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ESTIMATION OF THE CONDITIONAL STATE AND COVARIANCE
WITH TAYLOR POLYNOMIALS

Simone Servadio∗, Renato Zanetti†

A novel estimator is presented that expands the typical state and covariance update laws
of Kalman filters to polynomial updates in the measurement. The filter employs Taylor
series approximations of the nonlinear dynamic and measurement functions. All polynomials
(functions approximation, state update, and covariance update) can be made to arbitrary order
to trade between filter’s accuracy/consistency and computational time. The performance of
the algorithm is tested in numerical simulations.

INTRODUCTION

Estimation is the process of inferring the value of a quantity of interest from indirect, inaccurate and
noisy observations. When the quantity of interest is the (current) state of a dynamic system, the problem is
referred to as “filtering”: the best estimate is obtained by “filtering out” the noise from noisy measurements.
The estimate is the output given by an optimal estimator, which is a computational algorithm that processes
measurements while maximizing a certain performance index. The optimal estimator makes the best use of
the data, the knowledge of the system, and the disturbances.

State estimation has a great variety of applications. Among the most important are tracking, surveillance,
trajectory determination, navigation, control theory (such as guidance, attitude control, sensor pointing,...),
signal processing, image processing, communications, mapping, and etc. Most of these problems, if not all,
share nonlinear dynamics systems, usually observed via nonlinear measurements. While optimal estimators
for linear systems are known analytically in closed form, analogous results do not exist for estimation of
nonlinear systems. Thus, a closed form solution of the nonlinear estimation problem is typically unavailable,
and assumptions are typically made to make the problem tractable. As a consequence the state estimate of
nonlinear systems is suboptimal.

Different algorithms that can deal with nonlinearities have been developed to achieve an accurate esti-
mate. They use various approximations of the probability density functions (through samplings, moments,
polynomials, kernels, ...) and of their propagation in time (such as state transition tensors, the unscented trans-
formation, polynomials, ...). Consequently, most current estimators provide an estimate that is a function of
the measurement outcome (linearly or nonlinearly), where the estimated covariance is the mean among all of
its possible realizations. The covariance is not directly influenced by the measurement itself, but it depends
on the selected approximation.

The filtering problem is an important research area that has attracted considerable interest, especially for
the challenging case of nonlinear dynamic systems, where the estimation of the state of the system from
noisy data cannot usually be solved analytically. For the well-known linear and Gaussian case, the posterior
distribution remains Gaussian and the Kalman Filter [1, 2] provides the mechanization to calculate its mean
and covariance. However, most problems are nonlinear in the dynamics and in the measurement equations,
corresponding to a non-Gaussian posterior probability density function (PDF). Most applications in aerospace
engineering deal with high nonlinearities: orbit determination [3], spacecraft navigation, target tracking, etc.,
require a reliable nonlinear filtering technique able to approximate the non-Gaussian posterior distribution.
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Many techniques have been developed to deal with the nonlinear estimation problem. The first solution
is based on the linearization of the dynamics and measurement equations around the most current estimate.
The Extended Kalman Filter (EKF) [4] algorithm applies the Kalman filter mechanization to the linearized
system, where PDFs are approximated as Gaussians (and they remain Gaussian under a liner transformation).
However, in problems with high nonlinearities, such as orbit determination, the linearization assumption may
fail to give a valid estimate [5]. The linearization assumption fails for high initial uncertainties levels or long
propagation periods.

Another well-know technique to account for the system nonlinearities is the unscented transformation. The
Unscented Kalman filter (UKF) [6, 7] is able to better handle the effects of nonlinearities in the dynamics
and in the measurements and, typically, it achieves higher accuracy and robustness levels when compared to
the EKF. The UKF applies the unscented transformation to achieve a more accurate Gaussian approximation
of the predicted PDFs. The UKF is a linear estimator, i.e. the estimate is a linear function of the current
measurement.

The first order approximation of the EKF can e extended to higher order Taylor series [4, 8]. Generally,
the higher the order of the Taylor series, the better the performance of the filter. The Gaussian Second Order
Filter (GSOF) [9] truncates the Taylor series at second order to achieve a more accurate estimate. Truncating
the Taylor series to order c requires knowledge of the estimation error’s central moments up to order 2c in
order to calculate the Kalman gain, e.g. the EKF truncates at first order and it requires knowledge of the
covariance matrices. Consequentially, the GSOF requires knowledge of the third and forth central moments
of the state distribution. The GSOF approximates the PDF as Gaussian and the high order moments are
calculated directly from the covariance matrix. The GSOF performs a linear update based on a second order
approximation of the posterior estimation error. Gaussian filters exist up to any arbitrary truncation order of
the Taylor series expansion using Differential Algebra (DA) techniques [10].

Park and Scheeres [11] use state transition tensors (STT) to propagate mean and higher order central
moments through arbitrary nonlinear dynamics. Their filtering technique better incorporates the nonlinear
dynamics during the prediction step of the algorithm, and keeps a linear update structure. Their work has been
subsequently expanded to create higher order Kalman filters able to handle process noise and measurement
updates [12]. Their measurement update only involves the mean and the covariance of the state, neglecting
the contribution on the higher order central moments. Majji, Turner, and Junkins [13], on the other hand,
introduce a tensorial mechanization that expands the work by Park and Scheeres to include measurement
updates in all the higher order central moments. Their algorithm has been replicated in the DA framework by
Valli et al. [14], achieving the same results with an efficient mechanization.

