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Linear covariance analysis of both navigation error and trajectory dispersion is a power-
ful tool for spacecraft rendezvous analysis and design. The introduction of multiple events
triggered on state conditions causes discrepancies between the linear covariance results and
the theoretical results. This work investigates the causes of the discrepancy and introduces
a solution to it. The proposed technique is validated by comparison to the results from
Monte Carlo simulations.

I. Introduction

Linear covariance analysis techniques (LinCov)1,2 generates analytical statistics from a single run similar
to sample statistics produced from hundreds or even thousand Monte Carlo runs. Because of its ability
to produce results faster than Monte Carlo, LinCov is particularly useful during the trade study phase
of the design process. LinCov does not represent errors directly, but requires their statistics as an input.
For example, the difference between the true dynamics and the modeled dynamics is rendered through a
covariance matrix. Therefore while Monte Carlo techniques aid in sizing the modeling errors, LinCov assumes
the errors are given. This assumption, together with the lack of granularity and non-linearity, makes LinCov
less accurate than high-fidelity Monte Carlo simulations: another reason why these techniques are more
relied on during the early design phase.

In previous work, event triggers for linear covariance analysis were introduced.3 For state driven events
such as initializing a maneuver based on a spacecraft range to a target, the theoretical developments in Ref. 3
provide a way to capture the resulting effects on trajectory dispersions and navigation errors. In Ref. 3 the
authors apply a single event trigger to command the final maneuver for a spacecraft docking scenario. When
trying to extend the technique to multiple event triggers however, the results from LinCov did not always
accurately represent the actual errors anymore.

At orbital rates, few seconds translates into many kilometers traveled. When an event is triggered
by means other than time, there is a time delay between the nominal event time and the time at which
the event actually happens. This time difference makes the dispersion between the true inertial state and
the nominal inertial state grow very large. During the terminal phases of rendezvous and docking, the
relative navigation and trajectory errors are of the order of centimeters while the inertial dispersions can
be thousand of kilometers because of the event trigger. This large difference causes numerical issues when
trying to compute accurate relative dispersions from the inertial dispersions. These numerical issues are
made more severe because LinCov carries covariances, which are of the order of the square of the errors.

Possible solutions to this issue include square root filters,4 carrying relative states instead of inertial
states, and higher precision in the numerical computations. While theoretically attractive, square root filters
require more computations. A purely relative simulation using Clohessy-Wiltshire equations would introduce
unnecessary approximations while carrying a single inertial state and a relative state would add complexity
to the simulation. The use of square root filters or relative states would greatly depart from the theory and

∗Second Lieutenant, US Air Force. Rice University Graduate Student and Draper Laboratory Fellow, 17629 El Camino
Real, Suite 470. asievers@draper.com
†Senior Member of the Technical Staff, GN&C Manned Space Systems, 17629 El Camino Real, Suite 470.

rzanetti@draper.com, Member AIAA
‡Senior Member of the Technical Staff, Mission Analysis and Design, 17629 El Camino Real, Suite 470.

dwoffinden@draper.com

1 of 22

American Institute of Aeronautics and Astronautics



application of LinCov previously employed, making the use of heritage solutions difficult. A 64 bit floating
number will incur in numerical problems during the LinCov simulation of a rendezvous employing two event
triggers. While switching to 128 bit floats might seem the most obvious solution, the approach is not always
possible using standard commercial software.

The main purpose of this work is to propose a simple solution to the multiple event trigger discrepancy
problem observed for orbital rendezvous using a covariance resetting technique. LinCov runs employing the
solution are compared to the results of a Monte Carlo simulation to demonstrate that the two approaches
coincide. Besides establishing and validating the theory to eliminate numerical discrepancies that can emerge
when performing multiple event triggers for orbital rendezvous, there are several additional objectives of this
paper not addressed in previous research efforts5 comparing LinCov and Monte Carlo results. These objec-
tives include the 1) implementation of an onboard reduced-state navigation filter to capture a more realistic
performance of a properly tuned filter, 2) demonstration of a full rendezvous scenario with a variegate sensor
suite and an assortment of targeting algorithms necessary for proximity operations, and 3) quantification of
the arrival time uncertainty predictions associated with event triggers.

II. Simulation Models

The rendezvous model used for LinCov carries covariance matrices derived from three distinct collections
of state variables: a reference or nominal state x̄, the true or environment state x, and the estimated or
onboard state x̂. The environment dispersion is the different between true and nominal state δx, and needs
to be small in order to achieve mission success. The different between the estimated state and the truth is
the navigation error δe, which is desired to be small for good navigation performance. Finally, the difference
between the true state and the navigation state forms the navigation dispersions δx̂.

The components of the nominal state include various chaser, target, and parameter states consisting of

x̄ =
[
r̄T
c v̄T

c
¯̄qT
c ω̄T

c r̄T
t v̄T

t
¯̄qT
t ω̄T

t

]T
, (1)

the inertial position, inertial velocity, inertial to body attitude quaternion, and attitude rate in the body
frame for both the chaser and target vehicles. In Equation (1), subscript c represents the chaser, and
subscript t the target.

The sensors used are the gyroscope, accelerometer, star tracker, light detection and ranging system
(lidar), and global positioning system (GPS) receiver for chaser spacecraft and GPS receiver for the target
spacecraft. A detailed description of all the models can be find in Ref. 6.

