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TRAJECTORY DETERMINATION WITH UNKNOWN
PERTURBATIONS

Francesco de Dilectis∗, Daniele Mortari†, and Renato Zanetti‡

In this paper a new approach to estimate the trajectory of a spacecraft on a cislunar
trajectory, based on measurements obtained with a camera pointing at the Moon,
is discussed. The basic idea is to approximate the trajectory with a Bézier curve,
whose control points can be found with a least square best fitting, and successively
improve the accuracy of this curve by using the measurements. The effect of en-
forcing boundary conditions (initial and final position of the spacecraft) is also
explored. This approach has the advantage of being independent from the prob-
lem’s physics, which gives it great generality. For comparison, a Least Square
Optimization method that effectively integrates the trajectory is also used. Main
motivation is to make position estimation autonomous on Earth/Moon trajectories,
to guarantee operativity in case of communications loss. While the image process-
ing is the subject of the companion paper, this paper presents an analysis of the
estimator observability using JPL-SPICE and GSFC-GMAT software for simula-
tions. Estimation of Earth trajectory will also be provided using real sky-night
Moon images.

INTRODUCTION

Since the beginning of modern astrodynamics, orbit determination has been one of the most
interesting problems of the discipline. While for Keplerian orbits this problem can be considered
fully solved, for 3 or more bodies a general solution has not been found, but rather a multitude of
approximate or restricted solutions exist. Particularly in the case of the three-body problem, the
special solutions due to Lagrange are well known. For higher number of bodies however, not even
such solutions are available. It is therefore of interest to look for a method that can tackle all of
these cases efficiently.

In Earth-Moon trajectories spacecraft are usually autonomous for attitude determination while
the position estimation still relies on communication with ground bases. Rendering spacecrafts
autonomous for positioning aswell is important, at least as a backup resource in case of lost com-
munications.

The method proposed in this paper consists of an estimation algorithm that uses measurements
obtained by data-processing of images taken by a visible camera observing the closest body. In
Earth-Moon trajectories, this body can be the Earth or the Moon, depending on the distance. In
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fact, observation of the closest body implies greater variations of the observed parameters, thus
improving state observability. A companion paper, Ref. [1], is dedicated to the image processing
while this paper focuses on the trajectory estimation. This estimation can then be used as initial
guess in a Kalman (or similar) more accurate filtering estimation process.

To simulate the real case of operative software, Earth and Moon positions and orientations are
computed using SPICE with specific frequencies and stored in an on-board database. This database
will be used to avoid the computational costs of obtaining high accuracy positions and attitudes of
Earth and Moon. To obtain all data with the same level of accuracy, the selection of the sampling
frequencies is chosen as a function of the repetition orbital and spinning periods. Interpolated
positions are obtained using a quadratic Bézier function, while interpolated attitudes are obtained
with a linear quaternion interpolation.

A simulated trajectory has been used to validate the estimation process, obtained using the GSFC-
GMAT software, which is consistent with SPICE. All the estimation process is performed in Earth-
centered J2000 inertial reference frame.

SIMULATION

To test the validity of the algorithm, a simulation environment has been created in MATLAB.
This relies on two external sources for the necessary data; the information about planetary motion
and orientation (namely of Earth and Moon) are generated with the SPICE toolkit developed by
NAIF at JPL, and are used as “true” measurements, while the spacecraft trajectory is generated via
the General Mission Analysis Tool (GMAT), developed by NASA. Both these programs compute
the planetary motions using the same ephemeris database, compiled by NASA, which ensures the
results will be consistent.

Generating the measurements with SPICE

The SPICE toolkit is an ancillary information system that provides scientists and engineers the
capability to include space geometry and event data into mission design, science observation plan-
ning, and science data analysis software. It consists of a series of C++ routines accessible via a
MATLAB interface; for the present paper, SPICE is used to generate a database of the following:

• position and velocity vectors of the Sun, in the J2000 reference frame centered on Earth (Ŝ).

• position and velocity vectors of the Moon, in the J2000 reference frame centered on Earth
(M̂ ).

• orientation of the Moon, w.r.t. the J2000 reference frame, expressed as a quaternion (q̂M ).

• orientation of the Earth, w.r.t. the J2000 reference frame, expressed as a quaternion (q̂E).

The database can cover any time interval up to the year 2050. Since characteristic periods of the
celestial bodies of interest are very different, in order to save memory and computational time,
data relative to Moon and Sun are generated with a time step multiple of the one used to sample
Earth’s quaternion. Specifically, the Sun’s position and velocity are sampled with ts = 365 te
and the Moon’s quaternion is sampled with tm = 27 te. The Moon’s position and velocity are
however sampled at the smallest time step, to ensure the highest precision possible. It is important
to emphasize how the database is compiled off-line and accessed as requested during the mission.

2



To this end a separate routine has been designed to search the database for an entry associated with
a specific Julian date and to return the requested data point. Whenever the entry is not readily
available, it is generated with a proper interpolation process.

Time-linear Position Interpolation

The position vectors of Moon and Earth are stored in the mission database at discrete time steps.
Image processing and trajectory estimation processes require estimation of position at any time.
Therefore, data points not originally present in the database are interpolated, to obtain position
and velocity vectors, [E{r(t)}, E{v(t)} ], at time t, using the knowledge of position and velocity
vectors, [ ri,vi ] and [ rf ,vf ], at times ti and tf , respectively, where ti ≤ t ≤ tf .

