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NONLINEAR FILTERING BASED ON TAYLOR DIFFERENTIAL
ALGEBRA

Roberto Armellin*, Monica Valli†, Pierluigi Di Lizia‡, Michèle R. Lavagna§, and
Renato Zanetti¶

The problem of nonlinear filtering represents a crucial issue in celestial mechanics.
In this paper a high-order filter based on differential algebra is presented. The
proposed filtering algorithm is based on nonlinear mapping of statistics and linear
update scheme, in which only the pdf of the measurements is constrained to be
Gaussian. No hypothesis on the state probability density function is made. The
case of an Earth-orbiting spacecraft in a two-body problem frame is considered
as an example to demonstrate the general feature and performance of the filter. A
comparison with the extended and unscented Kalman filters is also included.

INTRODUCTION

Nonlinear filtering plays an important role in various space-related applications, especially in
orbit determination and spacecraft navigation problems. A variety of missions in the near future
demand accurate navigation systems able to perform accurate trajectory estimation in a very re-
duced lapse of time. Such missions include sample and return missions from small bodies, landing
missions to the Moon, Mars and outer planets as well as interplanetary exploration.

At the present time the extended Kalman filter1, 2 (EKF) is the main algorithm used for trajectory
estimation. To compute the estimation error covariance, the EKF relies on linearization of the equa-
tions of motion and the measurement equations via first-order Taylor series expansions centered at
the current mean. In some cases this linearization assumption fails to provide an accurate represen-
tation of the estimate’s uncertainty due to the nonlinearities involved. Low measurement frequency
is also a factor in deteriorating the filter’s consistency. In these cases, a different method that ac-
counts for the system nonlinearity is preferred. An alternative approach is the unscented Kalman
filter (UKF).3, 4 The UKF is also a linear estimator, but computes the covariance through a determin-
istic set of sigma points which can yield superior performance with respect to the EKF in producing
a filter’s covariance consistent with the actual estimation error. While the asymptotic complexity of
the UKF algorithm is the same as for the EKF, the UKF is often slightly slower than the EKF. In
2007 Park and Scheeres5, 6 developed two nonlinear filters by implementing a semi-analytic orbit
uncertainty propagation technique, that is by solving for the higher-order Taylor series terms that
describe the localized nonlinear motion and by analytically mapping the initial uncertainties. These

*Postdoc Fellow, Aerospace Engineering Department, Politecnico di Milano, 20156 Milan, Italy
†Ph.D. Candidate, Aerospace Engineering Department, Politecnico di Milano, 20156 Milan, Italy
‡Postdoc Fellow, Aerospace Engineering Department, Politecnico di Milano, 20156 Milan, Italy
§Associate Professor, Aerospace Engineering Department, Politecnico di Milano, 20156 Milan, Italy
¶Senior Member of the Technical Staff, Vehicle Dynamics and Control, The Charles Stark Draper Laboratory, 17629 El
Camino Real, Suite 470, Houston, Texas

1



higher-order filters are more accurate than the EKF, but the need to derive the so-called higher-order
tensors makes them in many cases - especially for a sophisticated, high fidelity system model - dif-
ficult to use due to computational complexity. Up to now limited work has been done to automate
and speed up the derivation of the state transition tensors.7, 8

Differential algebraic (DA) techniques have been proposed in Valli et al.9 as a valuable tool for
efficient and accurate nonlinear uncertainty propagation. DA techniques supply the tools to compute
the derivatives of functions within a computer environment.10, 11 More specifically, by substituting
the classical implementation of real algebra with the implementation of a new algebra of Taylor
polynomials, any function f of n variables is expanded into its Taylor polynomial up to an arbi-
trarily order m. This has a strong impact when the numerical integration of an ordinary differential
equation (ODE) is performed by means of an arbitrary integration scheme. Any explicit integration
scheme is based on algebraic operations, involving the evaluation of the ODE right hand side at
several integration points. Therefore, starting from the DA representation of the initial conditions
and carrying out all the evaluations in the DA framework, the flow of an ODE is obtained at each
step as its Taylor expansion in the initial conditions. The accuracy of the Taylor expansion can be
kept arbitrarily high by adjusting the expansion order. DA approach enabled the implementation of
DA-based filters,12 in which both the propagation of the mean trajectory and the measurement func-
tion evaluation are carried out in the DA framework. The obtained solution map not only provides
the pointwise values for the propagated state and measurements, but also provides the higher-order
partials of the solution flow and of the measurement equation. This eliminated the need to calcu-
late the higher-order tensors at each time step by solving a complex system of augmented ODE.
The main assumption of these methods is that the statistics of the state is described by a Gaussian
probability density function (pdf).