A. Environment Dynamics Models

The simulation uses a gravity and aerodynamic model to describe the motion of both the chaser and target
vehicles around the Earth. The parameters used to calculate the gravitational acceleration can be found in
Table 1.7

Coefficient Value

J2 1.082627× 10−3

J3 −2.532657× 10−6

J4 −1.619622× 10−6

µ 3.986005× 105 km3/s2

R⊕ 6378.136300 km

Table 1. Earth Parameters Utilized in Gravity Model

The model for atmospheric drag is

aaero = −1

2

ρatmos
BC

vrelvrel. (2)

This acceleration is a function of atmospheric density (ρatmos), the vehicle’s ballistic coefficient (BC), and
the vehicle’s velocity relative to the motion of Earth’s atmosphere (vrel).

7 The density of the atmosphere at

2 of 22

American Institute of Aeronautics and Astronautics



the vehicle’s altitude is a difficult quantity to model. The simulation uses a modified exponential method,
Babb-Mueller, to determine ρatmos. The ballistic coefficient (BC = m/cDS), is a function of the vehicle’s
mass (m), cross-sectional area normal to the velocity vector (S), and coefficient of drag (cD). Equation
(4) is substituted into Equation (3) to calculate the relative velocity. The atmosphere is assumed to be
stationary with respect to Earth. In these equations, ω⊕ is Earth’s rotational velocity vector and rx and ry
are components of the vehicle’s position vector. Further,

vrel = v − vatmos (3)

vatmos = ω⊕ × r =

−ω⊕ry

ω⊕rx

0

 (4)

B. Rotational Dynamics Models

The simulation utilizes quaternions to represent and propagate attitude.8 Quaternions are composed of a
vector part (qv), and scalar part (qs). The orientation of a spacecraft can by represented by three Euler
angles, roll about the x-axis, pitch about the y-axis, and yaw about the z-axis. Any sequence of Euler’s
angles can be described by a single rotation (ϕ), about a unit vector (k), known as the Euler angle and
axis.9 The inertial-to-body quaternion is written as

q̄bi =

[
qs

qv

]
=

[
cos
(
ϕ
2

)
− sin

(
ϕ
2

)
k

]
, (5)

where the minus sign is present because the Shuttle quaternion convention is used. Quaternions have several
advantages in representing attitude. Quaternions require fewer parameters and calculations than direction
cosine matrices and avoid singularities that exist when using Euler angles.10 The attitude is propagated
using Equation (6)

˙̄q =
1

2

[
0

−ω

]
⊗ q̄. (6)

In this equation, ⊗ denotes quaternion multiplication. The equation for propagating attitude rate is derived
from Euler’s rotational equation of motion or moment equation11,12

τ = Jω̇ + ω × Jω, (7)

where τ is a moment or torque, J is the inertia matrix, and ω is the vehicle attitude rate, all quantities are
expressed in the vehicle’s body-fixed frame. Equation (7) can be rewritten as

ω̇ = J−1 (τ − [ω×] Jω) , (8)

where τ represents torques acting on the vehicle, which can include external torques caused by perturbations
and control torques, and [ω×] a skew-symmetric matrix

[ω×] ≡

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
External gravitational torques are caused by the nonuniform distribution of vehicle’s mass about it’s center
of mass. The force of gravity acting on the vehicle is different at different locations causing gravity induced
torques. The equation for the gravitational torques, τ grav, is developed in Ref 13. Specifically,

τ grav =

∫
B

rdm ×

[
−µ (r + rdm) dm

‖r + rdm‖3

]
, (9)

where rdm is the vector from the center of mass to the differential element of mass and r is the vehicle’s
position vector in the inertial frame. Equation (9) can be simplified by rotating to the body frame

τ grav =
3µ

r5

[
rb × Jrb

]
, (10)
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where superscript b indicates the body-fixed frame. The external torques caused by the vehicle’s center
of pressure being located away from its center of mass are easily computed, if the location of the center
of pressure with respect to the center of mass is known in body coordinates. The acceleration caused by
atmospheric drag is shown in Equation (2) and the aero force is easily obtained by multiplying aaero by
vehicle mass. The torques are

τ aero = rbcp ×Tb
i faero. (11)

C. Sensor Models

Sensors onboard the chaser spacecraft include an inertial measurement unit (IMU), star tracker, lidar, and
GPS receiver. The IMU consists of a gyroscope sensor and accelerometer.14 The target spacecraft has various
sensors onboard but only the GPS receiver is modeled by the simulation. The IMU is used to propagate the
estimated chaser states and the discrete sensors are used to update filter states and covariance.

1. Gyroscope

The gyroscope sensor onboard the chaser spacecraft measures the three axis angular velocity of the vehicle.
The sensor’s output is the integrated angular velocity over the measurement time step.15

ω̃IMU = T (εgyro) [I + D (bsf + msf )]ω + bgyro + mgyro + ηgyro (12)

∆θ̃ =

∫ t+∆t

t

ω̃dt (13)

In Equation (12) the measured angular velocity is dependent on the true angular velocity (ω), misalignments
(T (εgyro)), the scale factor bias and Markov process (bsf and msf ), the gyro bias and Markov process (bgyro
and mgyro), and the gyroscope measurement noise (ηgyro). The symbol D denotes the diagonal matrix of
the quantities between the parentheses. The gyroscope operates in model replacement mode, the filter
does not estimate angular velocity but takes it directly from the gyroscope measurement. This technique
is an acceptable practice because of gyroscopes extensive flight heritage and the sensor’s highly accurate
measurements. The errors present in the gyroscope model are given in Table 2.

