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DA-BASED MULTIPLE GAUSSIANS PARTICLE FILTER FOR
ORBIT DETERMINATION

Simone Servadio∗, Renato Zanetti†

The nonlinear filtering problem plays a fundamental role in multiple space related appli-
cations. This paper offers a new filtering technique that combines the classical ensemble
Kalman filter with a Gaussian mixture model. Differential Algebra (DA) techniques are used
as a tool to reduce the computational effort required by particle filters. Moreover, the use of
Expectation Maximization (EM), as a clustering algorithm, leads to a better approximation
of the propagated probability density function and to a multiple weighted measurement up-
date. The performances of the new method is assessed in the nonlinear Orbit Determination
problem, for the challenging case of low observations frequency.

INTRODUCTION

The filtering problem for nonlinear dynamic system is an important research area that has attracted consid-
erable interest, especially in space applications: it consists of estimating the state of a nonlinear dynamical
system from noisy measurements. For the well-know linear and Gaussian case, the posterior distribution
remains Gaussian and the Kalman Filter [1, 2] provides the mechanization to calculate its mean and covari-
ance. However, most problems of interest in aerospace engineering applications, such as orbit determination
[3], spacecraft navigation, target tracking, etc., require a reliable nonlinear filtering method that deals with
high nonlinearities. In the presence of nonlinearities, the posterior distribution is necessarily a non-Gaussian
probability density function (PDF) that is typically not representable exactly in closed form and needs to be
approximated.

The most common solution for the nonlinear estimation problem is the Extended Kalman Filter (EKF)
[4]. The EKF is widely used for trajectory estimation. The EKF linearizes the equations of motion and
the measurements equations around the most current estimate and then applies the Kalman filter update
equations to the linearized system. In its Bayesian interpretation, the EKF approximates the distributions as
Gaussian. However, in problems with high nonlinearities, the simple linearization assumption fails to provide
an accurate approximation of the dynamics and the filter fails to give a valid estimate [5]. In such cases, a
different approach that accounts for the system nonlinearities must be used. The Unscented Kalman Filter
(UKF) [6, 7] is based on the unscented transformation and does not rely on linearization around the estimate.
Carefully chosen sample points are propagated with the true nonlinear dynamics, leading the UKF to higher
consistency when compared to the EKF.

Park and Sheeres [8, 9] developed two nonlinear filters that use state transition tensors (STT) to describe the
localized nonlinear motion. The initial uncertainties, mean and covariance matrices, are analytically mapped
achieving a better representation than. the EKF. Valli et al. [10] reproduced Park and Sheeres’ work using
Differential Algebra (DA), eliminating the need to evaluate STT.

Raihan and Chakravorty [11] developed a particle Gaussian mixture filter similar to the one that has been
proposed in this paper. Their estimator has the usual computational burden that characterize all particle filter:
having to propagate the whole set of samples one by one. Moreover, by using K-means as their clustering
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algorithm, the covariance calculation from one single cluster is performed using only the points belonging to
that cluster, without any influence from the rest of the ensemble.

Gaussian Sum Filters (GSF) divide the uncertainties domain with multiple Gaussian kernels and apply the
EKF equations for each model. The Gaussian Multiple Model (GMM) final estimate is a weighted sum of the
estimates from each model, based on the measurement likelihood function. However, the drawback of a linear
propagation is still present and can results in convergence issues with sporadic measurements. Accuracy
during the PDF time-update has been improved by changing the weights of each distribution regardless the
availability of measurements [12], or by changing the number of kernels to better address the nonlinearities
present in the system [13].

The filters above are more accurate than the EKF, but the evaluation of STT or performing multiple high
fidelity integrations, lead to computational complexity [14]. High accuracy can also be achieved with sequen-
tial Monte Carlo methods (the particle filter, PF)[15], or the ensemble Kalman filter (EnKF) [16]. However,
even if these filters can provide a good estimate of the statics and uncertainties, performing an elevate number
of propagations is computationally very expensive and, as a consequence, they do not fit for orbit determina-
tion problems or on-board applications.