All of the filters mentioned above are linear estimators, i.e. the estimate is a linear function of the mea-
surements. The conditional mean, which is the optimal Minimum Mean Square Error (MMSE) solution, is
typically some unknown nonlinear function of the measurement whose computation is usually not feasible.
A linear estimator, even when accounting for the nonlinearities of the measurement function, is typically out-
performed by nonlinear estimators such as the Gaussian Sum Filter (GSF) [15, 16] or the (Bootstrap) Particle
Filter (BPF) [17].

Gaussian Sum Filters (GSF) approximate PDFs with multiple Gaussian kernels [18] and apply a linear
filter’s equations to each model (typically EKF or UKF). The GSF divides the state uncertainties into multiple
smaller subdomains where the linear approximation of the functions is more accurate. The Gaussian Multiple
Model (GMM) final estimate is a weighted sum of the estimates from each model, based on the measurement
likelihood function. The time propagation of the GSF can fail to represent the propagated PDF correctly in
the presence of sporadic measurements when component’s covariances grow too large. Terejanu et al. [19]
improve the GFS’ propagation accuracy by adapting the weights of each component during the propagation
phase. DeMars et al. [20] address the nonlinearities of the dynamics by refining the number of mixand
components.

Raihan and Chakravorty [21] developed a particle Gaussian mixture filter robust to extremely high initial
level of uncertainties. Valli et al. [22] use differential algebra (DA) techniques to develop a Monte Carlo
Kalman filter that substitutes samples propagation with polynomial evaluations. Servadio and Zanetti pre-
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sented a filter [23] that exploit the DA propagation from Valli [22] and mixes it with the GMM update from
Chakravorty [21].

Other techniques to develop a nonlinear estimator have been presented. De Santis et al. [24] propose an
augmented state to obtain a nonlinear update but preserving the linear update structure. Their work, focused
on linear and non-gaussian systems, offers an approximation of the the optimal non-linear update as either
quadratic [24] or polynomial [25].

Servadio and Zanetti [26] also implemented a quadratic update (extendable to polynomial update of any
order) based on Taylor series expansions, implemented in the DA framework. The polynomial representation
of the state of the system allows the evaluation of central moments up to a selected order: the polynomial
high-order coefficients of the estimator are evaluated to minimize the mean square estimation error. The
proposed filter is robust against non-Gaussian noises and non-Gaussian initial conditions, but the computa-
tional demand of calculating higher order central moments can grow quickly with the truncation order of the
Taylor series, the size of the state vector, and the order of the polynomial update. Servadio and Zanetti also
developed a new technique [27] where non-Gaussian distributions are approximated as a polynomial transfor-
mation of Gaussian random variables. In doing so, all high order central moments are easily and efficiently
calculated in close form. Consequently, in [27], polynomial updates can be performed much more efficiently
than in [26]. The algorithm can be interpreted as an expansion of Gaussian filters, where the shape of the
distributions is approximated through a polynomial function of Gaussian random vectors.

The paper is structured in the following way. At first, the aim of the manuscript is highlighted, focusing
on the innovative contributions and introducing differential algebra (DA) techniques. The following chapter
describes the polynomial estimator and its mathematical derivation. The main part of the paper offers a new
filtering technique developed in the differential algebra framework. Later, the new algorithm is applied to
two numerical examples: a scalar application, in order to graphically visualize how the new algorithm works,
and the Lorenz96 dynamics Lastly, conclusions are drawn.

BACKGROUND

Filters fall under either of two categories: linear and nonlinear. Both approaches use Bayes’ rule for the
measurement update, but while the latter typically parameterizes the complete conditional PDF, the former
usually only carries mean and covariance to fully express the PDF. The linear update rule for mean and
covariance are given by

x̂+ = x̂− + K(y − ŷ−) (1)

Σ+
xx = Σ−xx −KΣyyKT (2)

where K is the Kalman gain, ŷ− is the predicted measurement mean, and x̂− is the prior mean. The equa-
tions above are only optimal in a minimum mean square error (MMSE) when the prior distribution and the
measurement are jointly Gaussian (which implies a linear relation between the two). In general the MMSE
estimate is the conditional mean, an unknown and typtically nonlinear functino of the measurement outcome
y; Eq. (1) is the statistical linearization regression of the conditional mean [28], that is to say: equation Eq. (1)
is the best linear fit approximation of the conditional mean. Eq. (2) on the other hand, is the best constant
approximation of the conditional covariance, also in the statistical regression sense.

For nonlinear measurement functions, ŷ−, Σ−xx, e Σyy are typically not obtainable in closed form, and
different Kalman filter algorithms make different approximations to calculate them: Jacobians (EKF)[4],
unscented transformation (UKF)[6], polynomials (High Order KF, [14]), Gaussian quadrature (QKF)[29],
spherical cubature (CKF)[30], Monte Carlo (MCKF), ensemble (EnKF)[22], central differences (CDKF)[31],
finite differences (DDKF) [32], etc..