Error Type Variable 1σ Standard Deviation Units

Misalignment εgyro 2.0000 arcsec

Bias in roll, pitch, yaw bgyro 3.6667×10−3 deg/hr

Markov Bias in roll, pitch, yaw mgyro 3.6667×10−3 deg/hr

Scale Factor in roll, pitch, yaw bsf 5.0000 ppm

Markov Scale Factor msf 5.0000 ppm

Gyroscope Measurement Noise ηgyro 2.5000×10−3 deg/
√

hr

Table 2. Gyroscope Model Error Parameters

2. Accelerometer

The accelerometer measures three axis non-gravitational accelerations. The sensor’s output is the integrated
non-conservative acceleration over the measurement time step.15 Specifically,

ãiIMU = T (εaccel) [I + D (bsf + msf )] a + baccel + maccel + ηaccel (14)

∆ṽi =

∫ t+∆t

t

ãiIMUdt (15)

In Equation (14) the measured acceleration is dependent on the true acceleration, misalignments (T (εaccel)),
the scale factor bias and Markov process (bsf and msf ), the accelerometer bias and Markov process (baccel
and maccel), and the accelerometer measurement noise (ηaccel). The errors present in the accelerometer
model are given in Table 3.
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Error Type Variable 1σ Standard Deviation Units

Misalignment εaccel 5.0000 arcsec

Bias in x, y, z baccel 50.0000 µg

Markov Bias in x, y, z maccel 50.0000 µg

Scale Factor in x, y, z bsf 175.0000 ppm

Markov Scale Factor in x, y, z msf 175.0000 ppm

Accelerometer Measurement Noise ηaccel 1.5000×10−5 m/s/
√

s

Table 3. Accelerometer Model Error Parameters

3. Star Tracker

The star tracker provides a measurement to update the chaser orientation. The sensor captures an image
of local stars and compares it to a catalog of inertial star locations.16 The generated measurement is an
inertial frame to star tracker frame quaternion. The sensor model is given as

˜̄qsti = q̄ (ηst)⊗ q̄ (bst)⊗ q̄stb ⊗ q̄bi , (16)

where q̄bst is the body to star tracker quaternion with misalignments, q̄ib is the inertial to body quaternion,
and q̄ (bst) and q̄ (ηst) are quaternions derived from sensor bias and noise.17 The errors present in the star
tracker model are given in Table 4.

Error Type Variable 1σ Standard Deviation Units

Misalignment εst 4.0000 arcsec

Bias in roll, pitch, yaw bst 3.3333 arcsec

Star Tracker Measurement Noise ηst
boresight axis 69.0000 arcsec

cross boresight axis 16.3333 arcsec

Table 4. Star Tracker Model Error Parameters

4. Chaser GPS

The chaser is equipped with a GPS receiver to update position and velocity. The satellites in the GPS
constellation broadcast a ranging signal used by the receiver to calculate position and velocity.18 The sensor
model from reference19 is

r̃c = rc + mgpsr + ηgpsr , (17)

and
ṽc = vc + mgpsv + ηgpsv . (18)

The sensor model includes the chaser position (rc), the first-order Markov process vector (mgpsr ), and GPS
measurement noise (ηgpsr ) associated with chaser position. The model also includes the chaser velocity (vc),
the first-order Markov process vector (mgpsv ), and GPS measurement noise (ηgpsr ) associated with chaser
velocity. The errors present in the chaser GPS model are given in Table 5.

5. Target GPS

The target is equipped with a GPS receiver to update position and velocity. The sensor model, from
reference,19 is

r̃t = rt + mtgpsr + ηtgpsr , (19)

and
ṽt = vt + mtgpsv + ηtgpsv . (20)
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Error Type Variable 1σ Standard Deviation Units

Position Bias in x, y, z mgpsr 5.7735 m

Velocity Bias in x, y, z mgpsv 5.7735×10−2 m/s

GPS Position Measurement Noise ηgpsr 5.7735 m

GPS Velocity Measurement Noise ηgpsv 5.7735×10−2 m/s

GPS Time Constant τgps 300 s

Table 5. Chaser GPS Model Error Parameters

The sensor model in Equation (19) includes the target position (rt), the first-order Markov process vector
(mtgpsr ), and GPS measurement noise (ηtgpsr ) associated with target position. The model also includes the
target velocity (vt), the first-order Markov process vector (mtgpsv ), and GPS measurement noise (ηtgpsr )
associated with target velocity. The errors present in the target GPS model are given in Table 6.

Error Type Variable 1σ Standard Deviation Units

Position Bias in x, y, z mtgpsr 30.0000 m

Velocity Bias in x, y, z mtgpsv 6.0000×10−2 m/s

GPS Position Measurement Noise ηtgpsr 30.0000 m

GPS Velocity Measurement Noise ηtgpsv 6.0000×10−2 m/s

GPS Time Constant τtgps 300 s

Table 6. Target GPS Model Error Parameters

6. Lidar

The lidar instrument uses laser light to track the target. The sensor provides a measurement to update
chaser position and attitude and target position.20 The relative position vector in the lidar frame is given
by the equation

rlrel = Tl
bT

b
i (rt − rc) + blidar + ηlidar , (21)

where rt and rc are the target and chaser position vectors, blidar is the lidar bias, and ηlidar is the lidar
measurement noise. The relative position vector is used to generate the lidar measurements of range (ρ),
azimuth (az), and elevation (el). Specifically,

rlrel =

xy
z

 (22)