Valli et al. [17] use DA techniques to develop an ensemble Kalman filter that substitutes samples prop-
agation with polynomial evaluations: thus it enhances and speeds up the classical Monte Carlo approach.
However, their update is singular, i.e. it has only one kernel, since the distributions are approximated with
one single Gaussian, neglecting the information about the shape of the predicted PDF contained in the sam-
ples. The filter presented in this paper contains a similar prediction step to [17], but it improves on the update
with the introduction of multiple Gaussian models.

This paper introduces a filter, EMDAn-k, that combines the strengths of the above cited filters. EMDA will
use DA techniques to solve the prediction problem through DA based Monte Carlo simulations. By solving
ordinary differential equations (ODEs) in the DA framework, the result is not only the integrated state, but
also a map of how deviations from the nominal solution evolve (represented using Taylor series expansion
up to a user-defined order n). In the measurement update portion of the algorithm, the performance of the
classical Kalman update is improved with the addition of multiple models. After clustering the predicted
PDF, k updates are performed and the estimate is evaluated through weighted mean.

This paper is organized as follows. First a brief introduction on differential algebra is presented with
references to a more detailed explanation. Then, the main part of the paper describes the filter algorithm
and how it works in the DA framework, underlining the benefits of the Taylor series representation and the
improvements given by a multiple model update. Furthermore, the effectiveness of the proposed method is
assessed in an orbit determination problem characterized by low availability of measurements: the filter has
been compared to multiple others to demonstrate the benefits of the new algorithm. Lastly, conclusion are
deduced.

DIFFERENTIAL ALGEBRA

Differential Algebra techniques are used to obtain the c-th order Taylor expansion series of the flow from
a system of ODEs with respect to a given initial condition. DA relies on solving analytical problems using
an algebraic approach [18]. Standard representation of functions in a computer environment is based on
the mere evaluation at specific points, working with the classical floating point (FP) representation. DA
techniques, on the other hand, exploit the idea that it is possible to extract more information from a function
rather than its evaluations. Therefore, DA expresses each function as a matrix of coefficients and exponents
that describe the Taylor series approximation of that specific function after a center point is selected. The
DA framework is able to operate algebraic operations, including differentiation and integration operators,
in the DA structure. Therefore, DA offers another way to work in a computer environment, with endowed
composition of functions, function inversions, explicit system solving, etc., similar to the algorithms used in
FP arithmetic.

An implementation of such DA computer routines is available in the Differential Algebra Core Engine
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(DACE 2.0) software, which is been used to implement the algorithm presented in this paper. For addi-
tional explanation on DA, the reader is advised to look through previous works that include a satisfactory
introduction such as [10] and [19].

MULTIPLE MODELS DIFFERENTIAL ALGEBRA ENSEMBLE KALMAN FILTER - EMDA

Consider the following system, where the state evolves according to a discrete-time nonlinear state transi-
tion equation and where the only information about the system is a set of measurements, related to the state
vector, acquired at discrete times.

xk+1 = f [xk] + νk (1)
yk+1 = h[xk+1] + ηk+1 (2)

where f is the process model, xk is the s-dimensional state at time-step k, yk+1 is the m-dimensional vector
of the actual measurement at time-step k + 1, and h is the measurement function. The process noise v and
the measurement noise w are Gaussian zero-mean random sequences which satisfy the conditions ∀ i, j > 0:

E {ν(i)} = E {η(i)} =0 (3)

E
{
ν(i)νT (j)

}
=Qδij (4)

E
{
η(i)ηT (j)

}
=Rδij (5)

E
{
ν(i)ηT (j)

}
=0 (6)

Cluster Propagation

The truncation order of the Taylor expansion series can be arbitrary picked, it is denoted by c. Let N
be the fixed number of Gaussian distributions that will approximate the samples disposition of the particle
filer. Therefore, each Gaussian PDF will be described by its own mean x̂i and covariance matrix Pi, and
it will have an importance weight µi, with i = 1, . . . , N . The sum of the weights gives unit value and the
weighted mean of the Gaussians means is the current estimate. If the initial distribution is exactly Gaussian,
at initialization each of the N Gaussian components shares the same mean and covariance values, with equal
weight 1/N .

Let n be the total number of particles used to describe the shape of the distribution. Each iteration starts
with sampling from the GMM, in particular each ith Gaussian component generates a number of particles
proportional to its weight

σi = nµ+
i,k ∈ N (7)

where µ+
i,k indicates the updated weight at time step k of the i-th Gaussian. The points are generated after

calculating, thorough Cholesky Decomposition, the square root of the covariance matrices.

