaled by the orbit semi-major axis, a = 8788km,

and time

√
a3

µ
. The initial conditions and uncertainties values are taken from

previous works [16,19]

x0 =

(
r0
v0

)
=


−0.68787
−0.39713
0.28448
−0.51331
0.98266
0.37611

 (63)

The measurements are range and bearing angles and are taken with respect
of the center of planet at different acquisition frequencies.

y1 = ‖r‖+ η1 (64)

y2 = arctan
(x2
x1

)
+ η2 (65)

y3 = arcsin
(x3
r

)
+ η3 (66)
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where ηi, i = 1, 2, 3, is the measurement noise, assumed to be zero mean, white,
and Gaussian. Figure 8 gives a visual representation of the measurements as
a function of the state. The standard deviation of the error is assumed to

Fig. 8: Visual representation of the measurement equations.

be 0.1m in range and 0.1arcsec for the angles. The initial state uncertainty is
assumed to be Gaussian as well, with a diagonal initial error covariance matrix:
the value of the variance for the position part of the state vector components
is 0.01, while the variance for the velocity components is 10−4. Therefore

σr = 10−2a (67)

σv = 10−4
√
µ

a
(68)

A Gaussian PDF with mean x̂+ and covariance Pg is chosen as the sam-
pling distribution to calculate the MSE. The covariance Pg is selected as twice
the covariance predicted by a simple EKF update.

g̃(x̂+ + δx) = A exp(−1

2
δxTP−1g δx) (69)

The condition from Equation (56) becomes

log u(i) ≤ Ξ+

x̂+
k+1

(δx(i))+
1

2
(δx(i))TP−1g (δx(i))+

− sup
δx

(
Ξ+

x̂+
k+1

(δx(i)) +
1

2
(δx(i))TP−1g (δx(i))

)
(70)

The evaluation of the supremum for each time-step is not an easy task and
it requires an accurate, and computational costly, analysis of the state dis-
tribution. The assumption that the supremum of the ratio between the two
distributions occurs at the current estimate is made and results in

log u(i) ≤ Ξ+

x̂+
k+1

(δx(i)) +
1

2
(δx(i))TP−1g (δx(i))−Ξ+

x̂+
k+1

(0) (71)
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Looking back at Equation (56), we obtained C̃ = Ξ+

x̂+
k+1

(0).

The results of the orbit determination problem solved with DAMAP-3 are
reported in Fig. 9 where a Monte Carlo analysis of 1000 test runs has been
performed. For each test run, the true initial condition is chosen randomly ac-
cording to the initial probability density function of the state. The simulation
tracks the spacecraft for two full orbits obtaining twelve equally spaced ob-
servations for each orbit. The blue lines (effective MSE) represent three times

Fig. 9: Monte Carlo analysis of DAMAP-3 with 1000 test runs. Run time of 2
orbits with 12 observation per orbit.

the square root of the mean square error of the 1000 runs. The predicted MSE
is calculated using 200 accepted samples and the mean of the 1000 predicted
MSEs is shown in green lines (as three times the MSE’s square root). The
close match between the green and blue lines indicates the filter’s consistency.

DAMAP-c is compared to the DA-Based High Order Extended Kalman
Filter (EKFDA-k) implemented in previous works [19,26]. This comparison
is of importance since it underlines the main differences between a MAP es-
timator (DAMAP-c) and a Linear Minimum Mean Square Error one. After
performing a high-order prediction step using DA techniques, the update step
of EKFDA-k resembles that of the classical Kalman filter. Performance of dif-
ferent orders of Taylor polynomial approximations is also investigated. The
Unscented Kalman Filter (UKF) is also reported for comparison purposes.

Fig. 10 contains the performance comparison, it shows the MSE profiles for
the spacecraft position, left, and velocity, right, on the 2 orbits long simulation
with 12 observations per orbit. Each filter compared has two sets of lines asso-
ciated with it: the dashed lines refer to the standard deviations calculated from
the Monte Carlo samples (1000 runs), at each time step, while the continuous
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lines are the predicted error standard deviations estimated by each filter. The
latter are given by the square root of the sum of the diagonal terms of the
updated MSE matrix from the filter. A consistent filter has overlap between
its dashed and continuous lines, meaning a match between the effective and
the predicted uncertainties.

Fig. 10: Comparison of MSE among UKF, DAMAP-c and EKFDA-k for a 2
orbit simulation with 12 observations per orbit.

