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NOVEL MULTIPLICATIVE UNSCENTED KALMAN FILTER FOR
ATTITUDE ESTIMATION

Renato Zanetti∗, Kyle J. DeMars†, and Daniele Mortari‡

A novel spacecraft attitude estimation algorithm is presented. The new algorithm
utilizes unit vector measurements and is based on the unscented Kalman filter
(UKF). The UKF, like the extended Kalman filter, employs a linear update in
which an additive residual is formed. The residual is given by the difference be-
tween the measurement and its mean. This work utilizes a multiplicative residual
in which the measurement and the mean are multiplied together using the vec-
tor cross product. Because of the nature of the problem, a multiplicative residual
combined with a multiplicative update is a more natural solution.

INTRODUCTION

The Kalman filter (KF) [1, 2] and its nonlinear extension, the extended Kalman filter (EKF),
are widely used algorithms in spacecraft navigation. To estimate spacecraft attitude, one favorite
representation is the quaternion-of-rotation [3, 4]. Many approaches to enforce the unit-norm con-
straint of the quaternion-of-rotation in the Kalman filter exist, such as the multiplicative extended
Kalman filter (MEKF) [5], the additive extended Kalman filter (AEKF) [6], as well as projection
techniques [7], and constrained Kalman filtering [8]. Another extension of the Kalman filter for
attitude estimation is the unscented quaternion estimator [9] that is based on the unscented Kalman
filter (UKF) [10].

Like the EKF, the UKF is a linear estimator for nonlinear systems. While the EKF employs lin-
earization around the mean, the UKF utilizes stochastic linearization [11]. Stochastic linearization
through a set of regression points employs the full set of nonlinear equations to estimate means and
covariances for both the filter’s propagation and update phases. As such, the UKF is capable of
producing estimates of the means and covariances that are accurate to at least second order [12].

In this work the filter update is done utilizing unit vector measurements. While direction mea-
surements from attitude sensors are often provided as bearing angles, a unit vector can be derived
from these angles. While it is possible to process the angular measurements directly, process-
ing unit vectors is a widely adopted technique [6, 13]. The QUEST model [13] and the model
by Cheng et al. [14] are two unit vector measurement models in which the measurement error is
represented as an additive contribution to the perfect measurement value. Mortari and Majji [15],
on the other hand, introduced a multiplicative measurement model, which is the most natural unit
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vector model because it more closely represents the actual errors of the measurements. This work
presents a novel attitude UKF that utilizes both a multiplicative measurement model and a multi-
plicative residual [16]. The propagation phase of the novel filter is also different from that of [9]
in calculating the propagated estimated quaternion. Ref. [9] relies on the algebraic average of three
dimensional attitude parameterizations in order to compute the propagated quaternion. This work
utilizes quaternion averaging [17] which provides the estimate with the minimum attitude error.

THE UNSCENTED KALMAN FILTER

The EKF requires linearization of both the dynamics and measurement equations. However,
the Kalman filtering paradigm does not require that the models be linear. In fact, all that is re-
quired is that we have consistent, minimum variance estimates such that the distribution can be
well-represented by its first two moments, that the measurement update be a linear scheme (that
is it is a linear combination of the prior state estimate and the measurement information), and that
accurate predictions of the first two moments can be made [18]. Under these three requirements, it
can then be shown that for a dynamical system of the form

x = f(xk−1,wk−1) ,

where xk−1 is the state at time tk−1, wk−1 is the process noise input at time tk−1, x is the state at
time tk, the state estimate evolves as

x̂− = E {f(xk−1,wk−1)} ,

such that the second central moment can be computed via

P− = E
{

(x− x̂−)(x− x̂−)T
}
.

Then, when measurement updates are considered, we have the predicted measurement as

ŷ− = E {h(x,v)} ,

where v represents measurement noise and h represents the nonlinear measurement function, which
allows the state estimate and the covariance to be updated (assuming a linear scheme for the update),
yielding

x̂+ = x̂− + K(y − ŷ−)

P+ = P− −KPyKT ,

where the Kalman gain is given by

K = E
{

(x− x̂−)(y − ŷ−)T
}

E
{

(y − ŷ−)(y − ŷ−)T
}−1

= PxyP−1
y .

Note that if the linearization procedures described in the development of the EKF are implemented
in the above relationships, then we recover the EKF. However, it is not necessary to consider lin-
earizations. One such method which forgoes linearization in favor of a more accurate computation
is the UKF.
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The Unscented Transform

Consider a nonlinear function of the form

z = g(x) ,

where x is described by a known mean and covariance, respectively mx and Px. The unscented
transform (UT) seeks to approximate the transformation of the mean and covariance of the output,
z, which are denoted by mz and Pz .

