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RECURSIVE POLYNOMIAL MINIMUM MEAN SQUARE ERROR
ESTIMATION WITH APPLICATIONS TO ORBIT DETERMINATION

Simone Servadio∗ and Renato Zanetti†

This paper presents a systematic generalization of he linear update structure associated with
the extended Kalman filtering for high order polynomial estimation of nonlinear dynamical
systems. A minimum mean-square error criterion is used as a cost function to determine the
optimal gains required for the estimation process. The high order series representation is
implemented effectively using Differential Algebra techniques.

INTRODUCTION

The optimal solution to the sequential stochastic Minimum Mean Square Error (MMSE) estimation prob-
lem is well known: the optimal estimate is the conditional mean. The optimal solution is obtained from
the conditional probability density function which is calculated recursively with Baye’s rule. For the lin-
ear/Gaussian case, the conditional distribution remains Gaussian at all times and hence fully described
by its mean and covariance matrix that can be calculated using Kalman’s mechanization.1, 2 For practical
nonlinear/non-Gassian problems, such as orbit determination,3 the analytical solution is usually not available
in closed form.

The most widely used nonlinear estimator is the extended Kalman filter (EKF).4 The EKF linearizes the
estimation error around the most current estimate and applies the Kalman filter equations to this linearized
system. It has been shown, however, that nonlinearities of the orbit determination problem can make the lin-
earization assumption insufficient to represent the actual uncertainty.5 An alternative to linearization around
the mean is stochastic linearization in the so-called unscented Kalman filter (UKF).6, 7 The UKF is a linear
estimator, i.e. the estimate is a linear function of the measurement.

In some case, the uncertainty associated with orbital mechanics can be propagated analytically;8 however
these analytical solutions usually do not include perturbations other than J2, nor process noise or measure-
ment updates. Park and Scheeres9 use state transition tensors (STT) to propagate mean and higher order
central moments trough arbitrary nonlinear dynamics. They subsequently expand their work to create higher
order Kalman filters able to handle process noise and measurement updates,10 their filter is also a linear es-
timator. In Ref.10 Park and Scheeres only update the mean and covariance when a measurement becomes
available, neglecting the contribution the measurement update has on the higher order central moments. Ma-
jji, Turner, and Junkins,11 on the other hand, introduce a tensorial mechanization that expands the work by
Park and Scheeres to include measurement updates in all the higher order central moments. Valli et al.12

efficiently replicate these results using differntial algebra (DA) techniques.

The EKF, UKF, and the higher order filter proposed by Majji et al. utilize a linear update, while it is known
that a nonlinear update provides better performance in the nonlinear/non-Gaussian case. The optimal update
is the conditional mean, which is given by some nonlinear function of the measurement whose calculation
is usually not tractable. One approach to approximate the optimal nonlinear update is breaking the estima-
tion error distribution in many smaller Gaussian components such that each is small enough to satisfy the
linearization assumption of an EKF; this is the basis of the Gaussian sum filter.13 Another approach is to
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approximate the nonlinear function with a Taylor series.4 Truncating this series to first order produces the
EKF. Generally, the higher the order of the Taylor series the better the performance of the filter; however
this approach has two drawbacks. First is that truncating the Taylor series to order N requires knowledge of
the estimation error’s central moments up to order 2N . For example the EKF truncates to first order and re-
quires knowledge of the covariance. A second order filter requires knowledge of central moments up to order
four. To avoid carrying third and fourth order central moments the Gaussian second order filter (GSOF)14

approximates them assuming the distribution is Gaussian and constructs them from the covariance matrix.

The second potential drawback of this approach is that calculating the higher order gains is no trivial
matter, although it is an operation that is required only once. The GSOF avoids this operation all together
by producing a linear update based on a second order approximation of the posterior estimation error. To
avoid these calculations, De Santis et al.15 use an augmented state to obtain a nonlinear update but preserving
the linear update structure. The work focus on linear but non-Gaussian systems, and on approximations
of the optimal non-linear update as either quadratic15 or polynomial.16 While maintaining the exact same
structure as the traditional Kalman filter, this approach takes the nonlinearity of the measurement update into
consideration by implicitly accounting for high order moments in the estimation process. The augmented
state is comprised of the high order raw moments. In the presence of non-linear dynamics and measurements,
these nonlinear functions are approximated with an arbitrary order Taylor series expansion.

This work introduces a novel nonlinear filter that performs a polynomial update of arbitrary order N and
carries an arbitrary number of central momentsM ≥ 2N . The mean and central moments are propagated fol-
lowing the work of Park and Scheeres.9 The polynomial update is obtained using an augmented measurement
approach; however, unlike De Santis et al., the state vector is not augmented and all the central moments are
updated independently.

MATHEMATICAL FORMULATION

Let upper case bold indicate a matrix while non-bold quantities are scalars, for example, matrix M has
entries Mij . The kronecker product is used and denoted by ⊗

A⊗B =


A11B A12B ... A1mB
A21B A22B ... A2mB

...
An1B An2B ... AnmB


The following properties are useful

(A+B)⊗C = A⊗C +B ⊗C
A⊗ (B +C) = A⊗B +A⊗C
(A⊗B)⊗C = A⊗ (B ⊗C)

(A⊗B) (C ⊗D) = AC ⊗BD

where the matrix product is always executed first, the kronecker product second and addition third. Let
a, b, c,d be vectors

a⊗ b = vect(baT)

a⊗ b⊗ c = vect
(
c (a⊗ b)T

)
a⊗ b⊗ c⊗ d = vect

(
(c⊗ d) (a⊗ b)T

)
(a⊗ b)cT = a⊗ bcT = acT ⊗ b

where vect(M) is the operator that vectorizes matrixM by placing all its columns on top of each other.
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Minimum Mean Square Error Estimation

Given two random vectors x and a y, an estimator x̂ of x from y is simply a function of y that tries to
approximate x:

x̂ = g(y). (1)

The estimation error e is a random vector defined as

e = x− x̂ = x− g(y) (2)

The Minimum Mean Square Error (MMSE) estimate minimizes (on average) the mean-square error

min
g()

Exy
{

(x− g(y))T(x− g(y))
}

=

∫
S(xy)

(x− g(y))T(x− g(y)) pxy(x,y) dx dy (3)

where S(xy) indicates the support of x and y. The optimal solution is well known and given by the condi-
tional mean

x̂ = Ex|y {x} (4)

Notice that some authors prefer to define the performance index using the conditional expectation

min
g()

Ex|y
{

(x− g(y))T(x− g(y))
}

(5)

this is due to the definition of Bayesian estimator, which is an estimator that optimizes some function of
the posterior distribution. The two formulations are equivalent and provide the same result, but the former is
preferred here because is more easily extended to Linear Minimum Mean Square Error (LMMSE) estimation.