In this work this assumption is removed. Whenever a new measurement becomes available, the
observed data are mapped at a specific reference time as a Taylor polynomial of arbitrary order.
This polynomial is used to update the estimate of the state variable and the related error statistics,
without making any assumption on the estimated conditional pdf. The estimated statistics (i.e., the
cumulants describing the pdf) can then be mapped forward or backward in time to represent the
solution at any time of interest using the so called DA-based higher-order method (DAHO-k). The
case of an Earth orbiting satellite with realistic initial orbit uncertainties and nonlinear measure-
ments is presented to discuss the performances of the proposed filtering algorithm. Comparisons
with EKF and UKF are used to support the conclusions.

The paper is organized as follows. First a brief introduction to differential algebra is given. Some
hints on how to use it to expand the solution of parametric implicit equations and obtain high-
order expansion of the flow are presented. Differential algebra is applied to obtain the nonlinear
mapping of the statistics to demonstrate how the cumulants describing the pdf at a certain time can
be mapped at any previous or later time. Then the proposed filtering technique is described. Finally,
the effectiveness of the method is demonstrated through a numerical example.

NOTES ON DIFFERENTIAL ALGEBRA

DA techniques, exploited here to implement a high-order orbit determination algorithm, were
devised to attempt solving analytical problems through an algebraic approach.13 Historically, the
treatment of functions in numerics has been based on the treatment of numbers, and the classical nu-
merical algorithms are based on the mere evaluation of functions at specific points. DA techniques
rely on the observation that it is possible to extract more information on a function rather than its
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Figure 1: Analogy between the floating point representation of real numbers in a computer envi-
ronment (left figure) and the introduction of the algebra of Taylor polynomials in the differential
algebraic framework (right figure).

mere values. The basic idea is to bring the treatment of functions and the operations on them to
computer environment in a similar manner as the treatment of real numbers. Referring to Figure
1, consider two real numbers a and b. Their transformation into the floating point representation,
a and b respectively, is performed to operate on them in a computer environment. Then, given any
operation ∗ in the set of real numbers, an adjoint operation ~ is defined in the set of floating point
(FP) numbers so that the diagram in Figure 1 commutes. (The diagram commutes approximately in
practice due to truncation errors.) Consequently, transforming the real numbers a and b into their
FP representation and operating on them in the set of FP numbers returns the same result as carry-
ing out the operation in the set of real numbers and then transforming the achieved result in its FP
representation. In a similar way, let us suppose two k differentiable functions f and g in n variables
are given. In the framework of differential algebra, the computer operates on them using their k-th
order Taylor expansions, F and G respectively. Therefore, the transformation of real numbers in
their FP representation is now substituted by the extraction of the k-th order Taylor expansions of
f and g. For each operation in the space of k differentiable functions, an adjoint operation in the
space of Taylor polynomials is defined so that the corresponding diagram commutes; i.e., extracting
the Taylor expansions of f and g and operating on them in the space of Taylor polynomials (labeled
as kDn ) returns the same result as operating on f and g in the original space and then extracting
the Taylor expansion of the resulting function. The straightforward implementation of differential
algebra in a computer allows computation of the Taylor coefficients of a function up to a specified
order k, along with the function evaluation, with a fixed amount of effort. The Taylor coefficients of
order n for sums and products of functions, as well as scalar products with reals, can be computed
from those of summands and factors; therefore, the set of equivalence classes of functions can be
endowed with well-defined operations, leading to the so-called truncated power series algebra.14, 15

Similarly to the algorithms for floating point arithmetic, the algorithms for functions followed, in-
cluding methods to perform composition of functions, to invert them, to solve nonlinear systems
explicitly, and to treat common elementary functions.13, 16 In addition to these algebraic operations,
the DA framework is endowed with differentiation and integration operators, therefore finalizing
the definition of the DA structure. The DA sketched in this section was implemented by M. Berz
and K. Makino in the software COSY INFINITY.17
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Expansion of the solution of parametric implicit equations

Well-established numerical techniques (e.g., Newton’s method) exist, which can effectively iden-
tify the solution of a classical implicit equation

f(x) = 0. (1)

Suppose an explicit dependence on a vector of parameters p can be highlighted in the previous
function f , which leads to the parametric implicit equation

f(x,p) = 0. (2)

Suppose the previous equation is to be solved, whose solution is represented by the function x(p)
returning the value of x solving (2) for any value of p. Thus, the dependence of the solution of the
implicit equation on p is of interest. DA techniques can effectively handle the previous problem
by identifying the function x(p) in terms of its Taylor expansion with respect to p. The DA-based
algorithm is presented in the following for the solution of the scalar parametric implicit Eq. (2); the
generalization to a system of parametric implicit equations is straightforward.

