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A MULTIPLICATIVE RESIDUAL APPROACH TO ATTITUDE
KALMAN FILTERING WITH UNIT-VECTOR MEASUREMENTS

Renato Zanetti∗

Using direction vectors of unit length as measurements for attitude esti-
mation in an extended Kalman filter inevitably results in a singular mea-
surement covariance matrix. Singularity of the measurement covariance
means no noise is present in one component of the measurement. Singular
measurement covariances can be dealt with by the classic Kalman filter
formulation as long as the estimated measurement covariance is non sin-
gular in the same direction. Unit vector measurements violate this condi-
tion since both the true measurement and the estimated measurement have
perfectly known lengths. Minimum variance estimation for the unit vector
attitude Kalman filter is studied in this work. An optimal multiplicative
residual approach is presented. The proposed approach is compared with
the classic additive residual attitude Kalman filter.

INTRODUCTION

The Kalman filter1, 2 is a widely used algorithm in spacecraft navigation. While the
Kalman filter is usually employed to estimate vector quantities such as position or velocity,
modifications to the classic algorithm exist to estimate attitude. One favorite spacecraft atti-
tude representation is the quaternion-of-rotation.3, 4 Two common approaches to enforce the
unit-norm constraint of the quaternion-of-rotation in the Kalman filter are the multiplicative
extended Kalman filter (MEKF)5 and the additive extended Kalman filter (AEKF).6 Projec-
tion techniques and constrained Kalman filtering to enforce the quaternion normalization
also exist.7, 8

Direction measurements from attitude sensors are often provided as bearing angles. A
unit vector can be created from the angles. While the Kalman filter can easily process
the angular measurements, processing unit vectors is a widely adopted technique.6, 9 The
QUEST measurement model9 is a unit vector measurement model. More recently Cheng
et al.10 introduced a new measurement model. Both these models are additive; Mortari and
Majji11 introduced a multiplicative measurement model.

The covariance matrix of the additive measurement models is obtained through lineariza-
tion assuming the measurement errors are small. This assumption is equivalent to making
the measurement error perpendicular to the measurement itself. Therefore, the radial com-
ponent of the error is identically zero and as a result the error covariance matrix is singular.
Cheng et al.10 avoid the problem by using the measurement error pseudoinverse in the
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information formulation of the Kalman filter. However, the information formulation leads
to a minimum variance estimate only if both the estimation error covariance and the mea-
surement error covariance are invertible. Catlin shows the general information estimate for
singular measurement covariances [12, page 160] which differs from the minimum vari-
ance estimate. This work derives the general minimum variance estimate and shows that
for this particular case the result is equivalent to the algorithm by Cheng et al.

The Kalman filter uses an additive residual (true measurement minus estimated measure-
ment) to update the prior state once a measurement becomes available. Unit vector Kalman
filters usually use the same technique producing good results. From a purely theoretical
point of view however, subtracting two unit vectors to obtain a measurement residual is not
satisfactory because the resulting vector has no physical meaning. Similarly to the AEKF,
subtracting two unitary quantities provides an un-physical error representation, but the per-
formance is not compromised by the operation.13 While the MEKF has advantages and is
widely used, it is philosophically unsatisfactory to reject the AEKF on the basis that the
estimation error is un-physical and that the estimation error covariance is singular unless
artificially increased in the radial direction, only to use a scheme that subtracts unit vector
measurements and avoids singularity adding a radial component to the measurement co-
variance. In this work a multiplicative residual is employed in the MEKF, and it is shown
that the additive residual is not necessary and redundant, a fact heretofore unknown.