The propagation is carried out in the DA framework. Differential Algebra creates a map of the dynamics
that connects deviations at time steps k to deviations at time step k+1. Therefore, it is sufficient to propagate
the mean of the samples and, subsequently, evaluate the polynomial map for each deviation: n propagations
have been carried out with only one propagation, the current estimate, and n polynomial evaluations. The
results is a computational efficient way to evaluate the predicted PDF.

The next step is to calculate the deviation of each single sample from its component’s mean: this is achieved
through simple vector subtraction. Looking at Figure 1, the deviation δj , j = 1, . . . , n, of each sample from
the global mean x̄k is the vector summation of its own deviation from the mean of the Gaussian it belongs to,
αj , and the distance between that Gaussian mean and the estimate, di.

αj = pj,k − x̂i,k (8)
di = x̂i,k − x̄k (9)
δj = pj,k − x̄k = pi,k − x̂i,k + x̂i,k − x̄k = αj + di (10)
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Figure 1. Vectors representation.

where pj,k is the sample position and this set of equation is repeated ∀i, j.

The state is now propagated to the next time step in the DA framework.

xk = x̄k + δx (11)

x−
k+1 = f [xk] (12)

where x−
k+1 indicates the Taylor expansion series of the dynamics centered in x̄k truncated at order c. The

polynomial is now evaluated n times, one for each sample point. With this DA approach, n− 1 propagations
are substituted with faster polynomial evaluations. Therefore, each particles of the propagated PDF is found
as

pj,k+1 = x−
k+1(δj) ∀j = 1, . . . , n (13)

K-means

As with all particle filters, the propagated PDF is represented with n samples. The next step is to approx-
imate the distribution as a GMM [11]. From the GMM is possible to incorporate the measurements with
the Gaussian Sum Filter algorithm. Expectation Maximization (EM) is an algorithm that evaluates means
and covariances of the Gaussian distributions to approximate the cluster. However, it is desirable to start the
algorithm with a good initial guess of the means in order to significantly reduce the number of iterations re-
quired and, consequently, the computational burden. The best starting guess for the EM clustering algorithm
is the output of K-means clustering. K-means divides the cluster into a selected number of sets using a hard
constraint on the sample: each point is either part of the set or not. EM, on the other hand, enforces a soft
constraint where each single sample has a probability of belonging to each different set.

Therefore, after calculating the predicted mean x̄−
k+1 and covariance P−

k+1 of the propagated cluster, we
randomly select N particles as initial guesses of the means x̂−

i,k+1 of the sets for the K-means algorithm.
Then, we repeat until convergence the following Equations:

aj := argmin
i
‖pj,k+1 − x̂−

i,k+1‖
2 (14)

x̂−
i,k+1 :=

∑n
j=1 1{aj = 1}pj,k+1∑n

j=1 1{aj = 1}
(15)

Equation (14) selects which is the closest mean to sample pj,k+1 and assigns it to that corresponding set.
Equation (15) evaluates the updated means with the new sets of points. When the sets stop changing, the
algorithm has reached convergence and the output are the N state vectors x̂−

i,k+1.
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Expectation Maximization (EM)

As stated above, in the EM algorithm each single sample has an associated weight to each Gaussian PDF
that indicates how much it is likely to belong to that distribution. The weights are then normalized to sum to
unity. The initial mean and covariance are selected according to the K-means algorithm.

Therefore, assuming Gaussian distributions, each particle has a probability to belong to each of the N
Gaussians given by

P (pj,k+1|i) = N
(
x̂−
i,k+1,P

−
i,k+1

)
=

=
1

(2π)
s/2
√
detP−

i,k+1

exp

(
−1

2

(
pj,k+1 − x̂−

i,k+1

)(
P−

i,k+1

)−1 (
pj,k+1 − x̂−

i,k+1

)T)
(16)

where P (pj,k+1|i) is the probability that point pj,k+1 belongs to the ith Gaussian. It is now possible to
calculate, through Baye’s rule, the probability of each Gaussian given the single sample.