The solution of (2) is sought, where sufficient regularity is assumed to characterize the function
f ; i.e., f ∈ Ck. This means that x(p) satisfying

f(x(p),p) = 0 (3)

is to be identified. The first step is to consider a reference value of p and to compute the solution x
by means of a classical numerical method; e.g., Newton’s method. The variable x and the parameter
p are then initialized as k-th order DA variables, i.e.,

[x] = x+ δx

[p] = p+ δp.
(4)

A DA-based evaluation of the function f in (2) delivers the k-th order expansion of f with respect
to x and p:

δf =Mf (δx, δp), (5)

where Mf denotes the Taylor map for f . Note that the Map (5) is origin-preserving as x is the
solution of the implicit equation for the nominal value of p; thus, δf represents the deviation of f
from its reference value. Map (5) is then augmented by introducing the map corresponding to the
identity function on p (i.e., δp = Ip(δp)) ending up with[

δf
δp

]
=

[
Mf

Ip

] [
δx
δp

]
. (6)

The k-th order Map (6) is inverted using COSY-Infinity built-in tools (based on fixed point itera-
tions), obtaining [

δx
δp

]
=

[
Mf

Ip

]−1 [
δf
δp

]
. (7)

As the goal is to compute the k-th order Taylor expansion of the solution manifold x(p) of (2), the
map (7) is evaluated for δf = 0 [

δx
δp

]
=

[
Mf

Ip

]−1 [
0
δp

]
. (8)
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The first row of Map (8)
δx =Mx(δp), (9)

expresses how a variation of the parameter δp affects the solution of the implicit equation as a k-th
order Taylor polynomial. In particular, by plugging Map (8) in first of (4) we obtain

[x] = x+Mx(δp), (10)

which is the k-th order Taylor expansion of the solution of the implicit equation. For every value
of δp, the approximate solution of f(x,p) = 0 can be easily computed by evaluating the Taylor
polynomial (10). Apparently, the solution obtained by means of Map (10) is a Taylor approximation
of the exact solution of Eq. (2). The accuracy of the approximation depends on both the order of the
Taylor expansion and the displacement δp from the reference value of the parameter.

Within this work, the algorithm just introduced is utilized for expanding the solution of Kepler’s
equation that appear in the two-body problem and to implement the high-order filter algorithm. In
this section the classical form of Kepler’s equation is considered√

µ

a3
t = E − e sinE, (11)

in which µ is the gravitational parameter of the attractor, a the semi-major axis, t the time since
pericenter passage, e the eccentricity, and E the unknown eccentric anomaly. Let us work in adi-
mensional variables, such that µ = 1, a = 1, and thus the orbital period is T = 2π. For the sake
of illustrative purposes, we expand the solution of Kepler’s equation in Taylor series with respect
to p = (a, e) around the nominal condition p = (1, 0.5). We also fix t = π, so that E = π is the
nominal solution. The first step to approximate the solution manifold E = E(a, e) in Taylor series
is to initialize E, a, and e as DA variables

[E] = π + δE
[a] = 1 + δa
[e] = 0.5 + δe.

(12)

The algorithm described by Eq.s (5)–(9) is then applied to the implicit equation

f (E(a, e), a, e) =

√
µ

a3
t− E + e sinE = 0. (13)

The result is [E] = π +ME(δa, δe), which is a Taylor polynomial of arbitrary order k.

Figure 2(a) shows some contour lines of [E] for a ∈ [0.9, 1.1] and e ∈ [0.4, 0.6] for a sixth or-
der computation. The Taylor expansion is capable of accurately representing the solution E = π
for a = 1. In Figure 2(b) the accuracy of the expansion is studied in logarithmic scale. Taylor
polynomial evaluations are compared with the solutions of Kepler’s equation obtained by applying
point-wise Newton’s iterations on a fine grid in the a-e plane. It is apparent that the expansion error
decreases significantly close to the reference point and, in addition, the polynomial approximation
is exact for the entire line a = 1. The computational time for the computation of the sixth order
expansion is 0.45× 10−3 s on an Intel Core 2 Duo @2.4GHz, running on a Mac OS X 10.6.8. (All
the computations presented in the manuscript are performed on this machine.) As a last comment,
note that the solution of the two-body problem involves a different form of Kepler’s equation. Fur-
thermore, its solution is expanded in Taylor series with respect to uncertainties in the entire initial
state (i.e., we have Taylor polynomials of six variables).
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(a) Contour lines of E obtained by evaluating the Tay-
lor map. The solution is E = π for a = 1.
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Figure 2: Kepler’s equation: sixth order Taylor expansion of E(a, e).

High-order expansion of the flow

The differential algebra allows the derivatives of any function f of n variables to be computed up
to an arbitrary order k, along with the function evaluation. This has an important consequence when
the numerical integration of an ODE is performed by means of an arbitrary integration scheme. Any
integration scheme is based on algebraic operations, involving the evaluation of the ODE right hand
side at several integration points. Therefore, carrying out all the evaluations in the DA framework
allows differential algebra to compute the arbitrary order expansion of the flow of a general ODE
with respect to the initial condition.

Without loss of generality, consider the scalar initial value problem{
ẋ = f(x, t)
x(t0) = x0

(14)

and the associated phase flow ϕ(t;x0). We now want to show that, starting from the DA represen-
tation of the initial condition x0, differential algebra allows us to propagate the Taylor expansion of
the flow in x0 forward in time, up to the final time tf .