Suppose the measurement is partitioned in two parts y1 and y2

y =

[
y2

y1

]
(6)

the MMSE estimate and the Bayes update can be calculated recursively when py2|x and py1|x are indepen-
dent, i.e. when

py2,y1|x = py2|x py1|x (7)

This condition is satisfied when, for example, the measurement noise ηk is white:

y2 = h2(x,η2) (8)
y1 = h1(x,η1) (9)

pη1η2
(η1,η2) = pη1

(η1) pη2
(η2) (10)

where h2 and h1 are nonlinear functions.

Under this assumption the posterior is given by

px|y2,y1
=

py2|x,y1
px|y1∫

py2|x,y1
px|y1

dy2

(11)

but

py2|x,y1
=
py2,y1|x

py1|x
=
py2|x py1|x

py1|x
= py2|x (12)

hence

px|y2,y1
=

py2|x px|y1∫
py2|x px|y1

dy2

(13)
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Therefore the measurement incorporation can be done recursively, first y1

px|y1
=

py1|x px∫
py1|x px dy1

(14)

after this step the posterior px|y1
becomes the new prior and the starting point to incorporate y2 with Eq. (13).

We have obtained a recursive algorithm. It is important to emphasize that the algorithm carries and recur-
sively updates the conditional distribution, whose mean is the MMSE estimate. The total covariance of the
estimation error (not conditioned on the measurement) is neither needed nor calculated, although it is equal
to the minimized performance index.

Consider the following linear dynamics and linear measurement

ẋ(t) = F (t) x(t) +G(t) ν(t) (15)
yk = Hk x(tk) + ηk (16)

where x(t0) ∼ N
(
x̂0|0, P 0|0

)
and ν(t) is zero mean Gaussian white noise with power spectral density Q.

The process noise is uncorrelated from x(t0) and ηk is zero a mean Gaussian white sequence with covariance
matrix Rk. The measurement noise is uncorrelated from the process noise and from x(t0). Under this lin-
ear/Gaussian case, the conditional distribution of x|y remains Gaussian at all times, therefore the conditional
mean and the conditional covariance matrix fully describe the conditional distribution. The conditional mean
(i.e. the MMSE estimate) and conditional covariance matrix can be found recursively using the Kalman fil-
ter equations. Under these very special linear/Gaussian conditions, the covariance matrix obtained from the
Kalman filter equations is both the conditional covariance of the state given the measurements and the total
covariance of the estimation error, i.e.

Exy
{

(x− E {x|y}) (x− E {x|y})T
}

= Ex|y
{

(x− E {x|y}) (x− E {x|y})T
}

(17)

This unusual property is unique to jointly Gaussian x and y and simply states that the covariance of x
conditioned on y is not a function of y, that is to say, it’s the same regardless of the value of y.

Linear Minimum Mean Square Error Estimation

Rather than working on the entire space of any possible function, one can limit the search to affine func-
tions. The family g of estimators is then written as

g(y) = a+By (18)

where B and a are deterministic matrices and vectors, respectively, of appropriate dimensions. The optimal
values are well known and given by

a = Ex {x} −ΣxyΣ
−1
yy Ey {y} . (19)

B = ΣxyΣ
−1
yy . (20)

where

Σxy = Exy
{

(x− Ex {x}) (y − Ey {y})T
}

(21)

Σyy = Ey
{

(y − Ey {y}) (y − Ey {y})T
}

(22)

Generally speaking, the LMMSE estimate cannot be calculated recursively. However, for linear systems
(either Gaussian or not) the LMMSE is the Kalman filter and it is recursive. Once again, the key assumption
is that all noises are white and independent from all other distributions.

Assume η1 is independent from η2

y1 = H1x+ η1 (23)
y2 = H2x+ η2 (24)
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denote with x̂0 the mean of x and with P 0 its covariance matrix. The LMMSE estimate is given by

x̂ = x̂0 + P 0

[
HT

1 HT
2

] [H1P 0H
T
1 +R1 H1P 0H

T
2

H2P 0H
T
1 H2P 0H

T
2 +R2

]−1 [
y1 −H1x̂0

y2 −H2x̂0

]
(25)

the matrix to be inverted is[
H1P 0H

T
1 +R1 H1P 0H

T
2

H2P 0H
T
1 H2P 0H

T
2 +R2

]−1
(26)

=

[
W 1 B

BT D

]−1
(27)

=

W−1
1 +W−1

1 B
(
D −BTW−1

1 B
)−1

BTW−1
1 −W−1

1 B
(
D −BTW−1

1 B
)−1

−
(
D −BTW−1

1 B
)−1

BTW−1
1

(
D −BTW−1

1 B
)−1

 (28)

=

[
W−1

1 O
O O

]
+

[
W−1

1 B
−I

](
D −BTW−1

1 B
)−1 [W−1

1 B
−I

]T
(29)

x̂ = x̂0 + P 0H
T
1W

−1
1

(
y1 −H1x̂0

)
+

+ P 0

(
HT

1W
−1
1 B −HT

2

)(
D −BTW−1

1 B
)−1(

BTW−1
1 (y1 −H1x̂0)− y2 +H2x̂0

)
(30)