Fig. 10 shows that the simple linearization of the dynamics does not achieve
an accurate estimate and a consistent filter. The EKF (black lines, equivalent
to EKFDA-1 and DAMAP-1) diverges and is inconsistent. The UKF, EKFDA-
2 and EKFDA-3 behave similarly and achieve similar performance, settling on
the same accuracy levels. There appear to be no benefits into increasing the
order of EKFDA from two to three: the posterior distribution is not strongly
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skewed and third order monomials do not result in an accuracy improvement.
DAMAP-3, on the other hand, achieves better results then DAMAP-2: since
the second order filter diverges and the dashed cyan line does not overlap
with the continuous one. The incoherency is believed to be connected to the
nonlinearities and large initial uncertainties. DAMAP-3 converges to a similar
accuracy levels as UKF and EKFDA-k. However, the effective MSE shows that
DAMAP-3 is the fastest filter during the transient, as shown by the dashed
blue line being the lowest among others. The simulation starts at apogee,
which explains the increase in the velocity uncertainties after the first step
(the overall trace of the MSE matrix is still decreasing).

In order to underline the differences between the above mentioned filters,
a second set of simulations is run with the measurement acquisition frequency
down to 6 observations per orbit. Fig. 11 shows the Monte Carlo results of
DAMAP-3. The matching between the green lines, which represent the esti-
mated MSE, and the blue lines, which are the effective MSE from the 1000 test-
runs, states that DAMAP-3 is a consistent filter. DAMAP-3 rapidly reaches
steady state and the effective MSE settles to convergence before the estimated
MSE. The estimation of the MSE for the first time steps is difficult because
the covariance matrix Pg from the Kalman filter is very large, leading to an
overwhelming fraction of rejected samples; therefore, a correct estimation of
the uncertainties requires a non feasible amount of time.

Fig. 11: Monte Carlo analysis of DAMAP-3 with 1000 test runs. Run time of
2 orbits with 6 observation per orbit.

Fig. 12 compares DAMAP-3 with the UKF and EKFDA-3. The UKF, green
lines, and EKFDA-3, red lines, show similar results and they have an analo-
gous behavior: the filters achieve convergence but they both underestimate the
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MSE level, especially in the transient part of the simulation. The UKF and
EKFDA-3 are expected to share a similar pattern in an orbit determination
application, as shown in [27,28]. The blue lines represent the performances of
DAMAP-3. The figure shows, in a logarithmic scale, that DAMAP-3 is the
most consistent filter, with a perfect overlapping of the dashed and continuous
lines at steady state. In the transient, the predicted MSE is bigger than the
actual error distribution: the acceptance-rejection method is having the same
computational issues mentioned previously and it predicts a conservative MSE
value that it is larger than the actual one. DAMAP-3 is a nonlinear estima-
tor and it reaches steady state right after the first iteration. The UKF and
EKFDA-3 are linear estimators, i.e., the estimate is a linear function of the
measurements, and the uncertainties require multiple steps before settling to
steady state levels. Therefore, the dashed blue line, which express the actual
performance of DAMAP-3, is the lowest among all the others. This difference
is marked in the first steps of the simulation, but can also be appreciated by
looking at the enlargement of the steady state.

Fig. 12: Comparison of MSE among UKF, DAMAP-3 and EKFDA-3 for a 2
orbit simulation with 6 observations per orbit.

A fully nonlinear MMSE filters will have (by construction) a smaller MSE
than a MAP estimator. When compared to linear MMSE estimators, however,
DAMAP-3 is able to achieve higher accuracy at steady state due to the precise
representation of the posterior distribution through polynomials.
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6.3 Orbit Determination - Angles Only

The orbit determination problem is now analyzed when the sensors provide
only angular measurements and no range. A Monte Carlo analysis is performed
with the same three filters used in the previous simulation. Due to the poor ob-
servability, the initial uncertainties (initial state covariance matrix) have been
reduced by a factor 4. Fig. 13 shows the 1000 Monte Carlo runs of DAMAP-3
for a 3 orbits long simulation with 24 equally spaced observations per orbit.
DAMAP-3 is able to achieve convergence and an accurate estimation of the
state of the system is obtained. DAMAP-3 is conservative as the predicted
uncertainties are slightly larger than the effective ones from the test runs. The
MAP is not necessarily an unbiased estimator, thus DAMAP-c can have a
smaller error covariance but a higher MSE than a MMSE estimator.

Fig. 13: Monte Carlo analysis of DAMAP-3 with 1000 test runs. Run time of
2 orbits with 24 observations per orbit.

Fig. 14 compares the MSE for position (left) and velocity (right) for various
filters. The figure shows, in a logarithmic scale, the steady state behavior of the
filters. Therefore, the initial uncertainty levels are out of scale and the figure is
zoomed in to enlarge the difference among the different estimators. The figure
shows that the UKF is overconfident, the UKF is not able to estimate its own
error uncertainties and therefore, even if convergence is achieved, the filter does
not operate correctly. The EKFDA-3 is a consistent filter with the best MSE
performance. DAMAP performance is worse in the MSE sense than EKFDA-3,
which is reasonable since the latter explicitely attempts to minimize the MSE.
DAMAP-3 achieves similar accuracy level presented by EKFDA-3, however,
it predicts a more conservative uncertainty. The EKF, which consist in the
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special case of EKFDA-1, is not reported in the figure because it diverges as
in the previous applications.