Replace the point initial condition x0 by the DA representative of its identity function up to
order k, which is a (k + 1)-tuple of Taylor coefficients. (Note that x0 is the flow evaluated at
the initial time; i.e, x0 = ϕ(t0;x0).) As for the identity function only the first two coefficients,
corresponding to the constant part and the first derivative respectively, are non zeros, we can write
[x0] as x0 + δx0, in which x0 is the reference point for the expansion. If all the operations of the
numerical integration scheme are carried out in the framework of differential algebra, the phase flow
ϕ(t;x0) is approximated, at each fixed time step ti, as a Taylor expansion in x0.

For the sake of clarity, consider the forward Euler’s scheme

xi = xi−1 + f(xi−1)∆t (15)

and substitute the initial value with the DA identity [x0] = x0 + δx0. At the first time step we have

[x1] = [x0] + f([x0]) ·∆t. (16)
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If the function f is evaluated in the DA framework, the output of the first step, [x1], is the k-th order
Taylor expansion of the flow ϕ(t;x0) in x0 for t = t1. Note that, as a result of the DA evaluation
of f([x0]), the (k + 1)-tuple [x1] may include several non zeros coefficients corresponding to high-
order terms in δx0. The previous procedure can be inferred through the subsequent steps. The result
of the final step is the k-th order Taylor expansion of ϕ(t;x0) in x0 at the final time tf . Thus,
the flow of a dynamical system can be approximated, at each time step ti, as a k-th order Taylor
expansion in x0 in a fixed amount of effort.

The conversion of standard integration schemes to their DA counterparts is straightforward both
for explicit and implicit solvers. This is essentially based on the substitution of the operations
between real numbers with those on DA numbers. In addition, whenever the integration scheme
involves iterations (e.g. iterations required in implicit and predictor-corrector methods), step size
control, and order selection, a measure of the accuracy of the Taylor expansion of the flow needs to
be included.

The main advantage of the DA-based approach is that there is no need to write and integrate varia-
tional equations in order to obtain high-order expansions of the flow. This result is basically obtained
by the substitution of operations between real numbers with those on DA numbers, and therefore
the method is ODE independent. Furthermore, the efficient implementation of the differential al-
gebra in COSY-Infinity allows us to obtain high-order expansions with limited computational time.
Integration schemes based on DA pave the way to the nonlinear mapping of uncertainties necessary
for the implementation of the proposed orbit determination algorithm for an arbitrarily complex
dynamical system. A first example is presented hereafter about the propagation of uncertainties on
initial conditions.

UNCERTAINTY PROPAGATION

Before focusing on nonlinear filtering, let us consider the problem of uncertainty propagation
through nonlinear dynamics. As we will see later on, the nonlinear filtering technique presented in
this paper uses the measurements to update the estimated pdf at a specified time. This pdf must then
be propagated forward/backward in time in order to describe the solution at any time of interest. In
this section we will discuss how this propagation can be done.

So, let us consider the general case of an arbitrary nonlinear transformation. Depending on the
study case, the considered nonlinear transformation can have different meanings; i.e., a coordinate
transformation, the nonlinear dynamical evolution of a physical system, and so on. However, in-
dependently of these single cases, the techniques presented hereafter can be used and remain valid
whenever the problem of propagating the statistics of a system through an arbitrary nonlinear func-
tion must be solved. Moreover, in many cases of practical interest - and in particular in celestial
mechanics and orbit estimation - the Gaussian assumption can not provide a sufficiently accurate
statistical approximation of the transformed pdf. Hence, the problem of uncertainty propagation
through nonlinear transformations becomes one of computing not only the estimate of the trans-
formed mean and covariance, but also of the higher order cumulants.

Nonlinear mapping of the estimate statistics

Consider random variable x ∈ <n with probability density function p(x) and a second random
variable y related to x through the nonlinear transformation

y = f(x). (17)
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The problem is to calculate a consistent estimate of the main cumulants of the transformed proba-
bility density function p(y). As said before, since f is a generic nonlinear function this formula-
tion includes a wide range of problems involving uncertainty propagation (uncertainty propagation
through nonlinear dynamics, uncertainty propagation through nonlinear coordinate transformations,
etc.).