P (i|pj,k+1) =
P (pj,k+1|i)P (i)∑N

h=1 P (pj,k+1|h)P (h)
(17)

where P (i) = µi,k is the weight of each Gaussian component. Due to the exponential behavior of the Gaus-
sian distribution, it is convenient to work with a logarithm scale and to operate with the weights separately.
Therefore, the following step of the EM algorithm, after Equation (16), is to calculate the weight of each
single particle j referred to each single Gaussian i. This can be performed working directly on logarithms
after some mathematical manipulations.

wi,j =
P (pj,k+1|i)∑N

h=1 P (pj,k+1|h)

=
1∑N

h=1 exp (log [P (pj,k+1|h)]− log [P (pj,k+1|i)])
∀i = 1, . . . , N ∧ ∀j = 1, . . . , n (18)

Conceptually, wi,j defines how much the j-th sample belongs to the i-th Gaussian: the denominator nor-
malizes the weights such that

∑N
i=1 wi,j = 1. Furthermore, the influence of each Gaussian is evaluated by

summing the relative weights.

Wi =

n∑
j=1

wi,j (19)

The new mean and the covariance of the Gaussians can then be calculated:

x̂−
i,k+1 =

1

Wi

n∑
j=1

wi,jpj,k+1 (20)

P−
i,k+1 =

1

Wi

n∑
j=1

wi,j

(
pj,k+1 − x̂−

i,k+1

)(
pj,k+1 − x̂−

i,k+1

)T
(21)

where Wi normalizes the summation. The last step is to normalize the weights of the Gaussians such that
they sum to unity.

µ−
i,k+1 =

Wi∑N
h=1Wh

(22)

The next iteration is then ready to start with the new mean, covariance, and weight values until a set tolerance
level on the update of the weights is reached.
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Measurement Update

The prediction part of the filter is over as the propagated PDF of the state has been approximated as a
GMM. The measurement update is now performed via N updates for the components followed by the update
on the weights.

The measurement equation can be expressed as a Taylor expansion series in the DA framework.

zk+1 = h[xk+1] (23)

Where zk+1 is, again, a polynomial centered in x̄k truncated at order c. The polynomial can now be evaluated
using the deviations for Equation (10) in order to calculate the predicted measurements associated with each
particle. Therefore, not only the propagation, but also the measurement evaluation is computationally fast
when working in the DA framework.

qj,k+1 = zk+1(δj) (24)

It is now possible to apply the Kalman filter update equations to each Gaussian component. The measure-
ments covariances and cross covariances are computed directly from the particles:

ẑ−i,k+1 =
1

Wi

n∑
j=1

wi,jqj,k+1 (25)

PZZ,i =
1

Wi

n∑
j=1

wi,j

(
qj,k+1 − ẑ−i,k+1

)(
qj,k+1 − ẑ−i,k+1

)T
+ R (26)

PXZ,i =
1

Wi

n∑
j=1

wi,j

(
pj,k+1 − x̂−

i,k+1

)(
qj,k+1 − ẑ−i,k+1

)T
(27)

It is important to underline that the covariances of each model uses the whole ensemble of points, and then
scale the results according to the model importance. The PGM filter developed in [11] uses K-means (hard
clustering) and therefore only the points belonging to each cluster are utilized to calculate the component’s
mean and covariances. This difference arises from adopting soft constraints, instead of hard ones, in the
clustering algorithm. As a consequence, different Gaussians component are updated separately without the
influence of the actual shape of the posterior distribution.

The Kalman gains are evaluated.

Ki = PXZ,i (PZZ,i)
−1 (28)

Each mean and covariance are updated likewise they are working independently

x̂+
i,k+1 = x̂−

i,k+1 + Ki

(
yk+1 − ẑ−i,k+1

)
(29)

P+
i,k+1 = P−

i,k+1 −KiPZZ,iK
T
i (30)

where yk+1 is the measurements vector from the sensors.

Weights Update and Estimate

The influence of each Gaussian to the updated PDF needs to be updated as well. This step can be achieved
considering again Baye’s rule and obtaining the posterior distribution of the probability of each Gaussian
given the measurements.