ρ =
∥∥rlrel∥∥2

az = arctan (y/x)

el = arcsin (z/ρ)

(23)

The errors present in the lidar model are given in Table 7.
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Error Type Variable 1σ Standard Deviation Units

Misalignment εlidar 0.1000 deg

Range Bias bρ 0.1667 m

Azimuth Bias baz 0.0333 deg

Elevation Bias bel 0.0333 deg

Lidar Range Measurement Noise ηρ 0.0333 m

Lidar Azimuth Measurement Noise ηaz 0.0333 deg

Lidar Elevation Measurement Noise ηel 0.0333 deg

Table 7. Lidar Model Error Parameters

D. Actuator Models

Actuators are used to manipulate the spacecraft’s translational and rotational velocities. The chaser is
equipped with thrusters for both attitude control and translational maneuvers.21 The error parameters of
the actuators discussed are arbitrarily selected and are comparable to values presented in references.5,19

1. Translational Maneuver Thrusters

The model for impulsive maneuvers is shown in Equation (24).5 Maneuvers are modeled as impulsive changes
in velocity,

∆vi = Ti
b

{
T (εmvr) [I + D (bsf )] T̂b

i∆v̂icmd + bmvr + ηmvr

}
, (24)

v+∆V = v−∆V + ∆v. (25)

Table 8 summarizes the translational maneuver uncertainties used in the simulation.

Error Type Variable 1σ Standard Deviation Units

Misalignment εmvr 3.3333×10−4 deg

Bias in x, y, z bmvr 1.3333×10−4 m/s

Scale Factor Bias in x, y, z bsf 1.6500×10−3 m/s

Translational Maneuver Noise ηmvr 5.0000×10−4 m/s

Table 8. Translational Maneuver Errors

2. Reaction Control System

The reaction control system (RCS) thrusters produce the torques required to alter the chaser’s attitude rate.
The RCS actuator model is shown in Equation (26).5

τ bctrl = T (εctrl)
[
I + D (bsf ) τ̂ bcmd + brot + ηrot

]
(26)

The commanded attitude for both vehicles is set to the target local-vertical local-horizontal attitude, while the
commanded attitude rate is set as the orbital rate. Table 9 summarizes the rotational maneuver uncertainties
used in the simulation. For more information about spacecraft control see reference.22

III. Event Triggers

In LinCov, events generally occur at specific times. However, in many orbital rendezvous missions the
terminal phase initiation (TPI) maneuver is triggered when the relative position of the chaser and target
vehicles reaches a predetermined value. For this simulation, the TPI maneuver is triggered when the chaser
reaches a specific downrange distance from the target. The techniques for applying triggers in LinCov are
discussed in reference3 and are now briefly reviewed.
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Error Type Variable 1σ Standard Deviation Units

Misalignment εctrl 3.3333×10−3 deg

Bias in roll, pitch, yaw brot 3.3333×10−5 N m

Scale Factor Bias in roll, pitch, yaw bsf 3.3333×10−3 N m

Rotational Maneuver Noise ηrot 1.0000×10−10 N m

Table 9. Rotational Maneuver Errors

An event trigger is a condition represented as a function of the navigation state,

Ψ [x̂(te)] = 0. (27)

When the specified condition is achieved, it triggers a specific event that occurs at the true event time (te).
The trigger condition generally does not occur at the nominal event time (t̄e),

Ψ [x̂(t̄e)] 6= 0 , (28)

however, if the difference between te and t̄e is small, the true and estimated states at te can be written as a
function of this difference

x(te) ≈ x(t̄e) + ẋ(t̄e) [te − t̄e] , (29)

x̂(te) ≈ x̂(t̄e) + ˙̂x(t̄e) [te − t̄e] , (30)

where

ẋ(t̄e) = ˙̄x(t̄e) + δẋ(t̄e) , (31)
˙̂x(t̄e) = ˙̄x(t̄e) + δ ˙̂x(t̄e). (32)

Expanding Equation (27) results in

0 = Ψ [x̄(t̄e)] + Ψx

[
δx̂(t̄e) + ˙̄x(t̄e)δte

]
, (33)

where

Ψ [x̄(t̄e)] = 0; Ψx =
∂Ψ

∂x̂

∣∣∣∣
x̂=x̄

; δte = te − t̄e . (34)

This leads to an expression for δte

δte = −
[
Ψx ˙̄x(t̄e)

]−1
Ψxδx̂(t̄e). (35)

The row vector sT is defined as
sT = −

[
Ψx ˙̄x(t̄e)

]−1
Ψx. (36)

The environment and navigation dispersions at time te are given by the equation

δx(te) = x(te)− x̄(t̄e) = δx(t̄e) + N ˙̄x(t̄e)s
T δx̂(t̄e) , (37)

and
δx̂(te) = x̂(te)− x̄(t̄e) = δx̂(t̄e) + ˙̄x(t̄e)s

T δx̂(t̄e) . (38)

Let n be the number of true states, m be the number of estimated states, and N an n×m matrix that maps
the estimated states to the true states, such that the navigation errors can be written as

e = NT δx− δx̂, (39)

where NTN = Im×m. Using Equation (37) and Equation (38), the augmented state at the true event time
is

δxaug =

[
In×n N ˙̄x(t̄e)s

T

0n×m Im×m + ˙̄x(t̄e)s
T

]
δxaug(t̄e). (40)
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The mean values of the environment and navigation dispersions are zero and the expected value of the
augmented state is zero. The augmented covariance matrix is reshaped after an event trigger

P+s
aug = IsP

−s
augI

T
s , (41)

where the shaping matrix (Is) is

Is =

[
In×n N ˙̄x(t̄e)s

T

0n×m Im×m + ˙̄x(t̄e)s
T

]
. (42)

Under certain conditions for orbital rendezvous applications (i.e. large inertial dispersions and very accurate
relative navigation errors) numerical instabilities can arise when performing event triggers. This problem is
only magnified if multiple events triggers are used. A solution that resolves this issue quickly and reliably
utilizes a covariance resetting technique introduced in the subsequent section.