Regarding the second case, the estimator can achieve nonlinearity in different ways: through multiple mod-
els, such as GSF [18] with GMM, sequential Monte Carlo, such as Bootstrap PF (BPF) [17], Marginalized
PF (MPF) [33], Auxiliary PF (APF), Unscented PF (UPF) [34], Gaussian PF (GPF), Monte Carlo Filter PF
(MCFPF) [35], or polynomial update [26]. However, for multiple models and particle filters, the estimated
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covariance is a function of the measurements, since it is evaluated as a weighed mean based on the measure-
ment likelihood. The drawback of these approaches is the high computational effort requested by the filter
from the machine, which has to work with an elevated number of particles or models to achieve a highly
precise prediction of the conditional covariance.

Experience has shown that the order of the statistical regression approximation of the covariance needs
to be lower than that of the mean for good numerical performance of the algorithm. A zeroth order covari-
ance approximation, therefore, has endured as a companion of a linear mean update rule. Our prior work
[27] presents a higher order polynomial state update, i.e. a higher order polynomial approximation of the
conditional mean. With this paper, we develop a novel higher order polynomial covariance update to better
approximate the conditional covariance than the standard zeroth order approach. Our polynomial estimator
is implemented in the Differential Algebra framework, and the next two subsections briefly recap the two.

Differential Algebra

The theory of differential algebra (DA) has been developed by Martin Berz in the late 80’s [36]. The
DA framework [37, 8] benefits of an algebra of Taylor polynomials. Therefore, each function is represented
through a matrix of coefficients and exponents instead than the classical representation with an array of
floating points (FP) numbers. The Differential Algebra Core Engine (DACE2.0) [38, 39] software has an
hard-coded library of the Taylor expansion series of elementary functions. As a consequence, derivatives
are not computed numerically (e.g finite differences), but evaluated directly from the Taylor polynomials.
Therefore, DA offers a new way of working in a computer environment where the new algebra of polynomials
is endowed of composition of function, function inversions, explicit system solving, etc., likewise the classic
FP arithmetic.

Differential algebra has been proven to reduce computational costs in solving ordinary differential equa-
tions (ODE) [40, 10]. Once the maximum truncation order of the polynomial has been selected, DA creates
the Taylor polynomial expansion of the flow of ODES as a function of the provided initial conditions. This
approach can replace thousands of integrations with the computationally faster evaluation of the Taylor ex-
pansion [41, 23]. As a results, the computational burden requested from the machine reduces considerably
[22]. In the filtering problem, DA techniques have been used for the development of an efficient mapping
of uncertainties [14], for the evaluation of high-order moments [42], and for the approximation of the shape
of PDFs [43]. Wittig et al. [44] developed a domain splitting technique that improves the state propagation
when initial uncertainties are large by creating multiple polynomials.

The main concept of DA is that each function f(x) can be expressed as a polynomials p(δx); where the
new variable δx is the deviation from the expansion center x̂. The polynomial p(δx) is the Taylor expansion
series of f(x), centered in x̂, and truncated up to an user-selected order c.

For a detailed description of DA, its techniques, and how the DACE2.0 works in a computer environment,
the reader is advised to refer the references.

The Polynomial Estimator

Our previous work [27] presented a filter that uses polynomial transformations of Gaussian random vari-
ables in an augmented state to represent non-Gaussian distributions via their high order moments. The filter-
ing technique presented in this paper uses the same representation of variables, but extend its contribution to
further improve the estimation of the system’s uncertainties.

Let x be the state of the system which is desired to estimate, and let y be another random vector, sam-
pleable, related to x. State estimators consist in a family of functions g(y) that infer the unknown value of
x based on the know outcome y. Polynomial estimators are a subset of this family. Using to the Kronecker
algebra, the polynomial estimator, up to an arbitrary order, can be written as

g(y) = a + K1y + K2y
[2] + K3y

[3] + K4y
[4] + . . . (3)
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where a is a constant, each Ki is a constant matrix of appropriate dimensions, and each y[i] is calculated
using the Kronecker product (⊗)

y[2] = y ⊗ y (4)

y[i] = y ⊗ y ⊗ y ⊗ . . . (5)

In order to avoid redundancy, each repeated component is eliminated; thus, in y[2], only one term between
y1y2 and y2y1 is kept. Consistently with previous works, it is convenient to derive the estimator’s constants
by working with deviation vectors. It is easier to define central moments of the deviation vectors of the
variable from their mean than of the vectors themselves. Therefore, following the notation applied in [27],
deviation vectors are defined as

dx = x− E {x} (6)
dy = y − E {y} (7)

dy{2} = y ⊗ y − E {y ⊗ y} = y[2] − E
{

y[2]
}

(8)

dy{i} = y[i] − E
{

y[i]
}

(9)

where Equation (6) is the state deviation and Equation (7) is the measurement residual. It is worth noticing
that deviations have zero mean by construction. The family of polynomial estimators defined by Equation (3)
can be redefined by adding and subtracting constants, in order to obtain a new, but theoretically equivalent,
family

g(y) = a + E {x}+ K1(y − E {y}) + K2

(
y[2] − E

{
y[2]
})

+ K3

(
y[3] − E

{
y[3]
})

+ . . . (10)

= a + E {x}+ K1dy + K2 dy
{2} + K3 dy

{3} + . . . (11)

The measurement residual and its powers can be stacked, defining the augmented deviation vector

dY =
[
dyT dy{2}T dy{3}T . . .