Fig. 14: Comparison of MSE among UKF, DAMAP-3 and EKFDA-3 for a
3 orbit simulation with 24 observations per orbit with angles measurements
only. σr [km] and σv [km/s]

7 Conclusions

A filter based on the Maximum A Posteriori principle has been presented. The
capability of propagating and updating the PDF by working directly on the
exponent of the distribution had given DAMAP-c the ability to reach satisfy-
ing accuracy levels. Thanks to the polynomial representation of the exponent
of the PDF, DAMAP-c can accurately estimate the shape of the posterior dis-
tribution. If information regarding the scaling factor and uncertainties is re-
quired, then DAMAP-c can output both covariance and MSE applying Monte
Carlo integration techniques. Moreover, in the simulations performed, due to
the higher order polynomial approximation of the exponent of the distribu-
tion through DA techniques, the filter is able to reach convergence level faster
than high-order filters based on the linear MMSE, such has EKFDA-k and the
UKF.

Being based on the MAP principle makes DAMAP-c a nonlinear estimator
which is able to achieve better results when compared to linear ones, such as
UKF and EKFDA-k. Moreover, DAMAP-c also has the feature to represent the
shape of the posterior distribution, rather than simply the covariance matrix.



Title Suppressed Due to Excessive Length 25

Acknowledgment

This work was sponsored in part by the Air Force Office of Scientific Research
under grant number FA9550-18-1-0351

Appendix

The DAMAP algorithm for the orbit determination application summed up
in Algorithm 1.
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Algorithm 1 DAMAP

Get x̂0, P0, and measurement noise covariance R;
Declare expansion order c, number of samples N , and tolerances τ1, τ2;

//Initialization//
δx0 = x0 − x̂0;
Ξx̂0

(δx0) = − 1
2δx

T
0 P−10 δx0;

while ỹ is available do

//T ime Propagation//
x+
k = x̂+

k + δxk; // Initialize Pol.

x−k+1 = f(x+
k ) = x̂−k+1 +Mx̂+

k

(k→k+1)(δxk); // Pol. Propagation

W x̂−
k+1

(k+1→k)(δxk+1) =
(
Mx̂+

k

(k→k+1)(δxk)
)−1

; // Map Inversion

Ξ−
x̂−
k+1

(δxk+1) = Ξ+

x̂+
k

(
W x̂−

k+1

(k+1→k)(δxk+1)

)
; // PDF Propagation

//Measurement Update//
x−k+1 = x̂−k+1 + δxk+1; // Initialize Pol.

yk+1 = hk+1(x−k+1) = ȳk+1 +Mx̂−
k+1(δxk+1); // Measurement Pol.

Λx̂−
k+1

(δxk+1) = − 1
2 (ỹk+1 − ȳk+1 −Mx̂−

k+1(δxk+1))TR−1k+1(∼);

// Likelihood
Ξ+

x̂−
k+1

(δxk+1) = Ξ−
x̂−
k+1

(δxk+1) + Λx̂−
k+1

(δxk+1); // Posterior PDF

//Maximization//
Θ(δxk+1) = ∇Ξ+

x̂−
k+1

(δxk+1); // Gradient

δx
[0]
k+1 = 0;

while τ1 is achieved do
δx

[j+1]
k+1 = δx

[j]
k+1 − J−1Θ(δx

[j]
k+1) // Newton-Raphson

end while
while τ2 is achieved do

Θ+

x̂−
k+1

(δxk+1) = ∇Ξ+

x̂−
k+1

(δxk+1) = Θ̄ +Mx̂−
k+1

Θ (δxk+1);

W x̂−
k+1

Θ (δxk+1) =

(
Mx̂−

k+1

Θ (δxk+1)

)−1
; // Map Inversion

δx̄k+1 =WΘ(−Θ̄); // Deviation of MAX
x̂+
k+1 = x̂−k+1 + δx̄k+1; // Updated State Pol.

δx+
k+1 = δx̄k+1 + δxk+1; // Updated Deviation

Ξ+

x̂+
k+1

(δxk+1) = Ξ+

x̂−
k+1

(δx+
k+1); // Shifted Posterior PDF

end while

//MSE Estimation (For OD)//
while i < N do

x
(i)
k+1 from g̃(x̂+ + δx) = A exp(−1

2
δxTP−1g δx);

u(i) from unif(0, I)

δx
(i)
k+1 = x

(i)
k+1 − x̂+

k+1;

if log u(i) ≤ Ξ+

x̂+
k+1

(δx(i)) +
1

2
(δx(i))TP−1g (δx(i))−Ξ+

x̂+
k+1

(0) do

accept x
(i)
k+1;

end if
end while

MSE =
1

N

∑N
i=1 δx

(i)
k+1

(
δx

(i)
k+1

)T
end while
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