Define independent variable x as a DA variable

[x] = x̄+ δx, (18)

where x̄ is the initial mean, and implement the nonlinear transformation in DA framework up to
order k. The result is the Taylor expansion of the final solution with respect to deviations δx of the
independent variable

[y] = f([x]) = ȳ +My(δx) =
∑

p1+···+pn≤k
cp1...pn · δxp11 · · · δxpnn , (19)

where ȳ is the zeroth order term of the expansion map, and cp1...pn are the Taylor coefficients of the
resulting Taylor polynomial

cp1...pn =
1

p1! · · · pn!
· ∂

p1+···+pnf

∂xp11 · · · ∂xpnn
. (20)

If an ODE system in the form (14) is considered, Eq. (19) remains unchanged and cp1...pn become
the terms that relate deviations in the initial conditions to the state at some future time. Park and
Scheeres18 called this operator of higher-order partials of the state the state transition tensor (STT).
Note that the case k = 1 corresponds to the ordinary first-order statistics propagation (i.e., the
approximation corresponding to a linearized model), where cp1...pn are elements of the well-known
state transition matrix. The evaluation of (19) for a selected value of δx supplies the k-th order
Taylor approximation of the solution y corresponding to the displaced independent variable. Of
course, the accuracy of the expansion map is function of the expansion order and can be controlled
by tuning it. As already said, DA techniques allow the computation of derivatives up to order k of
functions in n variables (i.e., the coefficients cp1...pn of the Taylor series) and the approximation of
the original function in the space of Taylor polynomials. So, contrary to other methods, such as the
UT, that are founded on the idea that it is easier to approximate a pdf than it is to approximate an
arbitrary nonlinear function, the starting point and foundation of our approach is the straightforward
approximation of the function itself.

The Taylor series in the form (19) can be used to efficiently compute the propagated statistics.
The method consists in analytically describing the statistics of the solution by computing the l-th
moment of the transformed pdf using a proper form of the l-th power of the solution Map (19). This
numerical procedure will be referred to as DAHO-k method, where DAHO stands for “DA-based
higher-order” and k indicates the expansion order.
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DAHO-k method

For a generic scalar random variable z with pdf g(z) the first four moments can be written as

µ = E{z}
P = E{(z − µ)2}
γ =

E{(z − µ)3}
σ3

κ =
E{(z − µ)4}

σ4
− 3,

(21)

where µ is the mean value, P is the covariance, γ and κ are the skewness and the kurtosis, respec-
tively,19 and the expectation value of z is defined as

E{z} =

∫ +∞

−∞
zg(z)dz. (22)

So, the moments of the transformed pdf for problem (17) can be computed by applying the
multivariate form of Eq. (21) to the Taylor expansion (19). The result for the first two moments
becomes

µi = E{[yi]} =
∑

p1+···+pn≤k
ci,p1...pnE{δxp11 · · · δxpnn }

P ij = E{([yi]− µi)([yj ]− µj)} =
∑

p1+···+pn≤k,
q1+···+qn≤k

ci,p1...pncj,q1...qnE{δxp1+q1
1 · · · δxpn+qn

n },

(23)
where ci,p1...pn are the Taylor coefficients of the Taylor polynomial describing the i-th component of
[y]. Note that in the covariance matrix formula the coefficients ci,p1...pn and cj,q1...qn already include
the subtraction of the mean terms. The coefficients of the higher order moments are computed by
implementing the required operations (e.g. ([yi] − µi)([yj ] − µj) for the second order moment)
on Taylor polynomials in the DA framework. The expectation values on the right side of Eq. (23)
are function of p(x). It follows that if the initial distribution is known, all of the moments of the
transformed pdf p(y) can be calculated. The number of monomials for which it is necessary to
compute the expectation increases with the order of the Taylor expansion and, of course, with the
order of the moment we want to compute. Note that, at this time, no hypothesis on the initial pdf has
been made. Thus, the method can be applied independently of the considered variable distribution.

For the purpose of illustration and without loss of generality, we now restrict to the case where
x is a Gaussian random variable (GRV), x ∼ N (µ,P ), in which µ is the mean vector and P the
covariance matrix.

An important property of Gaussian distributions is that the statistics of a GRV can be completely
described by the first two moments. In case of zero mean, the expression for computing higher-
order moments in terms of the covariance matrix is due to Isserlis.20 In physics literature, Isserlis’s
formula is known as the Wick’s formula.

Let s1 to sn be nonnegative integers, and s = s1 + s2 + · · · + sn. Then the Wick’s formula
suggests that

E{xs11 x
s2
2 . . . xsnn } =

{
0, if s is odd
Haf(P ), if s is even

(24)
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where Haf(P ) is the hafnian of P = (σij), which is defined as

Haf(P ) =
∑
p∈

∏
s

s
2∏
i=1

σp2i−1,p2i , (25)

and
∏
s is the set of all permutations p of {1, 2, . . . , s} satisfying the property p1 < p3 < p5 <

. . . < ps−1 and p1 < p2, p3 < p4, . . . , ps−1 < ps.21

We observe that the expectation value terms of Eq. (23) can be computed using Eq. (24), and the
resulting moments can be used to describe the transformed pdf.

The DAHO-k method can be placed in the framework of higher order Taylor series methods
for uncertainty propagation. However, the classical methods that utilize the state transition ten-
sor approach18, 22 need to calculate the higher-order partial derivatives by writing and numerically
integrating the high-order variational equations, which makes these methods complex and compu-
tationally expensive for nontrivial problems. The differential algebra approach does not require to
write any additional set of equations, as the arbitrary high-order expansion of the flow is a straight-
forward result of the implemented algebra.