]T
(12)

The same reasoning applies for the constants

K =
[
K1 K2 K3 . . .

]
(13)

such that the generic polynomial estimator illustrated by Equation (11) can be rewritten as

g(y) = a + E {x}+KdY (14)

The optimal estimator, in a Minimum Mean Square Error (MMSE) sense, satisfies the orthogonality princi-
ple (full proof in [26, 27]), which gives the optimal coefficients. The optimal polynomial update estimator
becomes

x̂ = E {x}+ PxYP−1YYdY (15)

where x̂ is the estimate. Matrices PxY and PYY are, respectively, the augmented state-measurement cross-
covariance matrix and the augmented measurement covariance matrix, defined blockwise as

PxY =
[
Pxy Pxy[2] Pxy[3] . . .

]
(16)

PYY =


Pyy Pyy[2] Pyy[3] . . .

Py[2]y Py[2]y[2] Py[2]y[2] . . .

Py[3]y Py[3]y[2] Py[3]y[3] . . .
...

...
...

. . .

 (17)

where the following notation is used:

Pxy = E
{

(x− E {x}) (y − E {y})T
}

(18)

Since deviations have zero mean by construction, the identities Py[i]y[j] = Pdy{i}dy{j} and Pxy[j] =
Pdxdy{j} are valid ∀i, j ∈ N0.
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THE STATE AND COVARIANCE ESTIMATION FILTER

The state of the art has pointed out the lack in literature of a filter that estimates the state uncertainty
level with the same importance reserved for the state itself. A new filtering technique, based on a double
polynomial estimator, have been developed in the DA framework. The double nature of the filter refers to
the sequential estimation of the state and the covariance, where, at each time step, the same measurement
outcome is used twice to achieve matching between the conditioned state mean and its relative uncertainty
spread.

Consider the generic dynamic system described by the following equations of motion and measurement
equations:

xk+1 = f(xk) + vk (19)
yk+1 = h(xk+1) + wk+1 (20)

where f(·) is the dynamics function, xk is the n-dimensional state of the system at time-step k, yk+1 is the
m-dimensional measurement vector at time-step k + 1, and h(·) is the measurement function. The noises
are assumed to be zero mean Gaussians and uncorrelated, such that their distribution is fully described by the
first two moments. For all discrete time indexes i and j

E
{
viw

T
j

}
= 0 (21)

E
{
viv

T
j

}
= Qiδij (22)

E
{
wiw

T
j

}
= Riδij (23)

where Qi is the process noise autocovariance function while Ri is for the measurement noise. The initial
condition of the state of the system is assumed to be Gaussian as well x0 ∼ N (x̂0,P0); however, for all
other time steps k > 0, the state distribution will be non-Gaussian due the high nonlinearities in the equations
of motion.

The State And Covariance Estimation Filter, SACE-c-η-µ, is composed of three different parts: the predic-
tion, the state update, and the covariance update. The three integers c, η and µ in SACE-c-η-µ refers to the
tuning parameters of the filter: they are, respectively, the order of the Taylor polynomial expansion (c), the
order of the state polynomial update (η), and the order of the covariance polynomial update (µ).

Prediction

At the beginning of each time step, the state distribution is assumed to be Gaussian xk ∼ N (x̂k,Pk). The
state can therefore be initialized in the DA framework as a first order polynomial

xk = xk(δxk) = x̂k + Skδxk (24)

where SkS
T
k = Pk and the DA variable δxk = xk − x̂k expresses the deviation from the expansion center

and it is interpreted as a Gaussian with zero mean and identity covariance matrix. Therefore, matrix Sk (here
calculated through Cholesky Decomposition), scales the coefficients of the state polynomial such that the
moments of xk can be calculated directly from the moments of N (0, I).

The propagation function is applied directly on the state polynomial, such that the predicted state vector is

x−k+1 = x−k+1(δxk) = f
(
xk(δxk)

)
(25)

where x−k+1 indicates the Taylor expansion series of the dynamics centered in x̂k truncated at the user-
defined integer order c. Equation (25) is carried out in the DA framework, where all the coefficients of the
polynomial expansions are evaluated through partial derivatives [8, 26]. Therefore, each component of x−k+1

is a polynomial map (centered in x̂k) that maps deviations (δxk) from time step k to time step k + 1 and
describes how the state PDF evolves in time [42]. The predicted polynomials are lacking the influence of the
process noise. Process noise can be mapped in the DA framework with the same representation reserved for
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the state of the system. Thus, a new DA variable δvk, interpreted again as a standard normal random vector,
is introduced

x−k+1(δxk, δvk) := x−k+1(δxk) + Tkδvk (26)

where vk = Tkδvk and TkT
T
k = Qk.