Whereas linearization methods utilize a first-order Taylor series expansion to approximate the
transformation of the mean and covariance through a nonlinear function, the UT approaches the
problem under the philosophy that it is easier to approximate a probability distribution than it is to
approximate an arbitrary nonlinear function [19]. To approximate the probability distribution, the
UT considers a set of deterministically chosen weighted sigma-points which are selected such that
mx and Px are exactly captured by the sigma-points. The sigma-points are then applied as inputs
to the nonlinear function to yield nonlinearly transformed sigma-points, which can then be used to
approximate a nonlinear transformation of the output mean and covariance, mz and Pz .

Let the set of sigma-points be denoted by the K values of Xi and the associated weights by wi

where i ∈ {1, . . . ,K} and
∑K

i=1wi = 1. Then, the set of transformed sigma-points are given by

Zi = g(Xi) ∀ i ∈ {1, . . . ,K} ,

which are then used to compute the transformed mean and covariance as

mz =
K∑

i=1

wiZi

Pz =
K∑

i=1

wi(Zi −mz)(Zi −mz)T .

Additionally, the cross-covariance between the input and the output can be computed, if desired, as

Pxz =
K∑

i=1

wi(Xi −mx)(Zi −mz)T .

Any selection of sigma-points that exactly describes the input mean and covariance guarantees that
the transformed mean and covariance is correctly calculated to second order [12].

Many possibilities exist for the selection of the sigma-points and the associated weights, such as
the simplex set, symmetric set, symmetric extended set, among others [12]. We restrict our attention
to the symmetric extended set, which is given by the set of K = 2n+ 1 points chosen as

X0 = mx

Xi = mx +
√
n+ κ sx,i

Xi+n = mx −
√
n+ κ sx,i ,

with associated weights

w0 = κ/(n+ κ)
wi = 1/2(n+ κ)

wi+n = 1/2(n+ κ) ,
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for i ∈ {1, . . . , n}, where n is the dimension of the input x, Sx is a square-root factor of Px such
that Px = SxST

x , sx,i is the ith column of Sx, and κ is a tuning parameter of the UT. It is easily
verified that the symmetric extended set of sigma-points matches the mean and covariance of x, that
is

mx =
K∑

i=1

wiXi

Px =
K∑

i=1

wi(Xi −mx)(Xi −mx)T .

Propagation

The purpose of the propagation step is to compute the mean and covariance at time tk (denoted
x̂k−1 and P−, respectively) given the mean and covariance at time tk−1 (denoted x−k−1 and P−k−1,
respectively). In order to apply the UT to the forward propagation of the mean and covariance, the
first step is to determine the square-root factor of the covariance matrix, that is to find Sk−1 such
that

Sk−1ST
k−1 =

[
Pk−1 O

O Q

]
,

where Q is the process noise covariance matrix. The determination of Sk−1 can be readily ac-
complished via a Cholesky factorization. Once the square-root factor is determined, the symmetric
extended sigma-point selection scheme previously discussed is used to generate 2n+1 sigma points,
Zi,k−1, and their associated weights wi, with the mean given by

mk−1 =
[
x̂k−1

0

]
,

which reflects the zero-mean nature of the process noise. Note that n is now the dimension of the
combination of the state dimension and the process noise dimension, i.e. n = nx + nq, where
nx is the state dimension and nq is the process noise dimension. Let each of the sigma points be
partitioned as

Zi,k−1 =
[
Xi,k−1

Wi,k−1

]
,

where Zi,k−1 is n-dimensional, Xi,k−1 is nx-dimensional, andWi,k−1 is nq-dimensional. Then, the
propagated sigma points are obtained via application of the dynamical systems as

Xi = f(Xi,k−1,Wi,k−1) .

The transformed sigma-points are then used to approximate the nonlinear transformation of the
mean and the covariance via

x̂− =
K∑

i=1

wiXi

P− =
K∑

i=1

wi(Xi − x̂−)(Xi − x̂−)T .
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Update

Using the propagated mean and covariance at time tk, a new set of sigma-points is created. Again,
the first step is to determine the square-root factor of the covariance matrix, that is to find S such
that

SST =
[
P− O
O R

]
,

where R is now the measurement noise covariance matrix. Once the square-root factor is deter-
mined, the symmetric extended sigma-point selection scheme previously discussed is used to gen-
erate 2n+ 1 sigma points, Xi, and their associated weights wi, with the mean given by

m =
[
x̂−

0

]
,

which reflects the zero-mean nature of the measurement noise. Note that n is now the dimension of
the combination of the state dimension and the measurement noise dimension, i.e. n = nx + nv,
where nx is the state dimension and nv is the measurement noise dimension. Using the sigma-
points at time tk, the measurement-transformed sigma-points are given by evaluating the nonlinear
measurement function h(·) at each sigma-point, yielding the K = 2n+1 transformed sigma-points
as

Yi = h(Xi) .