Numerical example

The framework described thus far has been applied to a typical problem in celestial mechanics.
More in detail, the problem of uncertainty propagation through the nonlinear dynamics of an ar-
tificial Earth-orbiting satellite is addressed. The second-order differential equation governing the
motion is

dr̈

dt
= − µ

r3
r, (26)

where r is the position vector of the spacecraft and µ is the Earth gravitational parameter. The initial
position and velocity assumed for the analysis, defined as DA variables, are

x0 =

(
r0

v0

)
=



−0.68787 + δx
−0.39713 + δy
+0.28448 + δz
−0.51331 + δvx
+0.98266 + δvy
+0.37611 + δvz

 , (27)

and the initial covariance matrix is a diagonal matrix with variance 10−5 for the position vector
components and 10−7 for the velocity vector components. The length units are scaled by the orbit

semi-major axis (a=8788 km) and the time by
√

a3

µ . (For the sake of completeness, other relevant
orbital parameters are e = 0.1712 and i = 153.25 deg).

The simulation results related to the first two components of the state vector for different propa-
gation times are presented in Table 1. (Note that the orbital propagation can be performed either by
the expansion of the solution of Kepler’s equation as described in section Expansion of the solution
of parametric implicit equations or by DA numerical integration as explained in section High-order
expansion of the flow). In the last column of the table, the results of a DA-based Monte Carlo
simulation of eighth order (labeled as DAMC8 and here used as a reference solution to assess the
performance of the DAHO-k method) are shown. Figures 3 and 4 show the propagated samples
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Figure 3: Propagated samples distribution projection on the x-y plane for the 2-body dynamics test
case.

distribution and the related uncertainty ellipses for different propagation times. From these results
it is apparent that the system’s nonlinearity makes the linearized solution quite inaccurate already
after few orbits. On the other hand, the DAHO-k method provides a solution that increases its ac-
curacy in accordance with the method’s order k. From a more general point of view, the obtained
results show how the DAHO-k method can be successfully applied to propagate an arbitrary pdf
(i.e., the pdf’s main cumulants) from one time to another, becoming a fundamental tool to process
the solution of the proposed filtering algorithm.

THE DA-BASED MAP INVERSION NONLINEAR FILTER (DA-BASED MIF)

In the previous section we showed how a pdf can be mapped forward in time through a nonlinear
dynamical system. Now we introduce a high-order filtering technique based on nonlinear mapping
of statistics and linear update scheme, in which only the pdf of the measurements is constrained to
be Gaussian.

Consider a time span [t0, tf ] and let xk be the state variable at some time tk ∈ [t0, tf ]. Consider
also a set of N measurements yi given at time ti with i = 1, . . . , N . Given the current estimate of
the state m−k and the related error statistics, we can always define the estimated state as a DA vari-
able and compute in the DA framework the predicted measurement, obtaining the Taylor expansion
Map yi = f(xk). Function f represents a nonlinear map that includes the flow of the dynamics
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Figure 4: Propagated mean and 3-σ uncertainty ellipse projection on the x-y plane for the 2-body
dynamics test case.
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DAHO-1 DAHO-2 DAHO-3 DAMC-8