MEASUREMENT MODEL

The unit vector measurement model used in this work is the one introduced by Cheng
et al.10 and is quickly presented here. The measured values are the apparent horizontal (a)
and vertical (b) location of the observed direction in the camera sensitive element. Without
loss of generality a unitary focal length is assumed. By defining the body-fixed camera
frame having z along the boresight, x along the horizontal direction, and y along the vertical
direction, the unit vector pointing to the apparent direction of the target in the body frame
is given by

b =
1√

1 + a2 + b2

−a−b
1

 . (1)

The same vector coordinatized in the reference frame is denoted by r. Denoting by δa and
δb the measurement errors, the measured unit vector is given by

b̃ =
1√

1 + (a+ δa)2 + (b+ δb)2

−a− δa−b− δb
1

 ' b + J

[
δa
δb

]
. (2)

where J is the Jacobian of b and is given by10

J =
1√

1 + a2 + b2

−1 0
0 −1
0 0

− 1

1 + a2 + b2
b
[
a b

]
. (3)
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For the purpose of this work, it is more convenient to write J in a different form. Define

I3×2 =

1 0
0 1
0 0

 , (4)

then
J =

1√
1 + a2 + b2

{
−I3×3 + bbT

}
I3×2 =

1√
1 + a2 + b2

[b×]2I3×2. (5)

The covariance of the error in the focal plane is given by10

E

{[
δa
δb

] [
δa
δb

]T}
, RFOCAL =

σ2

1 + d(a2 + b2)

[
(1 + da2)2 (dab)2

(dab)2 (1 + db2)2

]
, (6)

where d is on the order of 1 and σ is known. The new measurement model introduced by
Cheng et al. is given by

RNEW = JRFOCALJT. (7)

If a measurement occurs exactly at the boresight a = b = 0 and b = [0 0 1]T. In this
situation RFOCAL = σ2I2×2 and

RNEW = −σ2[b×]2 = σ2(I3×3 − bbT), (8)

which is the QUEST measurement model.9 The QUEST measurement model is valid
for small field-of-view sensors for which is approximately equivalent to the model by
Cheng et al. All the results presented in the following sections extend to the QUEST
measurement model and the filter that employs it.9

MULTIPLICATIVE RESIDUAL APPROACH

Define q̄b
i as the true quaternion expressing the rotation from the reference frame i to a

body-fixed frame b, and define ˆ̄qb
i its estimate. Also let the three- dimensional estimation

error14 be δθ such that
q̄b
i = q̄(δθ)⊗ ˆ̄qb

i , (9)

where q̄(δθ) is the quaternion representation of the rotation δθ. Define the following up-
date

δθ̂
+

k = δθ̂
−
k + Kk(b̃k × b̂k), (10)

where “×” represents the vector cross product and “hat” denotes an estimated quantity.
Using the multiplicative residual εk = b̃k × b̂k is not completely new. It is used by Cras-
sidis et al. in their trade study of contingency attitude determination algorithms.15 The
filter by Crassidis et al. differs from the proposed methodology because in their approach
the rank-two covariance matrices are approximated by full-rank matrices, leading to a dif-
ferent update. The multiplicative residual is also used by Akella et al. for a continuous
time nonlinear observer,16 and is also derived by Reynolds as the extended Kalman filter
mechanization of his attitude filter.17
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A linear combination of the residual and the prior estimate (which is always equal to
zero in the MEKF) is chosen as in the Kalman filter. The bigger the residual, the bigger
the update. Zero residual means that the estimated measurement coincides with the actual
measurement, therefore no update should occur. From the above discussion, it can be
concluded that the multiplicative residual makes sense from a theoretically point of view
because it is zero when the two vectors coincide, and it increases (in magnitude) as the
sine of the angle between the two vectors. Therefore this filter would not work properly
when the angle between the two vectors approaches or is greater than 90 degrees. Such
large deviations, however, are beyond the scope of an EKF-like algorithm, which relies on
linearization.