Note here that the first nx elements of Xi represent the state and the last nv elements of Xi represent
the measurement noise. The expected value of the measurement, the measurement covariance, and
the cross-covariance are found in terms of the transformed sigma-points as

ŷ− =
K∑

i=1

wiYi

Py =
K∑

i=1

wi(Yi − ŷ−)(Yi − ŷ−)T

Pxy =
K∑

i=1

wi(Xi − x̂−)(Yi − ŷ−)T .

In terms of the measurement covariance and the cross-covariance between the state and the mea-
surement, the Kalman gain is

K =
[
Inx×nx Onx×nv

]
PxyP−1

y ,

and the associated updated state estimate and covariance are

x̂+ = x̂− + K(y − ŷ−)

P+ = P− −KPyKT .
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Remarks

A few remarks regarding the nature of the UKF algorithm are in order. Firstly, it should be
noted that sigma-point generation relies on adding a deviation to the mean, where the deviation is
generated from the (scaled) covariance matrix. For states which utilize the quaternion description
of attitude, this must be modified since the simple addition of a deviation to the quaternion will not,
in general, result in a quaternion. Furthermore, the process of computing the propagated mean and
covariance relies on a averaging step and subtraction steps. Once again, when the state contains a
quaternion, the averaging and subtraction steps need to be modified. Secondly, when considering
the update stage of the UKF, vector subtraction is again utilized. For situations in which unit vector
measurements are to be processed, subtracting unit vectors will not yield a measurement residual
which is also a unit vector. Therefore, when considering unit vector observations, the measurement
update process of the UKF needs to be modified. All of these needed modifications may be grouped
together as the removal of additivity within the UKF in favor of multiplicative steps.

ATTITUDE FILTER

The proposed filter differs from that of Crassidis and Markley both in the update and propaga-
tion phases. The update differs because a multiplicative measurement model is used as well as a
multiplicative residual. The measurement model is given by

y = T(η)Tb
ir , (1)

where η is a three-dimensional representation of the attitude error, for example a rotation vector,
T(η) represents the direction cosine matrix parameterization of η, Tb

i is the inertial-to-body trans-
formation matrix, and r is the true direction in an inertial frame. Crassidis and Markley use the
classic additive measurment model given by

y = Tb
ir + ν. (2)

The additive measurement model relies on linearization, even the large field-of-view model from
Cheng et al. linearizes around the actual measurement. Therefore for coarse sensors a multiplicative
measurement model is more accurate in representing the actual error. Since both the measurement
y and the reference vector y are of unit lengths we have that

yTy = 1 = rTTi
bT

b
ir + 2νTTb

ir + νTν = 1 + 2νTTb
ir + νTν, (3)

taking expected values and realizing that r is deterministic

2rTTi
b E {ν} = − trace E

{
ννT

}
. (4)

The above equation implies that the measurement noise either has zero mean and zero covariance
or has non-zero mean. Using the multiplicative measurement model in the UKF allows us to obtain
an unbiased estimator. Furthermore one of the strengths of the UKF is that it avoids linearization, it
therefore seems consistent to utilize a measurement model that also does not rely on linearization.

The state vector is given by

x =
[
δ%
b

]
, (5)
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where b is the gyro bias and δ% is the rotation between the estimated quaternion and the true
quaternion, which is defined such that

q̄(δ%) = q̄b
i ⊗ (ˆ̄qb

i)
∗ , (6)

where the asterisk represents the quaternion conjugate and the quaternion multiplication ⊗ com-
poses quaternions in the same order as attitude matrices. Many three-dimensional representations
can be used to express δ%, for example the rotation vector, the Gibbs vector, the modified Rodrigues
parameters, etc. For this work the three-dimensional representation chosen is twice the vector com-
ponent of the quaternion (where the scalar component must be non-negative). Notice that δ%̂− = 0
by definition. The gyro bias can be replaced by the angular velocity for gyro-less systems; this
change does not affect the update phase while it does affect the propagation phase.