A. Resetting Method

Since the relative dispersions of position and velocity are of primary interest for proximity operations, it
becomes desirable to reset the augmented state matrix to reduce the inertial dispersions while conserving
the relative trajectory dispersions and ensuring the navigation errors remain unchanged. The nominal
rendezvous trajectory is given in terms of relative position and velocity. The relative nominal trajectory is
not affected by the resetting method and therefore the relative trajectory dispersions are not affected. This
method essentially alters the inertial nominal trajectory so that the inertial dispersions are reset without
affecting the navigation error. Recall that the environment and navigation dispersions (δx and δx̂), are
defined as

δx = x− x̄ , (43)

and
δx̂ = x̂− x̄ , (44)

where x is the true state, x̂ is the navigation state, and x̄ is the nominal state. Let the state vectors be
written as the chaser state, parameter state, and the target state. The parameter state contains sensors and
actuators error states, which are nominally zero and therefore they do not need to be carried in the nominal
state.

x =
[

xT
c xT

p xT
t

]T
(45)

x̂ =
[

x̂T
c x̂T

p x̂T
t

]T
(46)

x̄ =
[

x̄T
c x̄T

p x̄T
t

]T
(47)

One way to change the trajectory dispersions without altering the navigation errors is to update the
environment and navigation dispersions, (δx+ and δx̂+), from the original dispersions (δx− and δx̂−) based
on the navigation dispersions,

δx+ = δx− + NJδx̂− , (48)

δx̂+ = δx̂− + Jδx̂− . (49)

where J is a matrix to be defined later in this section and N is defined in Equation (39). Updating the
environment and navigation dispersions as outlined in Equation (48) and Equation (49) causes the updated
navigation error (e+) (both inertial and relative) to remain unchanged and equal to the navigation error
prior to the update (e−). That is,

e+ = NT δx+ − δx̂+

= NT
[
δx− + NJδx̂−]− [δx̂− + Jδx̂−]

= NT δx− − δx̂−

= e− (50)
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The relative position vector is defined in the inertial frame as

rirel = ric − rit. (51)

This expression for rirel can be rewritten in terms of chaser and target position and velocity vectors and Hi,
a matrix used to compute the relative position and velocity vectors in the inertial frame from the inertial
position and velocity vectors,

rirel = Hi


ric
vic
rit
vit

 , (52)

where
Hi =

[
I 0 − I 0

]
3×12

. (53)

In general, relative states are expressed in the local-vertical local-horizontal (LVLH) frame. Figure 1 illus-
trates the LVLH coordinate frame.

Figure 1. Local-Vertical Local-Horizontal Coordinate Frame23

Equation (51) can be recast so that the relative position vector is in the LVLH frame

rlvlhrel = Tlvlh
i rirel ,

= Hlvlh


ric
vic
rit
vit

 , (54)

where
Hlvlh =

[
Tlvlh
i 0 −Tlvlh

i 0
]

3×12
. (55)

Note that Hlvlh is a matrix used to compute the relative position and velocity vectors in the LVLH frame
from the inertial position and velocity vectors. The expression in Equation (55) neglects an additional term
Elvlh which is now introduced.

In the previous equations, Tlvlh
i is a 3 × 3 matrix to rotate a position or velocity from the inertial frame

to LVLH frame. For the remainder of this section, Tlvlh
i will be a 6 × 6 matrix to rotate both the position

and velocity of the vehicle at once. Using this new notation and assuming the chaser and target states in
Equations (45 - 47) include only position and velocity, Hlvlh, before adding the additional term, becomes

Hlvlh =
[
Tlvlh
i 0 −Tlvlh

i

]
(56)
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The inertial to LVLH transformation matrix is a function of r̄t and v̄t, the nominal position and velocity of
the target. The symbol Elvlh denotes the partial of Equation (54) with respect to the target position and
velocity

Elvlh =

[
rTt

∂Tlvlh
i

∂rt
rTt

∂Tlvlh
i

∂vt

vTt
∂Tlvlh

i

∂rt
vTt

∂Tlvlh
i

∂vt

]
. (57)

Adding the Elvlh to Equation (56) results in

Hlvlh =
[
Tlvlh
i 0 (−Tlvlh

i + Elvlh)
]
. (58)

Although it is possible to re-set the augmented state matrix in a variety of ways, the objective is to
show how it is possible to reset the augmented state matrix such that the relative trajectory and navigation
dispersions in the LVLH frame remain unchanged. In other words, it is desirable to satisfy the constraints

HlvlhN
T δx+ = HlvlhN

T
[
δx− + NJδx̂−] , (59)

and
Hlvlhδx̂

+ = Hlvlh

[
δx̂− + Jδx̂−]. (60)