The residual can be rewritten as

εk = −[b̂k×]

(
T(δθ−)b̂k +

1√
1 + a2 + b2

[b×]2I3×2

[
δa
δb

])
(11)

' −[b̂k×]2δθ−k − [b̂k×]J

[
δa
δb

]
. (12)

where δθ−k is the true prior attitude estimation error. Define

Hk , −[b̂k×]2 = I3×3 − b̂kb̂
T
k = HT

k . (13)

The true posterior error is

δθ+
k = (I3×3 −KkHk)δθ−k −Kk[b̂k×]Jk

[
δa
δb

]
. (14)

Define the estimation error covariance P as

Pk = E
{
δθkδθ

T
k

}
. (15)

Assuming the measurement error is white and uncorrelated from other error sources the
posterior covariance is given by

P+
k = (I3×3 −KkHk)P−k (I3×3 −KkHk)T + Kk[b̂k×]RNEW

k [b̂k×]TKT
k . (16)

The goal is to choose the gain Kk that minimizes the trace of the posterior covariance
(traceP+

k ) providing the minimum variance estimate. The optimal gain is given by12

Kk = P−k H
T
k (HkP

−
k H

T
k + [b̂k×]RNEW

k [b̂k×]T)†, (17)

where the symbol “†” indicates the Moore-Penrose pseudoinverse. It does not matter that
the covariance Wk of the residual is singular. The optimal gain can be found using the
pseudoinverse instead of the regular inverse.

Wk = HkP
−
k H

T
k + [b̂k×]RNEW

k [b̂k×]T. (18)

A small complication arises from the fact that Wk is neither full row nor full column,
therefore it might seem that singular value decomposition is needed to calculate the pseu-
doinverse, which would reduce the practical usefulness of the algorithm. However, the
algorithm proposed here calculates the optimal gain without singular value decomposition.
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Lemma 1. Define the unit vectors n1 and n2 such that {b̂k, n1, n2} is an orthonormal
triad. Define also

S =
[
n1 n2

]
. (19)

Then
Hk = SST. (20)

Proof. To show that the two matrices are the same it is sufficient to show that a non singular
matrix A exists such that HkA = SSTA. An appropriate choice is

A =
[
b̂k n1 n2

]
, (21)

which is clearly of full rank since A−1 = AT.

HkA = −
[
[b̂k×]2b̂k [b̂k×]2n1 [b̂k×]2n2

]
=
[
0 n1 n2

]
. (22)

SSTA = S

[
nT
1 b̂k nT

1 n1 nT
1 n2

nT
2 b̂k nT

2 n1 nT
2 n2

]
=
[
n1 n2

] [0 1 0
0 0 1

]
(23)

=
[
0 n1 n2

]
. (24)

Property 1. If matrix A is of full column rank, and B is of full row rank, then

(AB)† = B†A†. (25)

Lemma 2. Using the definitions of Lemma 1 then

S† = ST. (26)

Proof. The proof comes directly from the definition of pseudoinverse which must satisfy

1. AA†A = A

2. A†AA† = A†

3. (AA†)T = AA†

4. (A†A)T = A†A

Theorem 1. The optimal gain of Eq. (17) is given by

Kk = P−k S{S
T(P−k + [b̂k×]RNEW

k [b̂k×]T)S}−1ST (27)
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Proof.

Kk = P−k H
T
k (HkP

−
k H

T
k + [b̂k×]RNEW

k [b̂k×]T)† (28)

= P−k H
T
k {SST(P−k + [b̂k×]RNEW

k [b̂k×]T)SST}† from Lemma 1 (29)

= P−k H
T
k (ST)†{ST(P−k + [b̂k×]RNEW

k [b̂k×]T)S}† S† from Property 1 (30)

= P−k H
T
kS{ST(P−k + [b̂k×]RNEW

k [b̂k×]T)S}−1ST from Lemma 2 (31)

= P−k S{S
T(P−k + [b̂k×]RNEW

k [b̂k×]T)S}−1ST. (32)

The fact that the pseudoinverse coincides with the inverse when the latter exists is also
used. Finally the last equality holds because

HT
kS = −

[
[b̂k×]2n1 [b̂k×]2n2

]
=
[
n1 n2

]
= S. (33)

Notice that matrix ST[b̂k×]RNEW
k [b̂k×]TS ∈ <2×2 is of full rank as long as b is not

perpendicular to the boresight. Clearly no sensor can have a 180 degree field-of-view
because it would require an infinitely large sensitive element (given any finite focal length).