Analogously, the predicted measurement are expressed as a Taylor polynomial expansion in the DA frame-
work

yk+1 = yk+1(δxk, δvk) = h
(
x−k+1(δxk, δvk)

)
(27)

where yk+1 is, again, a polynomial centered in x̂k with maximum order c. In Equation (27), derivatives are
now computed w.r.t. both the state deviation vector (δxk) and the process noise (δvk). The influence of
the process noise is added to the polynomials likewise in Equation (26): thus, a new DA variable δwk+1 is
introduced

yk+1(δxk, δvk, δwk+1) := yk+1(δxk, δvk) + Uk+1δwk+1 (28)

where wk = Ukδwk and UkU
T
k = Rk. One again, δwk+1 is interpreted as a standard normal random

vector.

All the predicted quantities have been calculated and they are represented as polynomial functions of
standard random vectors. The number of variables is 2n+m: n deviations map the state behavior, n map the
process noise, and the remaining m map the measurement noise. The Gaussian nature of the random vectors
leads to a fast evaluation of all expectation operations since, for a Gaussian PDF, central moments can be
easily computed using the Isserlis’ formulation [45].

The State Polynomial Update

The second part of SACE-c-η-µ is the state polynomial update. Thus, after selecting the integer c in the
prediction step, the user defines a second integer, η, which selects the order of the polynomial estimator
dedicated to the state of the system.

The polynomial update asks for the evaluation of the augmented Kalman gain and for high powers of the
measurement polynomials, as expressed in Equation (15). Starting from the latter,

y
[2]
k+1 = yk+1 ⊗ yk+1 (29)

y
[i]
k+1 = yk+1 ⊗ yk+1 ⊗ . . . (30)

with i = 1, . . . , η and, once again, the redundant components are eliminated.

The means of the predicted state polynomials are now evaluated. Each polynomial undergoes the expecta-
tion operator which, being a linear operator, works directly on the single monomials [10].

x̂− = E
{
x−k+1

}
(31)

The deviations have a Gaussian distribution with zero mean and identity covariance matrix, therefore the
expected value substitutes the relative Isserlis’ moment in for each monomial, according to Table 1. As an

Table 1. Isserlis’ moments of Gaussian N (0, 1)

exponent 0 1 2 3 4 5 6 7 8 . . .

coefficient 1 0 1 0 3 0 15 0 105 . . .

illustrative example: E
{
αδx81δx

4
2δx

6
4δv

2
2δw

4
3

}
= 4725α. The predicted means of the measurement polyno-

mials are evaluated likewise Equation (31)

ŷk+1 = E {yk+1} (32)

ŷ
[2]
k+1 = E

{
y
[2]
k+1

}
(33)

ŷ
[i]
k+1 = E

{
y
[i]
k+1

}
(34)
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where, once again, i = 1, . . . , η.

The augmented measurement covariance PYY,[η] is evaluated blockwise according to Equation (17). The
matrix is guaranteed to be nonsingular because redundant rows and columns have been eliminated. The
matrix is symmetric and each block is evaluated as

Py[i]y[j] = E
{

(y
[i]
k+1 − ŷ

[i]
k+1)(y

[j]
k+1 − ŷ

[j]
k+1)T

}
∀i, j = 1, . . . , η (35)

Every time a polynomial multiply himself, the maximum truncation order of the Taylor series doubles. For
example, the evaluation of Py[5]y[3] applies the expectation operator to a polynomial with monomials up to or-
der 8c. The augmented state-measurement cross covariance matrix PxY,[η] is evaluated blockwise according
to Equation (16): each block is evaluated as

Pxy[i] = E
{

(x−k+1 − x̂−k+1)(y
[i]
k+1 − ŷ

[i]
k+1)T

}
∀i = 1, . . . , η (36)

From these covariances it is now possible to evaluate the augmented Kalman gain

K = PxY,[η]P
−1
YY,[η] (37)

The subscript [η] specifies that the covariance matrices are created with measurement powers up to order η.

Given ỹk+1 the numerical outcome of the random vector yk+1, thus the value of measurement coming
from the sensors, its powers are evaluated using the Kronecker product

ỹ
[2]
k+1 = ỹk+1 ⊗ ỹk+1 (38)

ỹ
[i]
k+1 = ỹk+1 ⊗ ỹk+1 ⊗ . . . (39)

with i = 1, . . . , η and, once again, the redundant components are eliminated. The polynomial update exploits
the influence of high powers from the measurement outcome. Therefore, the classic measurement residual is
developed to create the augmented innovation vector

dỸ(δxk, δvk, δwk+1) =


ỹk+1 − yk+1(δxk, δvk, δwk+1)

ỹ
[2]
k+1 − y

[2]
k+1(δxk, δvk, δwk+1)

. . .