Let’s define
x̂1 = x̂0 + P 0H

T
1W

−1
1

(
y1 −H1x̂0

)
(31)

and notice that

BTW−1
1 (y1 −H1x̂0)− y2 +H2x̂0 = H2P 0H

T
1W

−1
1 (y1 −H1x̂0)− y2 +H2x̂0 (32)

= −
(
y2 −H2x̂1

)
(33)

so that

x̂ = x̂1 + P
(
−HT

1W
−1
1 B +HT

2

)(
D −BTW−1

1 B
)−1

(y2 −H2x̂1) (34)

and

P 0

(
−HT

1W
−1
1 B +HT

2

)
= P 0H

T
2 − P 0H

T
1W

−1
1 H1P 0H

T
2 (35)

=
(
P 0 − P 0H

T
1W

−1
1 H1P 0

)
HT

2 (36)

D −BTW−1
1 B = H2P 0H

T
2 +R2 −H2P 0H

T
1W

−1
1 H1P 0H

T
2 (37)

= H2

(
P 0 − P 0H

T
1W

−1
1 H1P 0

)
HT

2 +R2 (38)

we can define
P 1 = P 0 − P 0H

T
1W

−1
1 H1P 0 (39)

Therefore the total LMMSE estimate can be written recursively can be obtained for linear systems, regardless
of the errors distribution.

x̂k+1 = x̂k + P kH
T
k

(
Hk+1P kH

T
k+1 +Rk+1

)−1
(yk+1 −Hk+1x̂k) (40)

P k+1 = P k − P kH
T
k+1

(
Hk+1P kH

T
k+1 +Rk+1

)−1
Hk+1P k (41)
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These are the Kalman filter update equations. In the linear measurement case, when distributions are not
Gaussian, the Kalman filter equations, in their recursive form, provide the LMMSE estimate. The estimate x̂k
is not the conditional mean, it is just the LMMSE estimate. The covariance matrix P k is not the conditional
covariance matrix anymore, but it still is the covariance of the estimation error e = x− x̂k, that is to say

P = Exy
{

(x− x̂) (x− x̂)T
}
6= Ex|y

{
(x− E {x|y}) (x− E {x|y})T

}
(42)

The LMMSE has a nice, recursive formulation for linear systems with independent noise but generally it
cannot be calculated recursively for nonlinear systems.

Polynomial MMSE Estimation

It is possible to expand the concept of Linear MMSE to higher order polynomials.16 Any polynomial
function satisfies the conditions of the orthogonality principle, namely closure under addition and scalar
multiplication, hence we can calculate an optimal polynomial update using the orthogonality principle.17

For LMMSE we needed knowledge of the first two moments (mean and covariance). In general, for a
polynomial update of order p we need knowledge of the first 2p moments. It is possible to use the Kronecker
product ⊗ to rewrite polynomial updates as linear ones, e.g. for a quadratic update

g(y) = a+B

[
y

y ⊗ y

]
= a+BY (43)

where Y is an augmented measurement vector that includes both y and its square, this approach reduces the
quadratic update to a Kalman-filter-like update

x̂ = Ex {x}+ ΣxY Σ−1Y Y

(
Y − Ey {Y }

)
(44)

unfortunately, for non-scalar measurements, the elements of the augmented measurement Y are not unique,
hence ΣY Y is not invertible. This is easily alleviated by removing the duplicate elements from Y . Even
when the dynamics and the measurement y are linear, the system ceases to be linear (y ⊗ y is quadratic in
x), therefore it also ceases to be recursive. Applying the equations recursively nevertheless, the result is a
suboptimal estimate that is not the true quadratic MMSE estimate.

Define v[2] = v ⊗ v . Ref. 15 proposes to reinstate the linearity by also augmenting the state vector

X =

[
x

x⊗ x

]
=

[
x

x[2]

]
(45)

hence

Y =

[
H O
O H ⊗H

]
X +

[
η

(Hx)⊗ η + η ⊗ (Hx) + η[2]

]
= HaugX + ηaug (46)

and

Ey {Y } = Haug Ex {X}+

[
0

vect(R)

]
(47)

ΣXY = P aug(Haug)T (48)

ΣY Y = HaugP aug(Haug)T +Raug (49)

P aug =

[
Σxx Σxx[2]

Σx[2]x Σx[2]x[2]

]
(50)
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where

Raug =

[
R Raug

12

Raug
21 Raug

22

]
(51)

Raug
21 = (H ⊗ I)

(
E {x} ⊗R

)
+ (I ⊗H)

(
R⊗ E {x}

)
+ E

{
η[2]ηT

}
(52)

Raug
12 = (Raug

21 )T (53)

Raug
22 = (H ⊗ I)

(
E
{
xxT

}
⊗R

)
(H ⊗ I)T + (I ⊗H)

(
R⊗ E

{
xxT

} )
(I ⊗H)T

+ E
{
η[2](η[2])T

}
− vect (R) vect (R)

T (54)

To simplify the above equations, Ref. 15 assumes x to be zero mean. Therefore the algorithm carries a
propagated mean of x, together with an augmented estimate X̂ of the deviation from the mean and its
augmented covariance matrix. The following simplifications occur

Raug
21 = E

{
η[2]ηT

}
(55)

Raug
22 = (H ⊗ I)

(
Σxx ⊗R

)
(H ⊗ I)T + (I ⊗H)

(
R⊗Σxx

)
(I ⊗H)T + Ση[2]η[2]

= HΣxxH
T ⊗R+R⊗HΣxxH

T + Ση[2]η[2] (56)

Any attempt to use the math from the prior section to make this quadratic update recursive will run into
issues because the “R” matrix is a function of the “P ” matrix. Furthermore, in the linear case the recursive
LMMSE uses E {x} only at initialization, after that the mean of x is replaced by the LMMSE estimate,
which is not the mean. It is therefore not clear that E {x} = 0 should result in a simplification of Eq. (52) at
any step other than the very first. In computing the measurement covariance with Eq. (54), Ref. 15 certainly
replaces E

{
xxT

}
with the recursively updated covariance of the LMMSE; not the un-updated covariance of

x. It therefore seems that Eq. (52) and Eq. (54) are treated differently in that E {x} is always the mean of
the true state, unchanged by the successive measurements being incorporated, while E

{
xxT

}
is the spread

around the true state which is updated and reduced as more measurements become available. We propose a
similar but different approach to this same problem.