The covariance update is given by the Joseph formula of Eq. (16) and using Eq. (33) to
notice that KkHk = Kk.

P+ = (I3×3 −Kk)P−(I3×3 −Kk)T + K[b̂k×]RNEW
k [b̂k×]TKT. (34)

COMPARISON WITH LARGE FIELD-OF-VIEW MODEL

The filter proposed in Ref. 10 is given by

H̃k = [b̂k×] (35)

(P+)−1 = (P+)−1 + H̃T
k (RNEW

k )†H̃k (36)

K̃k = P+
k H̃

T
k (RNEW

k )† (37)

δθ̂
+

k = δθ̂
−
k + K̃k(b̃k − b̂k). (38)

The linear unbiased minimum variance estimator is given by the Kalman filter. The mini-
mum variance estimator is equivalent to the information formulation when the hypotheses
of the matrix inversion lemma are satisfied. These hypotheses are that both the estima-
tion error covariance and the measurement error covariance are non singular. When the
hypotheses are not satisfied, the information formulation of the Kalman filter does not
generally provide the minimum variance estimate.12 Therefore the procedure followed in
Ref. 10 does not guarantee that their estimate is optimal in a minimum variance sense. The
actual minimum variance estimate is given by

W̃k = H̃kP
−
k H̃

T
k + RNEW

k (39)

K̃k = P−k H̃
T
k W̃

†
k (40)

δθ̂
+

k = δθ̂
−
k + K̃k(b̃k − b̂k) (41)

P+ = (I3×3 − K̃kH̃k)P−(I3×3 − K̃kH̃k)T + K̃kR
NEW K̃T

k . (42)
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From Ref. [10, Eq. (27)]:

(W̃k + cb̂kb̂
T
k )−1 = W̃†

k +
1

c
b̂kb̂

T
k , (43)

and noticing that H̃T
k b̂ = 0, it follows that

K̃k = P−k H̃
T
k W̃

†
k = P−k H̃

T
k (W̃k + cb̂kb̂

T
k )−1. (44)

By adding a non-zero component to the measurement error covariance along the radial
directionRNEW

k = RNEW
k + cb̂kb̂

T
k , the new residual covariance becomes

W̃k + cb̂kb̂
T
k = H̃kP

−
k H̃

T
k +RNEW

k , (45)

which satisfies the hypotheses of the matrix inversion lemma because both P−k andRNEW
k

are of full rank. Therefore the information formulation can be used and the equations by
Cheng et al. follow. Simply replacing the inverse with the pseudoinverse in the informa-
tion formulation of the Kalman filter is not sufficient to prove optimality. The derivation
presented here proves that the method by Cheng et al. is optimal in a minimum variance
sense. The method is also equivalent to the one proposed in the previous section as it will
now be shown.

The gain by Cheng et al. is given by

K̃k = P−k H̃
T
k (H̃kP

−
k H̃

T
k + RNEW

k )† = −P−k H̃
T
k [b̂×]2(H̃kP

−
k H̃

T
k + RNEW

k )† (46)

since H̃T
k = −[b̂k×] = −H̃T

k [b̂k×]2. Multiplying both sides by [b̂k×]T

K̃k[b̂k×]T = −P−k H
T
k [b̂k×](H̃kP

−
k H̃

T
k + RNEW

k )†[b̂k×]T, (47)

since H̃T
k [b̂k×]2 = −[b̂k×]3 = HT

k [b̂k×]. Using

[b̂k×]† = [b̂k×]T, (48)

it follows that

K̃k[b̂×]T = −K̃kH̃k = −P−k H
T
k ([b̂×]H̃kP

−
k H̃

T
k [b̂×]T + [b̂×]RNEW

k [b̂×]T)† = −Kk.
(49)