ỹ
[η]
k+1 − y

[η]
k+1(δxk, δvk, δwk+1)

 (40)

The updated distribution (polynomial) of the state is given by

x+
k+1(δxk, δvk, δwk+1) = x−k+1(δxk, δvk) +KdỸ(δxk, δvk, δwk+1) (41)

and the posterior estimate is its mean

x̂+
k+1 = E

{
x+
k+1(δxk, δvk, δwk+1)

}
(42)

evaluated, through Isserlis’s moments, monomial by monomial using Table 1.

Equation (41) shows that the state polynomials are function of the three different deviations: the state
deviation, the process noise, and the measurement noise. Furthermore, the new order of the polynomial
as increased of a factor η, dictated by the order of the polynomial update. If the order of the polynomial
approximation of the prior distribution (x−k+1(δxk, δvk)) is c, then, the order of the posterior polynomial
(x+
k+1(δxk, δvk, δwk+1)) is ηc. The higher the polynomial order, the higher the number of moments to be

calculated by Table 1, which leads to a higher computational burden for the machine.
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The Covariance Polynomial Update

The third, and last, part of SACE-c-η-µ is the covariance polynomial update. After having estimated the
state of the system, SACE-c-η-µ applies a second polynomial estimator to identify the value of the state
covariance conditioned to the measurements. Therefore, the user defines one last integer parameter, µ, that
specifies the order of the covariance polynomial update. Unlike previous tuning parameters, µ cannot be
freely chosen but it has to respect the inequality µ < η. The covariance cannot have an higher update order
w.r.t. the state in order to achieve a correct matching.

The covariance matrix is obtained as

Pxx,k+1 = E
{

(x+
k+1 − x̂+

k+1)(x+
k+1 − x̂+

k+1)T
}

(43)

This value shows the average spread of the posterior distribution among all different possible realizations,
ỹ, of the random variable y. Equation (43) is the equivalent of the classical covariance update formulation,
Equation (2), that is used in the most common filters such as EKF, UKF, QKF, CBF, Central Difference
Filter, GSOF, etc. Therefore, even if correct, the error covariance mean only extracts the least possible
information from the measurement outcome. Having in mind the polynomial estimator presented in Equation
(15), Equation (43) can be intended as the first constant of the estimator, where all the correction terms from
the Kalman gain are missing.

A new approach is therefore presented. Define a polynomial vector, ρk+1, as the covariance polynomial

ρ−k+1(δxk, δvk, δwk+1) = (x+
k+1 − x̂+

k+1)⊗ (x+
k+1 − x̂+

k+1) (44)

where, in order to reduce the computational burden, the redundant terms have been eliminated. The covari-
ance polynomial maximum order is 2ηc, being the square of the posterior distribution. The mean of ρk+1 is
exactly the vectorized version of the covariance matrix expressed in Equation (43)

ρ̂−k+1 = E
{
ρ−k+1(δxk, δvk, δwk+1)

}
= stack(Pxx,k+1) (45)

Thus, the covariance polynomial can be considered as the state of a new system where the prior is known.
A second polynomial estimator, that uses the same measurement outcome ỹk+1, will provide a covariance
value that better fits the state estimate of the system.

The augmented measurement covariance matrix PYY,[µ] has already being computed. Having the constrain
µ < η makes PYY,[µ] just a subpart of PYY,[η]. On the other side, the covariance-measurement cross
covariance matrix PρY,[µ] is evaluated blockwise according to Equation (16), where each block is obtained
as

Pρy[i] = E
{

(ρ−k+1 − ρ̂−k+1)(y
[i]
k+1 − ŷ

[i]
k+1)T

}
(46)

with i = 1, . . . , µ. The Kalman gain for the covariance correction is calculated as

G = PρY,[µ]P
−1
YY,[µ] (47)

The covariance is updated to its posterior estimate

ρ̂+
k+1 = ρ̂−k+1 + G


ỹk+1 − ŷk+1

ỹ
[2]
k+1 − ŷ

[2]
k+1

. . .

ỹ
[µ]
k+1 − ŷ

[µ]
k+1

 (48)

where the influence of the measurement is weighted by the augmented Kalman gain. Before starting the next
iteration, vector ρ̂+

k+1 is brough back to its matrix formulation

P̂xx,k+1 = matrix(ρ̂+
k+1) (49)

9



The updated posterior distribution has been approximated as Gaussian with mean x̂+
k+1 and covariance

matrix P̂xx,k+1. The filter is able to start the next iteration step from Equation (24), where the DA variables
related to the noises are discarded and a new state deviation vector is initialized.

SACE-c-η-µ relies on its three tuning parameters and it enhances the performances of classic estimators.
In fact, SACE-1-1-0 reduces to the extended Kalman filter and SACE-2-1-0 is the Gaussian Second Order
Filter. The polynomial estimator better weights the information from the measurement by computing high
order central moments. The increase in accuracy is paid by the increse of computational effort, which limits
the filter’s order selection. In fact, the highest polynomial order the filter has to compute (in the evaluation of
Pρy[µ] ) is (2η + µ)c.

NUMERICAL EXAMPLES

The proposed filtering techniques have been applied to two different scenarios. At first, a scalar application
gives a visual representation on how the new update algorithm work and which are the innovative features
when compared to other estimators. The second problem consists in a tracking application where the system
undergoes the highly nonlinear dynamics of a Lorenz96 system.