NONLINEAR UPDATES WITH POLYNOMIAL RESIDUALS

Let’s rewrite the quadratic update as

g(y) = a+By +Cy ⊗ y (57)

where it is understand that the redundant components of y ⊗ y are eliminated. Without any loss of gener-
ality we can redefine the coefficients by adding and subtracting constants in order to obtain a different, but
equivalent, family of quadratic estimators

g(y) = a+ E {x}+B(y − E {y}) +C
[
(y − E {y})⊗ (y − E {y})

]
(58)

the quantity dy = y − E {y} is usually referred to as the measurement residual. Similarly, we define state
deviation from the mean as dx = x−E {x}. We know that the optimal values of the estimator’s coefficients
(denoted with an asterisk) satisfy the orthogonality principle

E
{(

dx− a∗ −B∗dy −C∗ (dy ⊗ dy)
)(
a+Bdy +C (dy ⊗ dy)

)T}
= O, ∀a,B,C (59)

therefore the optimal coefficients are found solving the following linear system

a∗ +C∗ E {(dy ⊗ dy)} = 0 (60)
B∗P dydy +C∗P dy[2]dy = P dxdy (61)

a∗vT +B∗P dydy[2] +C∗P dy[2]dy[2] = P dxdy[2] (62)
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where

v = vect (P dydy) (63)

which results in

a∗ = −C∗ v (64)[
B∗ C∗

] [ P dydy P dy[2]dy

P dydy[2] P dy[2]dy[2] − vvT
]

=
[
P dxdy P dxdy[2]

]
(65)

the posterior estimation error is

dx+ = x− x̂ = x− g(y) = x−
(
E {x}+B∗dy +C∗ dy[2] −C∗v

)
(66)

= dx−B∗dy −C∗ (dy[2] − v) (67)

while the optimal estimate is obtained as

x̂ = E {x}+B∗(ỹ − E {y}) +C∗
[
(ỹ − E {y})⊗ (ỹ − E {y})

]
−C∗v

where ỹ is the actual (numerical value of the) measurement.

DIFFERENTIAL ALGEBRA POLYNOMIAL UPDATE FILTER - HODAKF

Consider now the following system, where the state evolves according to a discrete-time nonlinear state
transition equation and where the only information about the system is a set of measurements, related to the
state vector, acquired at discrete times.

x(k + 1) = f [x(k)] + ν(k) (68)
y(k + 1) = h[x(k + 1)] + η(k + 1) (69)

where f is the process model, x(k) is the n-dimensional state at time-step k, y is the m-dimensional vector
of the actual measurement at time-step k+1, and h is the measurement function. The process noise v and the
measurement noisew are non-Gaussian zero-mean random sequences which satisfy the conditions ∀ i, j > 0:

E {ν(i)} = E {η(i)} =0 (70)

E
{
ν(i)νT (j)

}
=Q[2](i)δij (71)

E
{
η(i)ηT (j)

}
=R[2](i)δij (72)

E
{
ν(i)ηT (j)

}
=0 (73)

The Differential Algebra (DA) express quantities such as the state vector and the measurement vector in their
Taylor series expansion up to a selected order. Therefore, the propagation function is applied directly on each
polynomial (one polynomial for component) of the state. The same reasoning is valid for the measurement
function.

xi(k + 1) = f i[x̂(k|k)] +

c∑
r=1

1

r!

∑ ∂rf i[x(k|k)]

∂xγ11 . . . ∂xγrn
δxγ11 (k) . . . δxγrn (k) + νi(k) (74)

zp(k + 1) = hp
[
f [x̂(k + 1|k)]

]
+

c∑
r=1

1

r!

∑ ∂rhp[x(k + 1)]

∂xγ11 . . . ∂xγrn
δxγ11 (k) . . . δxγrn (k) + ηi(k) (75)

Where c is the arbitrary order of the expansion and the second summation is over all permutations of γi ∈
{1, . . . , n} with i ∈ {1, . . . , r}. Hence, the summation of f i[x(k|k)] includes the higher-order partials of the
solution flow, which maps the deviations from time k to time k + 1 and, in an analogue way, the summation
of hp[x(k+1)] includes the higher-order partials of the measurement function. These two functions are both
obtained by integration in the DA framework of the equations of motion and evaluating the measurement
equation11, 18 .
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Prediction

Starting from the knowledge of the state estimate x̂(k) and its central moments up to a selected order c,
P [2]
xx, P [3]

xxx, P [4]
xxxx, . . . , P [c]

x...x, the prediction part of the Kalman filter begins using Equation (74) . It is
now possible to predict the state mean:

x̂−i = E {f i[x(k)] + νi(k)} = (76)

= f i[x̂(k|k)] +

c∑
r=1

1

r!

∑ ∂rf i[x(k|k)]

∂xγ11 . . . ∂xγrn
E {δxγ11 (k) . . . δxγrm (k)} (77)

= f i[x̂(k|k)] +

n∑
ρ=1

n∑
σ=1

1

2!

∑ ∂2f i[x(k|k)]

∂xγ11 . . . ∂xγ2n
P [2]
ρσ +

n∑
ρ=1

n∑
σ=1

n∑
τ=1

1

3!

∑ ∂3f i[x(k|k)]

∂xγ11 . . . ∂xγ3n
P [3]
ρστ+

+

n∑
ρ=1

n∑
σ=1

n∑
τ=1

n∑
υ=1

1

4!

∑ ∂4f i[x(k|k)]

∂xγ11 . . . ∂xγ4n
P [4]
ρστυ + · · ·+

n∑
ρ=1

· · ·
n∑
ω=1

1

c!