Looking at Equation (59) and Equation (60), one way to ensure the constraints are met is to force the J
matrix to satisfy the constraint

HlvlhJ = 06×m. (61)

If Equation (61) is satisfied, both the relative environment and navigation dispersions will remain unchanged
after the resetting. There are multiple values of J that could work. To select a particular J matrix, assume
it has the form

J =


JCC 0 JCT

0 0 0

JTC 0 JTT

 , (62)

where JCC is a 6 × 6 matrix associated with the chaser’s inertial position and velocity states and JTT is
a 6 × 6 matrix corresponding to the target’s inertial position and velocity states. JCT and JTC are terms
relating the chaser and target states to one another. From Equation (61), the elements of J must satisfy,

Tlvlh
i JCC + (−Tlvlh

i + Elvlh)JTC = 06×6 , (63)

and
Tlvlh
i JCT + (−Tlvlh

i + Elvlh)JTT = 06×6. (64)

Since there are still many possible options for J, an additional constraint is added which requires that the
target inertial navigation dispersions become zero (δx̂it = 0). From Equation (49), this constraint is satisfied
if

JTT = −I6×6 (65)

and
JTC = 06×6. (66)

Using these selections and satisfying the constraints in Equation (63) and Equation (64) yields

JCC = 06×6 , (67)

and
JCT = −I6×6 + Ti

lvlhElvlh. (68)

Combining these results, a J matrix that both reduces the target inertial navigation dispersions while
maintaining the relative trajectory dispersions and navigation errors is

J =


0 0 (−I + Ti

lvlhElvlh)

0 0 0

0 0 −I

 . (69)
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The equation for resetting the augmented state matrix has a similar form to reshaping the augmented
state matrix due to an event trigger.

P+j
aug = IJP−j

augI
T
J , (70)

where the covariance resetting matrix IJ is

IJ =

[
In×n −NJ

0m×n Im×m − J
.

]
(71)

Substituting the expression for J into the resetting covariance matrix IJ in Equation (71), the augmented
state matrix can be modified using Equation (70) to reduce the inertial trajectory dispersions while main-
taining the relative trajectory dispersions and navigation errors.

B. Event Time Dispersion

An analysis of times of arrival is often useful in defining conditions beyond vehicle proximity required for
a successful rendezvous. Equation (35), the difference between the true and nominal event times, can be
rewritten in terms of the augmented state. The event time variation becomes

δte = 01×nδx(t̄e) + sT δx̂(t̄e)

=
[
0 s

]
δxaug. (72)

The variance of the event times is determined by squaring Equation (72) and taking the expected value.
Specifically,

σ2
te =

[
0 sT

]
P−s
aug

[
0 sT

]T
. (73)

IV. Results

This section presents a throughout numerical comperison of the LinCov results with a Monte Carlo
simulation. The results from the LinCov run using the resetting method are validated using results from the
Monte Carlo simulation consisting of 1000 runs. A thorough comparison of the LinCov and Monte Carlo
simulation results is completed. The two different simulations have the same measurement models and error
sources. The time of arrival dispersions from LinCov and Monte Carlo are also investigated.

A. Multiple Triggers

Figure 2 shows a rendezvous trajectory with dispersions from LinCov. The target is located at the center of
the LVLH frame, (0,0) on the plot. The thick blue line is the LinCov nominal trajectory and colored circles
correspond to maneuvers. The red ellipses show the 3σ relative trajectory dispersions.

Figure 3 shows a closer view of the terminal phase of the approach. The results without resetting
the inertial dispersions are shown in Figure 4(a). The dispersions are correctly shaped at TPI due to the
downrange trigger, but during the last 600 meters of the trajectory the dispersions are very oddly shaped.
Figure 4(b) shows the same portion of the trajectory after applying the resetting technique. This plot
illustrates that the numerical issues associated with applying multiple event triggers to LinCov is resolved.

B. Trajectory Dispersions

The LinCov and Monte Carlo trajectories are shown in Figure 4. To validate the resetting technique for
multiple event triggers, the LinCov results are compared to results of the Monte Carlo simulation. Compar-
isons of trajectory dispersions, navigation performance, and arrival time uncertainties are discussed. This
section also represents a thorough comparison of LinCov results with the results of a Monte Carlo simulation
consisting of 1000 runs. Both simulations run for approximately 12,000 seconds and the navigation filter
from the Monte Carlo simulation is a realistic representation of a filter that would be included as part of
the flight software for an actual mission because it only estimates a fraction of the environment and sensor
states. LinCov uses Consider analysis, where only the states that exist in the Monte Carlo navigation filter
are used to update the navigation dispersions.24 Previous comparisons of LinCov and Monte Carlo results
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Figure 2. LinCov Nominal Trajectory with 3σ Trajectory Dispersions

(a) Without Correction (b) With Correction

Figure 3. Additional Comparison of Trajectory Dispersions
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only included the final phase of the trajectory (the V-bar approach) and the environment and navigation
models used the same dynamics and the filters estimated all of the true states.

(a) LinCov (b) Monte Carlo

Figure 4. LinCov Nominal Trajectory with 3σ Trajectory Dispersions

The previous two plots are combined and broken down into five zoomed in views of different sections for
better comparison. Figure 5(a) shows the initial coelliptic phase of the trajectory. During this phase of flight,
both vehicles are coasting. The 3σ trajectory dispersions from LinCov bound all but three of the Monte
Carlo trajectories at any point as expected. At the first maneuver, a downrange trigger is implemented and
the dispersions snap vertically. The chaser targets a position to begin a second coellptic orbit using Lambert
targeting. Figure 5(b) shows the chasers transition from the first to second coelliptic orbits.