Propagation time = 0.8 orbits

∆µx [%] 8.005 × 10−3 5.890 × 10−3 5.890 × 10−3 µx [–] 4.485 × 10−1

∆µy [%] 2.141 × 10−3 1.557 × 10−3 1.557 × 10−3 µy [–] −7.344 × 10−1

∆σ2
x [%] 6.949 × 10−2 6.482 × 10−2 6.482 × 10−2 σ2

x [–] 5.004 × 10−5

∆σ2
y [%] 3.332 × 10−2 3.272 × 10−2 3.272 × 10−2 σ2

y [–] 1.045 × 10−5

∆γx [%] 1.000 × 102 2.573 × 101 2.573 × 101 γx [–] −1.391 × 10−2

∆γy [%] 1.000 × 102 5.632 × 100 5.632 × 100 γy [–] 4.553 × 10−2

Propagation time = 0.5 orbits

∆µx [%] 1.453 × 10−1 4.408 × 10−3 4.408 × 10−3 µx [–] −6.866 × 10−1

∆µy [%] 1.480 × 10−1 1.329 × 10−2 1.329 × 10−2 µy [–] −3.970 × 10−1

∆σ2
x [%] 1.797 × 10−1 1.291 × 10−1 1.291 × 10−1 σ2

x [–] 4.526 × 10−4

∆σ2
y [%] 4.128 × 10−1 1.148 × 10−1 1.137 × 10−1 σ2

y [–] 1.697 × 10−3

∆γx [%] 1.000 × 102 4.280 × 10−1 4.273 × 10−1 γx [–] 2.843 × 10−1

∆γy [%] 1.000 × 102 3.009 × 100 3.007 × 100 γy [–] 8.224 × 10−2

Propagation time = 10 orbit

∆µx [%] 5.724 × 10−1 2.194 × 10−2 2.194 × 10−2 µx [–] −6.834 × 10−1

∆µy [%] 6.379 × 10−1 7.325 × 10−2 7.325 × 10−2 µy [–] −3.956 × 10−1

∆σ2
x [%] 1.301 × 100 2.248 × 10−1 1.805 × 10−1 σ2

x [–] 1.858 × 10−3

∆σ2
y [%] 6.783 × 10−1 4.992 × 10−1 4.828 × 10−1 σ2

y [–] 6.742 × 10−3

∆γx [%] 1.000 × 102 3.165 × 10−1 3.026 × 10−1 γx [–] 5.517 × 10−1

∆γy [%] 1.000 × 101 3.165 × 10−1 3.026 × 10−1 γy [–] 1.694 × 10−1

Propagation time = 30 orbit

∆µx [%] 5.464 × 100 1.054 × 10−1 1.054 × 10−1 µx [–] −6.507 × 10−1

∆µy [%] 5.124 × 100 3.332 × 10−1 3.332 × 10−1 µy [–] −3.806 × 10−1

∆σ2
x [%] 7.363 × 100 1.893 × 100 1.346 × 100 σ2

x [–] 1.813 × 10−2

∆σ2
y [%] 9.658 × 100 1.707 × 100 2.924 × 10−1 σ2

y [–] 5.542 × 10−2

∆γx [%] 1.000 × 102 2.409 × 100 2.121 × 100 γx [–] 1.317 × 100

∆γy [%] 1.000 × 102 4.838 × 100 6.294 × 10−1 γy [–] 4.618 × 10−1

Table 1: Mean, variance, and skewness relative error for the first two components x and y of the
state vector calculated using DAHO-k (k = 1,2,3) with respect to DAMC-8 results in percentage for
the 2-body dynamics test case.
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Figure 5: Sketch of the Taylor maps involved in the construction of the DA-base map inversion
nonlinear filter.

and the measurement function. Consider now the minimum number of independent measurements
for which the previous map is invertible. The inverse map is a Taylor expansion of the state at tk
with respect to deviations δyi of the measured variables, and defines the relation between the state
variable and the observed data. At this point we can define the deviation of the predicted measure-
ment with respect to the real measurement coming from the sensors as a DA variable, and use this
variable to evaluate the inverse map. The result of this operation is another Taylor polynomial that
instead of being centered on the predicted measurement is centered on the real one. The main cu-
mulants of this map can be computed as described in the previous section, with the assumption that
the statistics of the measurements is Gaussian. The computed mean and covariance are exploited
to update the knowledge of xk using a linear update scheme. This can be done for groups of mea-
surements for which the dimension of measurement vector yi is equal to the dimension of the state
vector, and the map is invertible.

The resulting method can be summarized as follows. Define the current estimate at time of
interest tk as a DA variable; i.e., [xk] = m−k + δxk. At time ti when a measurement becomes
available, propagate the current state forward/backward in time to obtain the state xi at time ti. The
result assumes the form of the following high-order Taylor expansion map

[xi] = xi +Mxi(δxk). (28)

Then, use the measurement equation to compute the predicted measurement, obtaining

[yi] = h(xi) = yi +Myi
(δxk), (29)

where h represents the measurement function. Next step consists in defining an origin preserving
map

δyi = [yi]− yi =Mδyi
(δxk). (30)

Figure 5(a) can be used by the reader to better understand the meaning of Maps (28)–(30).

This polynomial map can be inverted if two conditions are satisfied: the map must be square and
all the measurements must be independent. If these requirements are satisfied, we can invert Map
(30) using ad-hoc algorithms implemented in COSY-Infinity, obtaining

δxk =Mδxk
(δyi). (31)
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We now evaluate Map (31) in [∆yi] = (ȳi−yi)+ δȳi, where ȳi is the actual measurement coming
from the sensors, and by adding to the result the initial estimate we obtain

[x̄k] = m−k +Mx̄k
(δȳi). (32)

Note that whereas Map (31) is centered on the predicted measurement, Map (32) is centered on the
real observed data (δȳi represents a deviation from it). This is a consequence of the evaluation of
Map (31) in [∆yi] = (ȳi−yi)+δȳi, which also causesMx̄k

(δȳi) to be no more origin preserving.
Hence, Taylor polynomial (32) represents the projection of the observed data on the state space at
time tk; i.e., if we evaluate this map in zero, we obtain the state vector x̄k that exactly produces
measurements ȳi, as shown in Figure 5(b). In the same figure the difference between δȳi and δyi
is underlined.