∑ ∂cf i[x(k|k)]

∂xγ11 . . . ∂xγcn
P [c]
ρ...ω (78)

= eval(f i[x(k)] + vi(k),P [2]
xx(k),P [3]

xxx(k),P [4]
xxxx(k), . . . ,P [c]

x...x(k)) (79)

Where from now on, for the sake of brevity, the evaluation of the expected value through polynomial evalua-
tion will be expressed using function eval(). In an analogous way, the predicted state covariance is evaluated
considering the deviation of the propagated state polynomials with respect to the estimated mean.

P
[2]−
xx,ij = E

{
[f i[x(k)]− x̂−i + νi(k)][f j [x(k)]− x̂−j + νj(k)]

}
(80)

=

c∑
r=1

c∑
s=1

1

r!s!

∑ ∂rf i[x(k|k)]

∂xγ11 . . . ∂xγrn

∑ ∂sf i[x(k|k)]

∂xγ11 . . . ∂xγsn
·

· E
{
δxγ11 (k) . . . δxγrm (k)δxξ11 (k) . . . δxξsm(k)

}
− δx̂−i δx̂

−
j +Q

[2]
ij (k) (81)

Where ξi ∈ {1, . . . ,m} and δx̂−i = f i[x̂(k|k)]− x̂−i . Defining the state deviation vector such as

dx∗i = f i[x(k)]− x̂−i + νi(k) (82)

equation (81) can be then written using the eval() function

P
[2]∗
xx,ij = eval(dx∗i , dx

∗
j ,P

[2]
xx,P

[3]
xxx,P

[4]
xxxx, . . . ,P

[2c]
x...x) (83)

where it must be noted that the maximum moment requested by the eval() function is of order 2c. The evalu-
ation of the covariance require a multiplication between two c-th order polynomials, therefore the expansion
order of the series is doubled. The pursuit of the filter is to estimate correctly up to the second moment, thus
the precise evaluation of moments up to order 2c must be implemented. The prediction of those moments
performed thanks to the eval() function;

P
[3]∗
xxx,ijk = eval(dx∗i , dx

∗
j , dx

∗
k,P

[2]
xx,P

[3]
xxx,P

[4]
xxxx, . . . ,P

[3c]
x...x) (84)

P
[4]∗
xxxx,ijkl = eval(dx∗i , dx

∗
j , dx

∗
k, dx

∗
l ,P

[2]
xx,P

[3]
xxx,P

[4]
xxxx, . . . ,P

[4c]
x...x) (85)

· · · = . . .

P
[2c]∗
x...x,i...q = eval(dx∗i , . . . , dx

∗
q ,P

[2]
xx,P

[3]
xxx,P

[4]
xxxx, . . . ,P

[2c2]
x...x) (86)

where the order of the required inputs moments increases quadratically since, each time, the polynomial dx
multiplies by itself, increasing the order of a factor c.

A moment approximation has been used in order to stop this iteration process that, otherwise, would
require to evaluate moments up to infinite order. Thanks to the monotonicity of the moments,19 it is possible
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to approximate their values using the following inequalities. The Lyapounov’s inequality states that, if 0 <
r ≤ s then

E {|X|r}1/r ≤ E {|X|s}1/s (87)

while Hölder inequality (used for multi-variable) states that if r > 1 and
1

r
+

1

s
= 1, then

E {|XY |} ≤ E {|X|r}1/r E {|Y |s}1/s (88)

Therefore, moments from order (2c + 1)-th to order 2c2-th are evaluated using the lower-bound of these
inequalities, as approximation, from the knowledge of the predicted moments up to order 2c-th. It is also
important to underline that, as long as working with the linear deviation dx, the identities P [2]∗

dxdx = P [2]∗
xx ,

P
[3]∗
dxdxdx = P [3]∗

xxx and P [4]∗
dxdxdxdx = P [4]∗

xxxx hold.

Adding the influence of the process noise:

P
[2]−
xx,ij = P

[2]∗
xx,ij +Q

[2]
ij (89)

P
[3]−
xxx,ijk = P

[3]∗
xxx,ijk +Q

[3]
ijk (90)

P
[4]−
xxxx,ijkl = P

[4]∗
xxxx,ijkl + P

[2]∗
xx,ijQ

[2]
kl + P

[2]∗
xx,ikQ

[2]
jl + P

[2]∗
xx,ilQ

[2]
kj+

+ P
[2]∗
xx,jkQ

[2]
il + P

[2]∗
xx,jlQ

[2]
ik + P

[2]∗
xx,klQ

[2]
ij +Q

[4]
ijkl (91)

· · · = . . .

P
[2c2]−
x...x,i...q = P

[2c2]∗
x...x,i...q + . . . (92)

The c-th moment of the process noise is evaluated with the integral definition

Q
[c]
ij...q =

∫
wiwj . . .wq p(wiwj . . .wq)dx (93)

where p() is the probability density function of the random process. The influence of the noise on high order
moments can be easily calculated using combinatory theory. The c-th order state moment has a number of
noise terms equal to the c-th row of the Pascal triangle, where each number on the row is found using the
binomial coefficient. A quick example shows the process: considering the 6th order, the 6th row of the Pascal
triangle is (

6
i

)
i = 0, .., 6 −→ 1 6 15 20 15 6 1

The second column in Table 1 is the 6th row of the Pascal’s triangle and it represents the number of terms with
state moment of order i. Moreover, looking at Table 1, the rows with i = 1 and i = 5 have null contribution
because E {dxi} = E {wi} = 0. Generalizing this example to an arbitrary order c, it reduces the problem
of the influence of the process noise as listing all the different combinations between P [i]∗

x...x andQ[j].

The state of the system has been estimated in all its moments up to the selected order. It is now possible to
initialize a new polynomial in the DA framework, centering the Taylor expansion series around the predicted
mean x̂−. Thanks to this shifting, the predicted moments P [i]−

x...x are the new central moments of the state.
Therefore, from this point on, the evaluation of any expected value through the eval() function will require
P [i]−
x...x as inputs instead of P [i]

x...x.

x = x̂− + dx− P [2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . (94)

The prediction step continues by evaluating the predicted measurement mean and its covariance.