µ+
i,k+1 = P (i|Yk+1) = P (i|yk+1,Yk) =

=
P (i,yk+1|Yk)

P (yk+1|Yk)
=

P (i,yk+1|Yk)∑N
h=1 P (h,yk+1|Yk)

=

=
P (yk+1|i,Yk)P (i|Yk)∑N

h=1 P (h,yk+1|Yk)
(31)
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where Yk indicates all the measurements up to time step k. Looking at Equation (31), it can be noted its
recursive property, since P (i|Yk) = µ−

i,k+1. Moreover P (yk+1|i,Yk) is the probability of yk+1 to be the
outcome from the i-th Gaussian.

P (yk+1|i,Yk) =
1

(2π)
m/2√

detPZZ,i

exp

(
−1

2

(
yk+1 − ẑ−i,k+1

)
(PZZ,i)

−1
(
yk+1 − ẑ−i,k+1

)T)
(32)

Therefore, the weights update equation can be written as

µ+
i,k+1 =

P (yk+1|i,Yk)µ
−
i,k+1∑N

h=1 µ
−
h,k+1P (yk+1|h,Yk)

(33)

These weights will dictate how many samples each Gaussian will generate in the next time step, as explained
at the beginning of the algorithm.

Lastly, the state estimate and covariance are calculated as weighted means.

x̄k+1 =

N∑
i=1

µ+
i,k+1x̂

+
i,k+1 (34)

Pk+1 = −x̄k+1x̄
T
k+1 +

N∑
i=1

µ+
i,k+1

(
P+

i,k+1 + x̂+
i,k+1x̂

+T
i,k+1

)
(35)

The filter is now ready to start the following step with x̄k+1, µ+
i,k+1, x̂+

i,k+1 and P+
i,k+1.

ORBIT DETERMINATION

The performance of the filter has been assessed with a nonlinear problem common in celestial mechanics:
the two body problem. The equations of motion governing the system are the ones associated to the Keplerian
dynamics, where r is the position vector of the spacecraft and µ is the Earth gravitational parameter.

r̈ = − µ
r3

r (36)

The initial condition and uncertainties values resemble the one in [10, 20] . Therefore, each length unit has

been scaled by the orbit semi-major axis, a = 8788 km, and by the time

√
a3

µ
.

x0 =

(
r0
v0

)
=


−0.68787
−0.39713
0.28448
−0.51331
0.98266
0.37611

 (37)

and the initial estimate of the system state has a 10% offset from the true initial state.

The measurement model assumes the radial position of the spacecraft w.r.t. the Earth and the line of sight
direction of the planet:

y1 = r + η1 (38)

y2 = arctan2(
x2
x1

)
+ η2 (39)

y3 = arcsin
(x3
r

)
+ η3 (40)
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where ηi, with i = 1, 2, 3, is the measurement noise, assumed to be Gaussian. The standard deviation of the
error is assumed to be 0.1 m for the radial position and 0.1 arcsec for the angle errors. The initial uncertainties
are assumed to be Gaussian as well, with a diagonal covariance matrix divided into position states, with std

σr = 10−2a, and velocity states, with std σv = 10−4

√
µ

a
.

The number of Gaussians in the multiple models is chosen beforehand and it is kept fixed during the whole
simulation. Therefore, the name of the filter, EMDAn-k is followed by two different numbers: the first one,
n, indicates the truncation order of the dynamics flow during propagation, while the second one, k, indicates
the number of Gaussians used in the clustering algorithm. According to this notation, EMDA2-3 indicates a
filter with truncation order 2 and a GMM update with 3 Gaussians. In each single simulation a total of 10,000
particles have been used.

A Monte Carlo analysis has been performed to assess the consistency of the presented filter and to show re-
liability and accuracy levels. The simulation has been performed with low acquisition measurement frequency
since the clustering algorithm will show its benefits with respect to previous works when the propagated PDF
is highly non Gaussian. Thus, Figure 2 and Figure 3 show the performance of EMDA2-3 and EMDA2-5,

Figure 2. Monte Carlo 100 runs. 12 orbits with 3 observations per orbit. EMDA2-3

respectively, with a Monte Carlo analysis using 100 runs. The figures show the robustness analysis for the
position components, left columns, and velocity components, right columns, of the spacecraft state vector in
a simulation with time duration of 12 orbits with 3 equally spaced observations per orbit. Both filters con-
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Figure 3. Monte Carlo 100 runs. 12 orbits with 3 observations per orbit. EMDA2-5

verge and correctly estimate the state of the system and its uncertainties. Indeed, the continuous blue lines
indicate the predicted standard deviations, expressed as 3σ, estimated by the filter, while the dashed blue lines
represent the actual standard deviations, again as 3σ, calculated directly from the Monte Carlo samples, for
each time step. The consistency of the filter is assessed by the overlapping of the two lines. Lastly, the black
line shows the mean of the samples: the expected value of the error is null, making EMDAn-k and unbiased
filter, in accordance with the theory.