The state update is given by
x̂+ = x̂− + K(y × ŷ) , (7)

where y is the actual measurement, which is one realization of the random vector Y. The unit
vector ŷ is the normalized mean of Y. Notice that we could rewrite the above update as

x̂+ = x̂− + K(z− ẑ) , (8)

where the auxiliary variable z is defined as z = y × ŷ and has zero mean, ẑ = 0, since E {Y} and
ŷ are parallel. The new update can be rewritten in the standard UKF form utilizing the auxiliary
variable z and all the UKF properties still hold.

The sigma points are obtained from the following augmented covariance

ΣU
XX =

[
P− O
O R

]
, (9)

where P− is the a priori estimation error covariance and R is the measurement noise covariance.
Because of the multiplicative measurement model of Eq. (1), R is chosen full-rank without any
approximation. Additive measurement models inevitably possess a rank-deficient measurement
error covariance. With the n× n matrix ΣU

XX defined above, the 2n+ 1 sigma points are given by

X0 =
[
x̂−

0

]
(10)

Xi =
[
x̂−

0

]
+
√

(n+ κ)ΣU
XX(i) (11)

Xi+n =
[
x̂−

0

]
−
√

(n+ κ)ΣU
XX(i) , (12)

where
√

A(i) is the i-th column of the matrix square root of A. Along with the sigma points,
weights are chosen as

w0 = κ/(n+ κ) (13)

wi = 1/2(n+ κ) , (14)

where κ is a design parameter of the UKF. Once the sigma points are obtained, they are transformed
through the nonlinear measurement function as

Yi = h(Xi, r, ˆ̄qb
i) , (15)
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where

h(X, r, ˆ̄qb
i) = T(η)T(δ%)T(ˆ̄qb

i)r , (16)

where η and δ% are part of the augmented state vector (i.e. the input sigma points).

The mean and covariance of the transformed variables are found via

x̂ =
2n∑
i=0

wiXi (17)

ŷ = c
2n∑
i=0

wiYi (18)

ΣZZ =
2n∑
i=0

wi(Yi × ŷ)(Yi × ŷ)T (19)

ΣXZ =
2n∑
i=0

wi(Xi − x̂)(Yi × ŷ)T , (20)

where c is a normalizing factor that ensures ŷ is a unit vector. The updated state and covariance are
obtained from Eq. (7) and

K =
[
In×n On×3

]
ΣXZΣ†ZZ (21)

P+ = P− −KΣZZKT . (22)

The superscript † represents the Moore-Penrose pseudoinverse which Catlin shows provides the
minimum variance estimate [20, page 160]. When a matrix is non-singular its inverse and pseu-
doinverse coincide. After some manipulations, Eq. (19) can be rewritten as

ΣZZ = [ŷ×]

(
2n∑
i=0

WiYiYT
i

)
[ŷ×]T . (23)

The pseudoinverse of ΣZZ is given by

Σ†ZZ = [ŷ×]

(
2n∑
i=0

WiYiYT
i

)−1

[ŷ×]T . (24)

For small errors the matrix in parentheses can potentially be ill-conditioned and an alternative pro-
cedure can be used to calculate the pseudoinverse. Following [14] we notice that(

ΣZZ + ŷŷT
)−1

= Σ†ZZ + ŷŷT ; (25)

hence, the pseudoinverse is given by

Σ†ZZ =
(
ΣZZ + ŷŷT

)−1 − ŷŷT . (26)

Eq. (26) is readily provable from the definition of pseudoinverse that must satisfy

1. AA†A = A
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2. A†AA† = A†

3. (AA†)T = AA†

4. (A†A)T = A†A.

Finally the quaternion is updated as

ˆ̄qb
i ← q̄(δ%̂+)⊗ ˆ̄qb

i . (27)

In the propagation we obtain a set of propagated quaternions ˆ̄qb
i(i), i = 0, 1, . . . , 2N following

the same procedure of [9]; however, we follow a different approach to obtain the propagated quater-
nion estimate. The desired estimate is the minimum mean-square error (MMSE) estimate. For a
discrete random vector X with probability mass function pi, the MMSE estimate x̂ minimizes

x̂ = min
x̂

∑
i

pi‖xi − x̂‖2 , (28)

since the estimation error is given by xi − x̂. The solution of Eq. (28) is the mean of the random
vector

x̂ =
∑

i

pixi . (29)

In this work the attitude estimation error is defined as twice the vector part of the error quaternion.
We therefore follow [17] and we obtain the propagated quaternion estimate by minimizing

2N∑
i=0

wi‖δ%̂−i ‖
2 , (30)

where
q̄(δ%̂−i ) = ˆ̄qb

i(i)⊗ (ˆ̄qb
i)
∗ , (31)

where ˆ̄qb
i is the propagated estimate we are solving for and is given by the unit eigenvector corre-

sponding to the maximum eigenvalue of

M = 4
2N∑
i=0

(
wi ˆ̄qb

i(i) ˆ̄qb
i(i)

T
)
− I4×4 .