ŷi = eval(hi[x(k + 1)] + ηi(k + 1),P [2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[c]−
x...x) (95)

dyi = hi[x(k + 1)]− ŷ + ηi(k + 1) (96)

10



i # of terms terms

0 1 P
[6]∗
xxxxxx,ijklpq = eval(dx∗i , dx

∗
j , dx

∗
k, dx

∗
l , dx

∗
p, dx

∗
q ,

P [2]
xx,P

[3]
xxx,P

[4]
xxxx,P

[5]
xxxxx,P

[6]
xxxxxx, )

1 6 0

P
[2]∗
xx,ijQ

[4]
klpq + P

[2]∗
xx,ikQ

[4]
jlpq + P

[2]∗
xx,ilQ

[4]
kjpq + P

[2]∗
xx,ipQ

[4]
kljq+

2 15 P
[2]∗
xx,iqQ

[4]
klpj + P

[2]∗
xx,jkQ

[4]
ilpq + P

[2]∗
xx,jlQ

[4]
kipq + P

[2]∗
xx,jpQ

[4]
iklq+

P
[2]∗
xx,jqQ

[4]
iklp + P

[2]∗
xx,klQ

[4]
ijpq + P

[2]∗
xx,kpQ

[4]
ijlq + P

[2]∗
xx,kqQ

[4]
ijlp+

P
[2]∗
xx,lpQ

[4]
ijkq + P

[2]∗
xx,lqQ

[4]
ijkp + P [2]∗

xx,pqQ
[4]
ijkl

P
[3]∗
xxx,ijkQ

[3]
lpq + P

[3]∗
xxx,ijlQ

[3]
kpq + P

[3]∗
xxx,ijpQ

[3]
klq + P

[3]∗
xxx,ijqQ

[3]
klp+

P
[3]∗
xxx,iklQ

[3]
jpq + P

[3]∗
xxx,ikpQ

[3]
jlq + P

[3]∗
xxx,ikqQ

[3]
jlp + P

[3]∗
xxx,ilpQ

[3]
jkq+

3 20 P
[3]∗
xxx,ilqQ

[3]
jkp + P

[3]∗
xxx,ipqQ

[3]
jkl + P

[3]∗
xxx,jklQ

[3]
ipq + P

[3]∗
xxx,jkpQ

[3]
ilq+

P
[3]∗
xxx,jkqQ

[3]
ilp + P

[3]∗
xxx,jlpQ

[3]
ikq + P

[3]∗
xxx,jlqQ

[3]
ikp + P

[3]∗
xxx,jpqQ

[3]
ikl+

P
[3]∗
xxx,klpQ

[3]
ijq + P

[3]∗
xxx,hlqQ

[3]
ijp + P

[3]∗
xxx,kpqQ

[3]
ijl + P

[3]∗
xxx,lpqQ

[3]
ijk

P
[4]∗
xxxx,klpqQ

[2]
ij + P

[4]∗
xxxx,jlpqQ

[2]
ik + P

[4]∗
xxxx,kjpqQ

[2]
il + P

[4]∗
xxxx,kljqQ

[2]
ip +

4 15 P
[4]∗
xxxx,klpjQ

[2]
iq + P

[4]∗
xxxx,ilpqQ

[2]
jk + P

[4]∗
xxxx,kipqQ

[2]
jl + P

[4]∗
xxxx,iklqQ

[2]
jp+

P
[4]∗
xxxx,iklpQ

[2]
jq + P

[4]∗
xxxx,ijpqQ

[2]
kl + P

[4]∗
xxxx,ijlqQ

[2]
kp + P

[4]∗
xxxx,ijlpQ

[2]
kq+

P
[4]∗
xxxx,ijkqQ

[2]
lp + P

[4]∗
xxxx,ijkpQ

[2]
lq + P

[4]∗
xxxx,ijklQ

[2]
pq

5 6 0

6 1 Q
[6]
ijklpq

Table 1. Terms divided by moment noise order of P [6]−
xxxxxx,ijklpq(k + 1|k)
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As previously seen, the quadratic update requires to augment the measurements with their second power,
using the Kronecker product. However, working with deviations only, it is possible to avoid the computation
of the predicted mean of the measurements square: there is no need to evaluate the augmented measurement
vector since the quadratic deviation vector is calculated in the following way.

dy[2] = dy ⊗ dy (97)

Therefore, the covariance of the augmented measurements is evaluated in its components.

P
[2]∗
dydy,ij = eval(dyi, dyj ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[2c]−
x...x ) (98)

P
[2]∗
dydy[2],i(jk)

= eval(dyi, dy
[2]
jk ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[3c]−
x...x ) (99)

P
[2]∗
dy[2]dy,(ij)k

= P
[2]∗T

yy[2],k(ij)
(100)

P
[2]∗
dy[2]dy[2],(ij)(kl)

= eval(dy
[2]
ij , dy

[2]
kl ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[4c]−
x...x ) (101)

Indeed, working with deviation has the advantage to zero all the terms with the presence of the predicted
mean: thus P [3]∗

dydydy = P
[2]∗
dydy[2] . The influence of the noise is then added having in mind that working

around the mean resets mostly of the cross terms.