The covariance update is given by Eq. (16)

P+ = (I3×3 −Kk)P−(I3×3 −Kk)T + Kk[b̂k×]RNEW
k [b̂k×]TKT

k (50)

= (I3×3 − K̃kH̃k)P−(I3×3 − K̃kH̃k)T + K̃kR
NEW K̃T

k , (51)

therefore the two methods lead to the same covariance update.

The multiplicative update is given by

δθ̂
+

k = δθ̂
−
k −Kk[b̂k×]b̃k = δθ̂

−
k −Kk[b̂k×](b̃k − b̂k) (52)

= δθ̂
−
k − K̃k[b̂k×]2(b̃k − b̂k) = δθ̂

−
k + K̃k(b̃k − b̂k), (53)
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therefore the two methods lead to the same state update. The last equality of Eq. (53) holds
because [bk×] = −[bk×]3 and

K̃k = P+
k H̃

T
k (RNEW

k )† = P+
k H̃

T
k (JRFOCAL

k JT)† (54)

= P+
k H̃

T
k (JT)†(RFOCAL

k )−1(J)†, (55)

where J is evaluated at the estimated measurement. But from Eqs. (48) and (5)

J† =
√

1 + a2 + b2(I3×2)
†([b×]2)† =

√
1 + a2 + b2(I2×3)[b×]2. (56)

Therefore K̃k = Ck[b̂k×], where Ck is some matrix. This last identity also implies that
the additive update

δθ̂
+

k = K̃k(b̃k − b̂k) (57)

is unnecessary and can be reduced to

δθ̂
+

k = K̃kb̃k (58)

where the fact that δθ̂
−
k is identically zero is also used. The equivalence shown in this

section expands to the filter based on the QUEST measurement model proposed in Ref. 9,
since that filter is equivalent to the one by Cheng et al. as the field-of-view approaches zero.
The filter in Ref. 9 adds artificial noise along the radial direction to avoid matrix singularity
issues.

CONCLUSION

A unit-vector quaternion Kalman filter with multiplicative residual is derived. It is shown
that the new algorithm is equivalent to an existing scheme employing additive residuals.
The algorithms are shown to be optimal in a minimum variance sense. It is also shown
that the additive residual is redundant. The proposed algorithm requires the inversion of
a two-by-two matrix while the original algorithm requires the inversion of an n-by-n ma-
trix, where n is the size of the state vector. The algorithms are equivalent and can be
used interchangeably, however, the new multiplicative residual scheme solves an existing
incongruence of multiplicative extended Kalman filters (MEKF) using unit-vector mea-
surements. While the additive extended Kalman filter (AEKF) is shown to perform satis-
factorily in practical situations, some objections are raised to prefer the use of the MEKF
instead. One such objection is that the AEKF inevitably possesses a singular covariance
that is avoided by adding artificial noise to the quaternion magnitude direction. Another
objection is that subtracting unit quaternions to form a quaternion error is un-physical.
While posing these objections, MEKF designs employing unit-vector measurements often
use very similar techniques. The state update of the MEKF is obtained using an additive
residual measurement that subtracts two unit vectors. The additive residual is introduced by
Kalman in the contest of vector spaces. Clearly subtracting two unit-vector measurements
produces an un-physical residual. The residual’s covariance of the unit-vector MEKF is
also singular, since the length of the measurement is perfectly known. This problem is usu-
ally overcome by adding artificial error along the radial direction. The author believes the
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above objections are not as important as designing a filter that practically produces good
results, as both the AEKF and the unit-vector MEKF do. This work, however, is aimed to
reconcile the mentioned shortcomings with the existing design of the unit-vector MEKF.
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