NUMERICAL RESULTS

To demonstrate the validity of the proposed approach, we consider a satellite attitude tracking
problem in which the orbit is perfectly known, but the attitude is not. The satellite is taken to be in
near-geosynchronous orbit with Keplerian elements as shown in Table 1. To generate a true attitude
profile, we take the rotational dynamics to be

˙̄qb
i =

1
2
ω̄b

b/i ⊗ q̄b
i

ω̇b
b/i = J−1

(∑
mb − ωb

b/i × Jωb
b/i

)
,
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where ω̄b
b/i is the pure quaternion formed from the angular velocity vector ωb

b/i. and ⊗ represents
the quaternion multiplication operation, defined such that the quaternions are multiplied in the same
order as the equivalent rotation matrices would be. Furthermore, J is the moment of inertia of the
spacecraft and

∑
mb represents the summation of all active moments in the body frame. The active

moments are assumed to be zero in this work, and the moment of inertia is taken to be a diagonal
matrix with elements described along with the overall satellite geometry in Table 2. We assume
that the initial attitude has a mean orientation given by the identity quaternion; that is, the mean
quaternion represents a body frame that is exactly aligned to the inertial frame. Additionally, we
take the initial mean angular velocity to be zero. True values are generated by sampling a Gaussian
error distribution with a standard deviation of 10◦ in attitude and 0.1 rev/day in angular velocity.
The above equations of motion are then applied to generate a true attitude and angular velocity
profile.

The satellite is equipped with a three-axis rate-integrating gyro that provides incremental angular
changes at 100 Hz. The gyro measurements are generated by integrating the true angular velocity
signal at the 100 Hz frequency and then subjecting the true integrated signal to a zero-mean bias and
a zero-mean white-noise sequence. The statistics of the gyro bias and noise are given in Table 3.
In addition to the gyro, the satellite is equipped with a sun sensor and an Earth sensor operating at
1 Hz, which provide unit vector measurements that point to the sun and Earth, respectively. The
pointing vectors are generated based on the specified (known) orbit and the uncertain attitude and
then subjected to zero-mean white-noise sequences with standard deviations specified in Table 3.

The new attitude filter is then applied with a starting estimated quaternion equal to the identity
quaternion and the estimated bias equal to zero. The initial attitude uncertainty and bias uncertainty
which describe the elements of the initial covariance matrix are take to be 10◦ and 0.1◦, 1σ, respec-
tively. The UKF parameter is set to κ = 3−n and the filter’s performance is shown in Figures 1 and
2. The blue line shows the estimation error while the red lines show the predicted 3σ error standard
deviation.

Table 1. Satellite Orbit

Type Value Units

Semi-Major axis 43000 km
Eccentricity 0.03 nd
Inclination 3 deg
RAAN 0 deg
Argument of Periapsis 0 deg
Mean Anomaly 0 deg

CONCLUSIONS

This work presents a novel unit-vector quaternion unscented filter with multiplicative residual
and multiplicative measurement error model. The aim of the work is to develop an algorithm that
does not rely on linearization or small angles assumptions. Previous attitude UKF works relied on
an additive measurement model that requires linearization during the update phase of the algorithm.
During propagation the various quaternions obtained from the propagated sigma points are trans-
formed in three-dimensional attitude deviations and simply averaged together. Such an average is

10



Figure 1. Attitude estimation error

Figure 2. Gyro bias estimation error per IMU sample
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Table 2. Satellite Geometry

Type Value Units

Length of side 2 m
Height of side 4 m
Distance of side from center 1.7 m
Mass 2688 kg
Ixx Inertia 8100 kg m2

Iyy Inertia 8100 kg m2

Izz Inertia 4500 kg m2

Table 3. Sensors Specifications

Type 1σ Error Units

Gyro Noise 0.1 deg/
√

s
Gyro Bias 0.1 deg/s
Sun Sensor Error 2 deg
Earth Sensor Error 5 deg

only valid for small angles, while the proposed algorithm averages the quaternions taking in full
consideration the inherit nonlinear nature of the rotation group.
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