Scalar Problem

A simple scalar problem is here presented to highlight the improvements of the new filtering technique
by estimating the conditional covariance. It has already been proven that high order polynomial estimators
are a better approximation of the true MMSE [27]. However, the presented example underlines the matching
between state and covariance for each different realization of the measurement.

Define a normal prior state distribution x ∼ N (1, 0.02) and a measurement

y = 1/x+ ν (50)

where ν ∼ N (0, 0.003) is measurement noise. Figure 1 shows the true joint distribution of x and y repre-
sented using 105 points (gray dots in the figure). The figure compares the most common estimators, such as
the EKF, the UKF, the GSF, and the high-order extended Kalman filter (DAHO-k) developed in [14] with
SACE-c-η-µ. The first row of graphs (EKF, UKF, DAHO-3) is linear estimators, therefore their represen-
tation on the (x, y) plane is a straight line, in red. The slope of the red line is the Kalman gain, which
optimal value is PxyP−1yy . Therefore, the different slope is related to the different approximation used by the
filters to evaluate moments. The EKF applies basic linearization (Jacobians), the UKF uses the unscented
transformation, and DAHO-3 uses Taylor polynomials up to the third order. The purple lines express the
estimated uncertainties as a±3σ boundary. The different evaluation of the moments leads to a different value
on the covariance estimation, since it follows Equation (2). The purple lines share the same slopes of the red
line: they are just translated left (and right) of 3σ. These linear filters estimate the same uncertainty level
regardless the measurement outcome and the predicted covariance value is the mean among all the possible
different realizations. The second row of graphs in Figure 1 shows nonlinear estimators. The GSF has been
implemented with 3 models, which allows the estimator function, red line, to follow the curved shape of the
posterior distribution. However, when the likelihood of one model becomes predominant with respect to the
others, the GSF behaves similarly to the EKF: this aspect is mostly evident near the tails of the distribution.
The estimated covariance of the GSF is a function of the measurement because it is evaluated as a weighted
mean among all the models, which importance weight is based on their likelihood. However, the ±3σ pur-
ple lines show the same problems connected with linear estimators: the lines are able to change slope when
the models have approximately the same weight, otherwise they are straight. Furthermore, since the GSF
can be intended as multiple EKFs with reduced subdomains, the filter shows the same behavior of the linear
estimator at the edges of the posterior PFD. Lastly SACE-3-5-2 is reported. The 5th order polynomial esti-
mator is able to follow the curved shape of the joint distribution and it better approximates the true MMSE.
The optimal MMSE is the conditional mean, which visually is the line that divides in half the distribution
of y, as horizontal spread of points, for each value of x. Therefore, while EKF, UKF and DAHO-3 can be
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Figure 1. Comparison among different estimators.

interpreted as different linear approximation of the true MMSE, SACE-3-5-2 represents a 5th order approx-
imation, which shows a more accurate result. By increasing the estimator order η to infinity, SACE-c-η-µ
would asymptotically reach the true MMSE. The purple lines related to SACE-3-5-2 show how the uncer-
tainty level has become a (nonlinear) function of the measurement. The±3σ boundary increases and tightens
depending on the horizontal spread of samples around the estimator function. For example, when the current
measurement is y = 1, SACE-3-5-2 gives its estimate with a level of uncertainty that matches the spread of
the gray points on the line y = 1. On the contrary, when the sensor gives y = 2, SACE-3-5-2 outputs a level
of confidence in its estimate higher than in the previous case, since the spread of the gray samples around
its estimate curve at y = 2 is tighter. Therefore, the estimated covariance of the filter is a function of the
measurement and the performances improve drastically because the uncertainties level always matches the
estimate, providing a more reliable outcome.

The accuracy level reached by each filter is compared in Figure 2, where the results of a RMSE analysis is
reported.

RMSE =

√∑Nsamples
i=1 (xi − x̂+i )2

Nsamples
(51)

The RMSE of each estimator is evaluated using the entire set of 105 points. The bars show that SACE-3-5-2
is the most accurate filter while the linear estimators are the least. However, a more precise approximation of
the measurement equation leads to a smaller RMSE and to a more precise estimate, as proven by DAHO-3
(3rd order Taylor polynomial) being the most accurate among the other linear estimators.

The proposed problem underlines a couple of points. Unlike the linear and Gaussian case, the conditional
covariance and the estimation error covariance are different. For the common filter, the estimation error
variance expresses the average spread of the estimation error over all possible measurement realizations. This
is a good metric for sure, but once a measurement is actually available to process, the conditional variance
is a much more informative quantity, because it effectively give the spread of the estimation error for this
particular value of y. In fact, the conditional covariance is a (nonlinear) function of the measurement which
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Figure 2. RMSE.

evaluation is usually non feasible. However, SACE-c-η-µ uses a polynomial estimator to approximate the
function, achieving better results with respect to filters that do not.