We can now apply Eq. (23) to Taylor expansion (32) to compute the statistics of random variable
x̄k and, in particular, the first two moments m̄k and P̄ k. The computed mean can be treated as a
“measure”of the state at time tk, with measurement error defined by P̄ k and therefore can be used
to update the initial estimate and error covariance, using the least square method. This can be done
using the Kalman filter update equations that, applied to the current problem, reads

K =P−k
(
P−k + P̄ k

)−1
, (33)

m+
k =m−k +K

(
m̄k −m−k

)
, (34)

P+
k = (I −K)P−k (I −K)T +KP̄ kK

T , (35)

whereP−k is the initial error covariance matrix,m+
k the updated mean at time tk andP+

k the related
updated covariance matrix. When another measurement becomes available, we can define the state
at time tk as a new DA variable, centered in the new computed meanm+

k , and iterate the process.

We said that Map (30) must be square in order to be invertible. It follows that if the measurement
vector has smaller dimension than the state vector, after the first measurement set is received we can
not proceed with the filtering procedure, but we have to wait for additional measurements. When
the number of scalar measurements equals the dimension of the state variable, we can define an
augmented measurement vector that can be used to build Maps (29) and (30).

Once the final estimate of the state at time tk is obtained, the statistics of the solution can be
computed at any time by using the DAHO-k method proposed in the previous section.

SIMULATION RESULTS

In this section, we present simulations for a spacecraft orbiting around the Earth in a two-body dy-
namical framework. The governing equation of motions and the initial conditions for the considered
orbit are presented in Eqs. (26) and (27). Initially, the spacecraft state is assumed to be deviated
from the real state, with position uncertainties of 100 km and velocity uncertainties of 7 × 10−4

km/s. For the measurement model, we assume to measure the range and the lines-of-sight from the
vehicle to the Earth. The measurement noise is assumed to be 0.1 m for range measurement and 0.1
arcsec for angle measurement. A set of pseudo-measurements are computed based on the reference
trajectory with a 22-minutes increment (6 measures in each orbital period) and a horizon of five
orbital periods is analyzed. In this case, the considered reference time tk is the initial time (i.e., t0).

First of all, Figure 6 shows how the update step of the filtering algorithm (presented in Eqs. (34)
and (35)) works. The initial statistics, here represented using only the first two moments, (m−0 ,P

−
0 )
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Figure 7: Measurements projection on the x-y
state space. Measurements are labeled with the
iteration number.

is corrected using the measurement projection on the state space (m̄0, P̄ 0) to obtain a more accurate
estimate of the solution (m+

0 ,P
+
0 ). Notice that since we are not making any assumption on the

state variable statistics, the error covariance does not necessarily represent the confidence region.
However, since in the considered case the state pdf is close to a Gaussian pdf, the confidence region
is close to the ellipsoid associated to the covariance matrix. We can also notice that the real state is
included in the updated ellipsoid.

In Figure 7 the projection on the state space of the observed data are plotted, whereas Figure 8
shows the estimated mean and covariance ellipsoid projection on the x-y plane for every filtering
time step. Comparing these two figures, we can see that the estimation uncertainty is related and
correctly matches the measurement noise.

Figure 9 shows the magnitude of the absolute position and velocity errors, that is, the magnitude
of the difference between the updated mean and the true state. In Figure 10 a comparison of the rel-
ative position and velocity errors between the proposed DA-based map inversion filter, the EKF, and
UKF is plotted. The results underline that the EKF does not perform well as compared to the other
filters. Since the DA-MIF is a higher-order filter and the UKF can represent the estimate statistics
with a second order accuracy, this clearly explains the importance of nonlinear orbit uncertainty
propagation. In this case, the UKF performs as the proposed high-order filter. However, it has been
demonstrated that if we increase the initial uncertainty, the measurement noise, and/or the filtering
time step, the performance of the UKF drops off. At this purpose, Figure 11 reports the results of
a simulation where bigger measurement noises are considered; i.e., 0.1 km for range measurement
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and 1 arcsec for angle measurement. From this figure, it is possible to see that while the UKF
diverges, the DA-based map inversion filter still guarantees convergence (even if, of course, with
worse accuracy with respect to the previous test case).
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Figure 9: Filter accuracy with a 22-minutes increment measurement update.

CONCLUSIONS

In this paper the problem of nonlinear filtering has been addressed. Working in the differential
algebra framework we derived a high-order filter, called differential algebra-based map inversion
filter. This filtering algorithms is based on nonlinear mapping of statistics and linear update scheme,
in which only the pdf of the measurements is constrained to be Gaussian. No hypothesis on the
state probability density function is made. The proposed filter was compared with the conventional
extended Kalman filter and the unscented Kalman filter based on a Earth-orbiting spacecraft in a
two-body problem frame. The filter simulations were carried out assuming the dynamics of the
system are perfectly known, but there are errors in the initial state and in the measurements. The
results showed that the proposed filter provides better performance that the linearized solution and,
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Figure 10: Filters accuracy comparison with a 22-minutes increment measurement update.
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Figure 11: Filters accuracy comparison with measurement noises of 0.1 km for range measurement
and 1 arcsec for angle measurement.
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in some cases (i.e., when the initial uncertainty, the measurement noise, and/or the filtering time
step are large), also than the unscented Kalman filter.
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