P
[2]−
dydy,ij = P

[2]∗
dydy,ij +R

[2]
ij (102)

P
[2]−
dydy[2],i(jk)

= P
[2]∗
dydy[2],i(jk)

+R
[3]
ijk (103)

P
[2]−
dy[2]dy,(ij)k

= P
[2]−T

dydy[2],k(ij)
(104)

P
[2]−
dy[2]dy[2],(ij)(kl)

= P
[2]∗
dy[2]dy[2],(ij)(kl)

+ P
[2]∗
dydy,ikR

[2]
jl + P

[2]∗
dydy,ilR

[2]
jk+

+ P
[2]∗
dydy,jkR

[2]
il + P

[2]∗
dydy,ijR

[2]
kl + P

[2]∗
dydy,klR

[2]
ij + P

[2]∗
dydy,jlR

[2]
ik +R

[4]
ijkl (105)

P
[2]−
dy[2]dy[2] = P

[2]−
dy[2]dy[2] − vect

(
P

[2]−
dydy

)
⊗ vect

(
P

[2]−
dydy

)T
(106)

P Y Y =

 P [2]−
dydy P

[2]−
dydy[2]

P
[2]−
dy[2]dy

P
[2]−
dy[2]dy[2]

 (107)

Where all the redundant components have been deleted. Moreover, Equation (106) is a necessity since it
allows the passage from P

[4]−
dydydydy to P [2]−

dy[2]dy[2] .

The prediction step of the Kalman filter is complete after the evaluation of the state-measurement cross-
covariance matrix.

P
[2]−
xdy,ij = eval(dx−i , dyj ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[2c]−
x...x ) (108)

P
[2]−
xdy[2],i(jk)

= eval(dx−i , dy
[2]
jk ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[2c]−
x...x ) (109)

P xY =
[
P

[2]−
xdy P

[2]−
xdy[2]

]
(110)

Where, again, P [2]−
xdy = P

[2]−
dxdy and P [2]−

xdy[2] = P
[2]−
dxdy[2] .

Update

The solution of system is the Kalman Gain using the augmented measurement Y .

K = P xY P
−1
Y Y (111)
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which, after the evaluation of the residual, leads to the updated estimation error and the optimal state estimate.

d = ỹ − ŷ (112)

d[2] = d⊗ d− vect(P [2]∗
dydy) (113)

n =
[
d d[2]

]T
(114)

dY =
[
dy dy[2] − vect(P [2]−

dydy)
]T

(115)

dx+ = dx− −KdY (116)

x̂+ = x̂− +Kn (117)

where ỹ is the actual numerical value of the measurement (the outcome of random vector y read from sensors)
and the measurement covariance consider the presence of the noise.

The predicted moments are corrected to their updated version by applying function eval() with the new
state deviation vector.

P
[2]+
xx,ij = eval(dx+

i , dx
+
j ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[2c]−
x...x ) +KRaugK

T (118)

P
[3]+
xxx,ijk = eval(dx+

i , dx
+
j , dx

+
k ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[3c]−
x...x ) (119)

P
[4]+
xxxx,ijkl = eval(dx+

i , dx
+
j , dx

+
k , dx

+
l ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[4c]−
x...x ) (120)

· · · = . . .

P
[2c]+
x...x,i...q = eval(dx+

i , . . . , dx
+
q ,P

[2]−
xx ,P [3]−

xxx,P
[4]−
xxxx, . . . ,P

[2c2]−
x...x ) (121)

where

Raug =

[
R[2] R[3]T

R[3] R[4]

]
(122)

and considering the influence of the noise on the higher order moments using combinatorial as in the predic-
tion step.

And, as last step, approximate the remaining updated moments up to order 2c2-th using Lyapounov’s and
Hölder’s inequalities approximation.

NON-GAUSSIAN NOISE EXAMPLE

The reliability of the filter has been assessed, at first, in a linear problem with non-Gaussian process and
measurement noise. The chosen example resemble the one from De Santis and Germani,15 with a simple
linear discrete-time scalar system:

xk+1 = axk + fk x̄ = 0 (123)
yk = cxk + gk (124)

with a = 0.6, c = 0.8, fk and gk independent zero-mean random sequences with distribution described in
Table 2. The HODAKF has been compared with the classical Kalman filter in the example, both with perfect

fk -1 3 9 gk 1 -3 -9

P (fk) 15/18 2/18 1/18 P (gk) 15/18 2/18 1/18

Table 2. Random sequences distribution

initial condition knowledge (null initial condition and null initial moments). A single run for the example
is displayed in Fig. 1, with N = 50 steps. It can be seen how the high order filter better follows the true
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Figure 1. HODAKF vs Kalman Filter

value of the system under the influence of noise, while the Kalman filter struggles to match the true behavior
especially when a high noise pick occurs. The HODAKF, indeed, has a much smaller error distribution, as
proven by comparing the covariance values (HODAKF run with order n = 2).

PHODAKF = 1.2068 PKalman = 2.0972 (125)

and it is shown in Fig. 2 where it can be seen, through a Monte Carlo analysis, how the two filters predicted
covariances match the effective one from the samples. Indeed, the covariance of the HODAKF is much
smaller with respect to the one predicted by the classical Kalman filter. In both cases, the error has zero mean
(unbiased filters).

ORBIT ESTIMATION EXAMPLE

The performance of the filter has been assessed with a nonlinear problem common in celestial mechanics:
the two body problem. The equations of motion governing the system are the ones associated to the Keplerian
dynamics, where r is the position vector of the spacecraft and µ is the Earth gravitational parameter.

dṙ

dt
= − µ

r3
r (126)

The initial condition and uncertainties values resemble the one in12, 18 . Therefore, each length unit has been

scaled by the orbit semi-major axis, a = 8788 km, and by the time

√
a3

µ
.

x0 =

(
r0
v0

)
=


−0.68787
−0.39713
0.28448
−0.51331
0.98266
0.37611

 (127)

and the initial estimate of the system state has a 10% offset from the true initial state.

14



Figure 2. HODAKF (blue) vs Kalman Filter (red), Monte Carlo close up. n = 2

The measurement model assumes the radial position of the spacecraft w.r.t. the Earth and the line of sight
direction of the planet:

y1 = r + η1 (128)

y2 = arctan
(x2
x1

)
+ η2 (129)

y3 = arcsin
(x3
r

)
+ η3 (130)

where ηi, with i = 1, 2, 3, is the measurement noise, assumed to be Gaussian. The standard deviation of
the error is assumed to be 10−3 for the radial position and 1.745 · 10−6 for the angle error. The simulation
provides a Gaussian process noise with zero mean and standard deviation 10−5.