Lorenz96 System

The performance of the proposed filter is tested on a Lorenz96 example [21] where the state dynamics are

dxi(t)

dt
= xi−1(t)(xi+1(t)− xi−2(t))− xi(t) + F + νi(t) (52)

with i = 1, . . . , 4, since x(t) is selected to be four-dimensional. The following conventions are used:
x−1(t) = xn−1(t), x0(t) = xn(t), and x1(t) = xn+1(t). The term F is a constant external force which
value is chosen equal to eight, since it introduces a chaotic behavior in the system. The initial condition is
assumed to be Gaussian, with mean x̂ =

[
F F F + 0.01 F

]T
and diagonal covariance matrix, with

the same standard deviation for each component of the state: σx = 10−3. The process noise is assumed to
be Gaussian and uncorrelated among states, with known standard deviation σν = 10−3. The dynamics are
propagated at 2 Hz for a total of 20 seconds. The measurement are obtained each time step according to the
following model

yk = Hi,jx(tk) + µk, H =

{
1 j = 2i− 1

0 otherwise
(53)

with i = {1, 2} and j = {1, 2, 3, 4}. In other words, the sensors provide the components of the state with
odd indeces. Measurement noises are assumed to be Gaussian and uncorrelated within each other and with
the process noise. The standard deviation is selected as σµ = 0.5: this value is particularly high and filters
based on linear estimators are not able to track the state of the system and achieve convergence [27].

Figure 3 shows the Monte Carlo analysis results performed with SACE-2-3-2 on the presented application.
The figure shows, for each ith component of the state, the estimation error of each realization (gray lines),
calculated as

εj,i = xj,i − x̂j,i (54)

for each jth time step. A total of 100 realizations are reported. Figure 3 describes the error means, in black,
and the error standard deviations, as a 3σ, in blue. The black lines show that SACE-c-η-µ is an unbiased
filter, as expected from the theory of MMSE estimation. The predicted error standard deviation, continuous
blue line, is evaluated directly from the updated covariance matrix, by taking the square root of the diagonal
terms. The effective performance of the filter is assessed by the sample standard deviation of the Monte Carlo
estimation errors, dashed blue lines. At each time step, the actual error covariance of the filter is evaluated

12



Figure 3. 100 runs Monte Carlo performance test for SACE-2-3-2.

by working directly on the samples. The consistency of SACE-2-3-2 is established by the overlapping of the
dashed and continuous blue lines, which proves that the filter can correctly predict its own uncertainty levels.

The performance comparison among different filters is shown in Figure 4 through another Monte Carlo
analysis conducted with 100 runs. The figure shows, for each filter, the comparison between the effective
and predicted error covariance. The continuous lines represent the filter own estimate of the error standard
deviation, calculated directly form the updated covariance matrix as the square root of its trace:

σ̄ =

√
tr(P̂xx) (55)

The dashed lines represent the effective error standard deviation derived from the Monte Carlo analysis. A
consistent filter has the matching between its dashed and continuous line, meaning that the estimated uncer-
tainty level reflects the actual error standard deviation. The top graph in Figure 4 shows how linear estimators,
the EKF, UKF, and DAHO-2, diverge (and break down) while trying to track the state of the system. The
measurement noise level is excessively large and a linear dependence on the measurement outcome is not
sufficient to achieve a correct estimate. The UKF and DAHO-2 uses, respectively, the unscented transforma-
tion and second order Taylor polynomial to improve the prediction step of the filter and have a more accurate
propagated state prior distribution. However, the update step is still linear and highly influenced by the noise
standard deviation which prevents the evaluation of a reliable Kalman gain. The polynomial estimator better
weights the information from the measurements using high order moments and it achieves convergence with
consistency. Therefore, SACE-2-3-0, in blue, and SACE-2-3-2, in red, correctly estimate the state of the sys-
tem along the whole simulation. The bottom graph in Figure 4 zooms in for the performance of SACE-c-η-µ
for the two different sets of parameters. SACE-2-3-0 shows a filter which estimate is a polynomial function of
the measurement and its estimated covariance is evaluated as a mean among all possible resolutions; it is not
influenced by the measurement outcome. On the other side, SACE-2-3-2 improves accuracy by estimating
the covariance giving it the same importance reserved to the state. Thus, the red lines settle below the blue
ones for the whole simulation, since the predicted error standard deviation better matches the conditional
mean.
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Figure 4. Covariance comparison among different filters.

CONCLUSIONS

A filter based on a double estimator has been presented. The new technique estimates the conditional
mean and the conditional covariance of the posterior distribution by applying, sequentially, two polynomial
estimators, using the same measurement outcome. The new approach better matches the estimated state with
its error standard deviation, which is now a polynomial function of the measurement. Therefore, the newly
proposed filter is able to reduce the error uncertainty when the posterior distribution gets narrower around a
low probability realization of the measurement.

Two numerical examples have been reported. The scalar application gives a visual representation of the
benefits of the polynomial approximation of the true MMSE and its covariance. Thus, the higher the order of
the updates, the more precise the relative state estimate and its covariance. The vectorial application under-
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lines the benefits of predicting the covariance by considering its estimation as working with an augmented
state. The new state estimate improves in accuracy and a smaller error standard deviation is obtained.
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