In order to asses the filter accuracy level and robustness, it has been decided to compare it with the most
common estimators, such as the EKF and the UKF, and filters from previous works on differential algebra,
such as DAHO-k from [10] and DAEnKF from [17]. DAHO-k is a DA-based filter that uses Taylor expansion
series up to order k to represent each predicted variable. After propagation in time in the DA framework, the
predicted means and covariances are evaluated directly on the monomials of each polynomial using a Gaus-
sian assumption of the distribution. DAEnKF, instead, is an Ensemble Kalman Filter that uses polynomial
evaluations, through DA, to propagate an ensemble of particles to the next time step, likewise EMDAn-k. In-
deed, once the truncation order n of the Taylor series is selected, DAEnKF corresponds to EMDAn-1 where
the update has only one model, going back to the classical Ensemble Kalman Filter.

Figure 4 is divided into two parts. It shows the standard deviation profiles for the spacecraft position, top
row, and velocity, bottom row on a 6 orbits long simulation with 3 observations per orbit. Each graph has two
sets of lines: the dashed lines refer to the stds calculated from the Monte Carlo samples (100 runs), at each
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Figure 4. Position and Velocity error standard deviations comparison. 6 orbits with
3 observations per orbit.

time step, while the continuous lines are the predicted stds estimated by each filter. These latter are derived
from the diagonal terms of the updated covariance matrix at the end of each time-step.

σr =
√
σ2
rx + σ2

ry + σ2
rz (41)

σv =
√
σ2
vx + σ2

vy + σ2
vz (42)
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Therefore, a consistent filter will have the overlapping of its dashed and continuous lines, meaning a match
between the effective and the predicted uncertainties.

The figure compares, with a logarithmic scale, the estimators mentioned above with different setting pa-
rameters, for a total of 7 different filters. Looking at the figure, it can be noted how DAHO-1 and DAEnKF-1
have identical trends and they give the same estimation. Their lines overlap both for the predicted and the
effective covariance. The two filters work with a simple linearization of the dynamics, thus they reduce to the
well-know Extended Kalman Filter which, in this orbit determination problem with high initial uncertainty,
diverges. In fact, their dashed lines settle two orders of magnitude above the continuous lines: the EKF is
overconfident on its estimation and the effective accuracy level is way bigger with respect to the covariance
level that the filter is expecting to achieve. The other filters, characterized by nonlinear propagation, behave
similarly, but with some important differences that need to be pointed out. The UKF predicted covariance
settles with the same accuracy level as the other nonlinear filter, however, the effective covariance from the
Monte Carlo runs does not match this prediction and it is bigger. Looking at the figure, the dashed green line
is the only one that does not overlap with the others, both in position and velocity. Nevertheless, the UKF
already shows consistency problems with 3 observations per orbit. On the other hand, DAHO-2, DAEnKF-2,
EMDA2-3 and EMDA2-5 show similar behavior and achieve the same accuracy level. The filters are con-
sistent and the state is predicted correctly with the same steady state precision. However, it is important to
point out that EMDA2-5 is the fastest filter to reach steady state, as it can be seen by the black lines being
the lowest in the transient phase. Furthermore, by remembering that DAEnKF-2 is equivalent to EMDA2-1,
the figure shows that, in EMDA2-k, the bigger the number of Gaussians used in the clustering algorithm, the
faster the filter converges to steady state.