(a) First Coelliptic (b) Transition to Second Coelliptic

Figure 5. Combined Trajectory Profile

During the first transition phase, the majority of the trajectories are within the 3σ trajectory dispersion
ellipses. The four trajectories that exceed the bounds are not a concern because no more than three of the
trajectories are out at any point and the trajectories return within the ellipses before the second maneuver
occurs. Figure 6(a) shows the second coelliptic of the trajectory. Along this coelliptic nearly all of the
trajectories are contained. Again, none of these instances are cause for concern. The dispersions are fairly
constant during this section and snap vertical once again at the third maneuver, where another downrange
trigger is implemented. The third maneuver serves as the TPI maneuver, propelling the chaser toward the
final phase of the trajectory.
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(a) Second Coelliptic (b) Terminal Phase Initiation

Figure 6. Combined Trajectory Profile

Figure 6(b) illustrates the phase of the trajectory that sets up the chaser for the glideslope maneuvers
used to move parallel to the relative altitude axis. The final plot of this series, Figure 7, shows the glideslope
maneuvers. During the final approach phase of the trajectory, maneuvers occur at two minute intervals. The
lidar sensor is active and returns relative measurements for range, azimuth, and elevation from the chaser
to target. The dispersion ellipses fit the Monte Carlo trajectories well and show that LinCov can handle
multiple event triggers. Figure 7 shows the glideslope approach the chaser uses to reach the target vehicle.

Figure 7. Combined Trajectory Profile - Glideslope
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C. Navigation Performance

The navigation performance results presented in this section are unique to similar comparison studies per-
formed in the past.5 For example, one common technique for LinCov analysis is to assume that the onboard
navigation filter states are the same as the true environment states (with the possible exception of angular
rate in gyro replacement mode). In this case, no-tuning is needed and the only requirement is consistency
between the dispersions noises and the navigation noises. In a more realistic scenario in which the onboard
filter has fewer states than the environment, tuning becomes necessary. A perfectly tuned reduced-order filter
will perform as if the non-estimated states effect was considered. To capture this affect, a consider update
in the LinCov onboard filter is performed. This approach has the advantage of retaining the performance of
a perfectly tuned reduced-state filter and the trivial tuning procedure of a full state filter in LinCov.

The Monte Carlo 1σ predicted navigation filter standard deviations and sample standard deviations are
compared to onboard standard deviations from LinCov. For the ensuing plots, the black lines are the 1000
predicted standard deviations from the Monte Carlo simulation, the red lines are the onboard predicted
standard deviations from LinCov, and the blue lines are the sample standard deviations from the Monte
Carlo simulation. As shown in the previous section, the predicted and sample standard deviations from
the Monte Carlo simulation are very similar. This comparison between the onboard covariance matrix from
LinCov and estimation error covariance matrix from the Monte Carlo simulation is important because the
filters used in both simulations are representative of flight software that would be flown aboard the chaser
vehicle. The filters do not estimate all of the states that exist in the environment model.

Figure 8 compares the standard deviations for the three components of chaser inertial position navigation
error. The initial covariances in both simulations are identical and the difference seen in the starting point

(a) Predicted Standard Deviation (b) Sample Standard Deviation

Figure 8. Comparison of Chaser Position Navigation Error

of these plots is a result of the simulation running at different time steps. The Monte Carlo simulation runs
with a time step of one second and LinCov uses a time step of thirty seconds. This occurs for the majority
of comparisons.

Figure 9 shows the comparison for the chaser inertial velocity navigation error. Comparable navigation
performance ensures the proper evaluation of inertial and relative targeting algorithms. The first maneuver
is calculated using inertial Lambert targeting and the glideslope maneuvers use relative targeting. This
comparison also shows that the navigation errors for both inertial and relative states are not affected by the
resetting technique.

Figure 10 shows the comparison for the target position navigation error and Figure 11 shows the com-
parison for the target velocity navigation error.
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(a) Predicted Standard Deviation (b) Sample Standard Deviation

Figure 9. Comparison of Chaser Velocity Navigation Error

(a) Predicted Standard Deviation (b) Sample Standard Deviation

Figure 10. Comparison of Target Position Navigation Error
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(a) Predicted Standard Deviation (b) Sample Standard Deviation

Figure 11. Comparison of Target Velocity Navigation Error

Figure 12 shows the comparison for the relative position navigation error.

(a) Predicted Standard Deviation (b) Sample Standard Deviation

Figure 12. Comparison of Relative Position Navigation Error

Figure 13 shows a zoomed view of Figure 12 after the lidar sensor turns on.
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(a) Predicted Standard Deviation (b) Sample Standard Deviation

Figure 13. Zoomed View of Comparison of Relative Position Navigation Error

Figure 14 shows the comparison for the relative velocity navigation error and Figure 15 shows a zoomed
view of Figure 14 after the lidar sensor turns on.