As already stated, this example is characterized by the presence of Gaussian noise. It is then required to
state the first 2c noise moments, where c is the selected filter order.

R
[2]
ij =

{
σ2
ν,ij if i = j

0 otherwise
(131)

R
[3]
ijk = 0 ∀ i, j, k (132)

R
[4]
ijkl =


3σ4

ν,ijkl if i = j = k

σ2
ν,ijσ

2
ν,kl if i = j ∧ k = l

0 otherwise

(133)

and so on.

The initial error covariance matrix has been assumed as diagonal, the value of the variance for the position
vector components is 0.01, while the variance for the velocity vector components is 10−4. Thus,

σr = 10−2a (134)

σv = 10−4
√
µ

a
(135)

15



The state high order moments are evaluated in the same way expressed by equation (133), by associating σr to
indexes 1, 2, 3 and σv to indexes 4, 5, 6. However, the DACE18, 20, 21 (Differential Algebra Core Engine) limits
matrices dimensions up to 2; therefore any high order moment has been expressed using their vectorization
representation. The c-th order moment of the state should be expressed with a c-dimensions matrix; however,
thanks to the technique shown in Table 3, it is possible to use only two dimensions. The table shows that,

term row position column position order c

P
[5]
ijklp in2 + kn+ l jn+ p odd

P
[6]
ijklpq jn2 + ln+ p in2 + kn+ q even

P
[c]
ijth...pq in(c−1)/2 + tn(c−1)/2−1 · · ·+ p jn(c−1)/2−1 + hn(c−1)/2−2 + · · ·+ q odd

P
[c]
ijth...pq jnc/2 + hnc/2−1 + . . . n+ p inc/2 + tnc/2−1 · · ·+ q even

Table 3. High order moments representation

except for the first two indexes that always fill the row first and then the column, each additional dimension
creates a column vector of the matrices if it is odd and a matrix of column vectors if it is even.

However, due to the high computational demand in the moments evaluation of the filter for a state of 6
variables (a 2nd order filter asks for the 8-th moment which is a 1296x1296 matrix), it has been decided to
evaluate moments using the Isserlis’ formula. Future work is focused on how to achieve faster computation
and match the estimation for systems with a bigger state vector. The filter follows the same algorithm de-
scribed above, the only difference is that now the eval() function uses the Isserlis’ formula on the monomials
of the Taylor polynomials.22, 23 Therefore, the covariance update equation can then be written in the canonical
form

P [2]+
xx = P [2]−

xx −KPY YK
T (136)

leading to a faster evaluation, with K and P Y Y matched for a non-linear (quadratic) update, as described
above.

Fig. 3 shows the position error of the spacecraft in the three components while Fig. 4 shows the corre-
sponding velocity. Order n = 2 has been selected for the simulations. The error has been evaluated as the
difference between the estimated position and velocity with the corresponding true values. The two figures
represents the time duration of three orbits, with a total of 12 observations each orbit separated by the same
time interval. The first steps have been left out in order to show the convergence of the error and the correct
estimation of the covariance, shown with two lines in each graph as ±3σ. A Monte Carlo analysis with 100
samples has been performed and it can be noted how the filter covariance (green) is consistent with the one
from the Monte Carlo samples (blue). Steady state is fast achieved and the figures shows the classical error
behavior related to the orbital estimation in two body dynamics.

The benefits of the nonlinear update can be appreciated by studying the filter predicted covariance in the
first steps. Fig. 5 represents the standard deviation profiles both for the spacecraft position and velocity. These
quantities are calculated from the diagonal terms of the estimate position and velocity covariance matrices
σ2
rx, σ2

ry , σ2
rz , σ2

vx, σ2
vy , σ2

vz .

σr =
√
σ2
rx + σ2

ry + σ2
rz (137)

σv =
√
σ2
vx + σ2

vy + σ2
vz (138)

Fig. 5 shows the improvement of HODAKF with respect to a DA high-order propagation filter. The blue
line is the high-order extended Kalman filter with a nonlinear propagation step, but a linear update. This
line (associated to12) represents the real covariance behavior of the filter when the update is linear: the
green line, instead, represents the covariance estimation of the classical EKF. The EKF relies too much on
the measurement knowledge, indeed its Kalman gain will make the filter rely more than it should on the
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Figure 3. Position error. HODAKF order: n = 2.

measurement correction. Thus, the EKF considers the measurement dispersion to be better than it actually is,
leading to an overconfidence on the state covariance update. The green line, therefore, does not respect the
actual true behavior of the covariance. The high-order EKF, referred in the Fig. 5 as EKFDA2,23 is able to
describe the true behavior of the state standard deviation since the measurement covariance has been predicted
with an higher order. A well tuned UKF would also produce the same result because it has a liner update.
Looking now at the red line, it is possible to see the improvement of the HODAKF: during the first steps, the
filter is able to decrease the state uncertainty way faster than the other filters. Because of the nonlinear update,
the Kalman gain better balance the state prediction and update correction thanks to the improved evaluation
of the measurement covariance matrix.
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Figure 4. Velocity error. HODAKF order: n = 2.

CONCLUSIONS

The second-order polynomial update has been proven to increase the accuracy of the filtering problem,
especially in the estimation of the state covariance in the first iteration steps. The HODAKF is able to improve
the estimation of the state of a system subjected to non Gaussian noise, by reducing, also, its uncertainties.
The second order polynomial update achieves better results with respect to other polynomial filters, as well
as for UKF, that just rely on a high-order propagation only, leaving the update linear.

Future developments will require a more accurate moments approximation for multi-variable systems,
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Figure 5. Standard deviation estimation, notice that the EKF is unrealistically over-optimistic.

where the filter does not need to rely on boundaries set by the moments monotonicity. Moreover, future work
requires the realization of a software that demands less computational work from the machine: indeed, the
creation of new adaptive libraries can set the HODAKF suitable for big systems and drastically reduce the
computational time.
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