The estimation improvement gained by approximating the shape of the propagated PDF with multiple
Gaussians can be appreciated by reducing furthermore the measurements acquisition frequency in the simu-
lations. Let’s now halve the observation to 1.5 per orbit. Figure 5 and Figure 6 show the Monte Carlo analysis,
respectively, for EMDA2-3 and EMDA2-5 in a 12 orbits long simulation. EMDA2-3 is able to estimate the
state of the system, but its covariance prediction is not consistent with the Monte Carlo analysis: the standard
deviation calculated from the samples at each time step is slightly bigger when compared to the predicted
one, thus the filter diverges. On the other side, EMDA2-5 has a consistent behavior and both the state and
the uncertainties are evaluated correctly, achieving steady state and reaching good accuracy level. Therefore,
EMDAn-k, can be compared with the other nonlinear estimators, likewise previously.

Figure 7 represents the standard deviations analysis for DAHO-1, DAHO-2, DAEnKF-1, DAEnKF-2,
EMDA2-3, EMDA2-5 and the UFK in a 12 orbits simulation with 1.5 equally spaced observations per orbit.
The figure resemble the same characteristics from the 3 observations case. Therefore, each dashed line is
connected to a Monte Carlo analysis performed with the relative filter where, at each time step, the standard
deviation of the error has been evaluated by extracting the values from the single runs. On the contrary, the
continuous lines represent the error standard deviations predicted by the filters according to Equation (41)
and (42). The EKF, represented through DAHO-1 and DAEnKF-1, shows the same problems from Figure
4: it diverges and the effective uncertainties increase. The main difference with respect to the previous case
comes from UKF, DAHO-2 and DAEnKF-2: they fail in their task to estimate the state and the estimation
error grows in time, diverging. Indeed, the dashed blue, red and green lines are almost 9 orders of magnitude
out of scale when compare to the relative continuous one. These 3 filters overestimate their confidence in
their approximation of the uncertainties and fail to perform a correct update of the state. On the contrary,
EMDAn-k is able to estimate the state of the system. When working with multiple Gaussians (k > 1), the
approximation of the shape of the ensemble of points (thus the distribution) significantly improves and the
multiple update achieves a good estimate. However, even if decreasing, the effective std from EMDA2-3
(dashed orange line) does not match the predicted one (continuous orange line), as expected after studying
Figure 5: the two lines do not overlap. Otherwise, EMDA2-5 shows robustness and coherence. The black
lines demonstrate that EMDA2-5 is the only consistent filter and it has also fast convergence to steady state
level. Moreover, during the transient, the effective std stays below the predicted one. Therefore, it has been
proven that the bigger the number of Gaussians used in the algorithm, the more robust the prediction is, at
the expenses of a higher computational effort.
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Figure 5. Monte Carlo 100 runs. 12 orbits with 1.5 observations per orbit. EMDA2-3

Figure 8 supports the latter statement by showing the EM clustering at the end of the first propagation. The
samples distribution shows how the predicted PDF has the so-called banana shape, characteristic of an orbit
determination problem with low acquisition frequencies. The clustering algorithm with 5 Gaussians better
approximates the shape of the distribution, especially near the mean and at the tails. On the other side, 3
Gaussians struggle to match the curve of the density function and the two normal distribution at the sides
overshoot the actual distribution. Indeed, EMDA2-5 achieves a correct estimate when EMDA2-3 fails.

CONCLUSIONS

A new particle filter has been presented. The nonlinearity of the dynamics and measurements is approx-
imated by high order Taylor series expansions using differential algebra (DA) techniques. Thanks to the
polynomial representation of the dynamics, the propagation step of each particle has been replaced with a
faster polynomial evaluation. Working in the DA framework significantly reduces the computational burden
requested by the standard approach [20, 21]. The proposed algorithm, EMDAn-k utilizes soft clustering,
thought EM, instead of hard clustering with K-means algorithm as done before. As a consequence, in the
update, each model works with the whole set of points. Clustering the propagated PDF improves the esti-
mation of the state of the system: multiple models better represent the shape of the distribution especially
for long time intervals, better than a single Gaussian. In the numerical examples considered, it is shown
that increasing the number of Guassian components achieves satisfactory accuracy and robustness levels in

12



Figure 6. Monte Carlo 100 runs. 12 orbits with 1.5 observations per orbit. EMDA2-5

the challenging situation of having sporadic measurements, where filters with a Gaussian approximation fail
to converge. EMDAn-k offers the possibility to achieve convergence by tuning its parameters: n for the
prediction step, and k for the update.
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