(a) Predicted Standard Deviation (b) Sample Standard Deviation

Figure 14. Comparison of Relative Velocity Navigation Error
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(a) Predicted Standard Deviation (b) Sample Standard Deviation

Figure 15. Zoomed View of Comparison of Relative Velocity Navigation Error

D. Time Dispersions

This section addresses the time dispersions associated with executing maneuvers based on event triggers
rather than time. Time dispersions are calculated for the first maneuver (M1) where a downrange trigger is
used and for the second downrange trigger at the third maneuver (M3). A third location, 20 meters relative
altitude, is used to calculate the time dispersions at the end of the simulation. In Table 10, the LinCov time

Simulation M1 M3 20 m Altitude

LinCov 63.0258 s 55.0258 s 15.1857 s

Table 10. 1σ LinCov Time Dispersions

dispersions are calculated using Equation (73). This calculation finds the standard deviation of event times
as though each trigger resets the simulation time to zero. The time dispersions from LinCov represent the
uncertainty between two events, not between a particular event and the beginning of the simulation. The
Monte Carlo time dispersions are calculated from the initial simulation time.

The time dispersions in Table 10 are used to calculate the total time dispersions at each event. Specifically,

σt =
√
σ2
t1 + σ2

t2 + . . . , (74)

where σt is the total 1σ time dispersion, σt1 is the 1σ time dispersion between the beginning of the simulation
and event 1, and σt2 is the 1σ time dispersion between event 1 and event 2. A comparison of the total time
dispersions from each simulation is shown in Table 11. The differences between the two simulation values

Simulation M1 M3 20 m Altitude

LinCov (Total) 63.0258 s 83.6715 s 85.0348 s

Monte Carlo (Total) 63.0183 s 84.2486 s 86.3482 s

∆σt 0.0075 s 0.5771 s 1.3098 s

Table 11. 1σ Time Dispersion Comparison

are 0.0075 seconds (0.0019 %), 0.5771 seconds (0.6850 %), and 1.15169 seconds (1.5169 %). These values
are quite close considering the length of the trajectory is over 12,000 seconds.

The correlation coefficient is the measure of the degree of linear correlation between two random vari-
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ables.24 It ranges from -1 to 1 and is defined as

ρXjXk
=

Cov(Xj , Xk)

σXj
σXk

. (75)

In this equation, Cov(Xj , Xk) is referred to as the covariance of Xj and Xk. When ρ is equal to zero the
random variables are uncorrelated, absolutely positively correlated when ρ is +1, and absolutely negatively
correlated when ρ is -1. Let Y be the sum of n random variables

Y = X1 +X2 + . . .+Xn. (76)

The variance of Y is

σ2
Y =

n∑
j=1

σ2
Xj

+

n∑
j=1

n∑
j=1

ρXjXk
σXj

σXk
; j 6= k, (77)

where σXj
and σXk

are the standard deviations of Xj and Xk.25 If there are two random variables X1 and
X2, Equation (77) becomes

σ2
Y = σ2

X1
+ σ2

X2
+ 2ρX1X2σX1σX2 . (78)

If X1 and X2 are uncorrelated the standard deviation of Y is

σY =
√
σ2
X1

+ σ2
X2
, (79)

or the two are absolutely positively correlated

σY =
√
σ2
X1

+ σ2
X2

+ 2σX1
σX2

. (80)

The calculation of total time dispersions using Equation (74) assumes that the time dispersions at each
event are uncorrelated. The differences between results in Table 11 increase as the trajectory progresses,
implying that some degree of correlation exists. Future work could investigate the correlation between the
time dispersions at different events.

V. Conclusions

This work used linear covariance analysis and Monte Carlo simulation to apply multiple event triggers to
an orbital rendezvous trajectory. Techniques have been presented to overcome the large inertial dispersions
that can occur when using the reshaping method alone. The resetting method retains the unmodified relative
dispersions, while resetting the inertial dispersions and preventing the numerical issues from improperly
distorting the analysis results. To validate these new theoretical concepts, both a linear covariance (LinCov)
and Monte Carlo simulation tools implementing two downrange triggers during a full rendezvous scenario
are compared and analyzed. The sample statistics generated from 1000 Monte Carlo runs are accurately
represented with the LinCov results produced with a single simulation run.

The trajectory dispersion performance comparison shows comparable results from the initial rendezvous
phase starting tens of kilometers away to the final approach and docking. The trajectory dispersions reflect
the integrated GNC performance of various sensors, targeting algorithms, actuators, environmental forces
and torques, and initial condition uncertainties. Under such circumstances, the LinCov results incorporating
the proposed multiple event trigger theory still provided similar trajectory dispersion results for the entire
aspect of the simulated rendezvous scenario.

The navigation performance comparison demonstrated that the filters provide nearly identical estimates
of the true states and that neither the inertial navigation errors nor the relative navigation errors are affected
by the resetting method. Several aspects of the navigation performance comparison analysis presented in this
paper are unique. First, a reduced-order onboard navigation filter was implemented using consider analysis
in LinCov. Second, it addressed not only the final approach phase of the mission but modeled the intricacies
of a full rendezvous trajectory for proximity operations.

The time dispersion analysis has provided the uncertainties in the times that events occur. The uncer-
tainty in the time that the first event occurs is close to a minute and just under a minute and a half for the
second event. This analysis has established a block of time, two minutes on either side of the nominal time,

21 of 22

American Institute of Aeronautics and Astronautics



when the chaser reaches a relative altitude of twenty meters. The time of arrival predictions between the
LinCov and the Monte Carlo results differed by less than two percent.

All of the results have shown that the resetting method can be successfully implemented in linear covari-
ance analysis to account for multiple event triggers. They also have shown that LinCov can be used with a
high level of confidence.
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