A time-linear quadratic nonrational Bézier curve is adopted to interpolate. This implies that
position and time are evolving according to{

r = ri (1− s)2 + 2r1 (1− s)s+ rf s
2

t = ti (1− s) + tf s
(1)

where s is the implicit parameter, and s = 0 for t = ti and s = 1 for t = tf . The velocity can be
written as

v =
dr

ds

(
dt

ds

)−1
=

2

tf − ti
[ri (s− 1) + r1 (1− 2s) + rf s] (2)

To be consistent with Eq. (2) the end velocities, vi and vf , have the expressions

vi =
2

tf − ti
(r1 − ri) and vf =

2

tf − ti
(rf − r1) (3)

from which we obtain an average estimation of the middle control point r1

r̄1 =
1

2
(ri + rf ) +

tf − ti
4

(vi − vf ) (4)

Therefore, the position and velocity estimation problem becomes{
r(t)
v(t)

}
=

 ri(1− s)2 + 2r̄1(1− s)s+ rfs
2

2

tf − ti
[ri(1− s) + r̄1(1− 2s) + r2f ]

 where s =
t− ti
tf − ti

(5)

and where r̄1 is provided by Eq. (4). It is worth nothing that while this interpolation procedure uses
the same family of Bézier curves that will later be used to approximate the spacecraft’s trajectory,
its application here is completely independent from later discussion.

Time-linear Quaternion Interpolation

For the quaternion data the constant pure spin condition has been adopted. This is the equivalent
of linear interpolation on the surface of a 4 dimensional unit-sphere. Given two quaternions q̂i and
q̂f , any intermediate quaternion can be found easily using:

q̂(t) =
1

sinα
(q̂i sinαi + q̂f sinαf ) (6)

where sinα =
√

1− (q̂T
i q̂f )2, αi =

tf − t
tf − ti

α, and αf =
t− ti
tf − ti

α.
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The tradeoff between a small, portable database and an accurate interpolation has been studied so
to find the best compromise. To this end, several databases with different sample times have been
generated and then interpolated to match a “standard” database with a sample time of 10 mins. Some
of the results are illustrated in the following plots. The angle between “true” and interpolated values
of Sun direction as been taken as a measure of the relative error, according to α = cos−1(ŝi · ŝr).
Similarly, the relative error between quaternions has been taken equal to φ = 2 cos−1(q̂i · q̂r). In
the previous formulas, the subscript “r” indicates a reference value, and the subscript “i” indicated
an interpolated value.

Figure 1. Sun direction error Figure 2. Moon position error

Figure 3. Moon quaternion error Figure 4. Earth quaternion error

Generating the trajectory with GMAT

GMAT propagators can take into account gravitational effects of higher order due to Earth, Moon
and Sun, together with Solar Radiation Pressure. Output from GMAT can later be read by MATLAB
and integrated with information provided by SPICE. As GMAT uses an optimized integration step,
a manual procedure has been implemented to obtain data points equally spaced in time.
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Figure 5. Earth-to-Moon trajectory simulated by GMAT. Circled in yellow are the
segments used for the testing.

DATA ACCURACY ESTIMATION

According to SPICE, Moon is a sphere and the Earth an axial-symmetric ellipsoid. This means
that the Moon’s hard-edge contour is a circle while the Earth’s one is an ellipse. The data obtained
by image processing are:

Moon • Center [r, c] or unit-vector, b̂,

• Axis of symmetry, ŝ,

• Radius, [R]

Earth • Center [r, c] or unit-vector, b̂,

• Semi-major axis, a,

• Ellipse orientation, ϑ.

Reference [1] describes the image processing to estimate the body center direction (corrected by
the offset for the Earth), as well the radius (Moon) or the semi-major axis (Earth). These estimations
have been performed by iterative least-squares using circular (Moon) and elliptical (Earth) sigmoid
functions. To quantify how accurate they are, Monte Carlo tests can be done using image transla-
tions and rotations. This is implemented following Ref. [2], whose theory is summarized in the next
two sub-sections.

Image translation

Consider a given image, for which the estimation of the parameters (e.g., Moon direction, b̂m,
and Moon radius, Rm) has been performed, as described in Ref. [1]. This is a single image and, in
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order to quantify the standard deviations of the errors associated with these estimations we do need
1) the true value of these parameters and 2) statistical estimation of them under identical conditions,
namely, same observer and observed positions! Obviously, this is not possible. Therefore, the
accuracy must be computed by a different approach, which is described in these two subsections.

The body center coordinates and radius are provided at fraction of pixel level of accuracy. Let
consider to translate this image by δr rows and δc columns, not necessarily an integer number of
pixels. If the translation is accurate, then by applying the image processing to the translated image
we obtain measurements whose values differ from the expected. Meaning, the direction to the body
center should be estimated by δr and δc variations while the radius should be the same. The new
estimated values differ from the expected because of: 1) the image processing precision (what we
want to quantify) and 2) the image translation precision. If the image translation is performed with
zero-mean noise, then, from statistical point of view, Monte Carlo tests performed using various
values of δr and δc provide the image processing precision. Same idea stands for image rotation.
Therefore, particular attention must be given to perform rotation and/or translation with zero-mean
noise.

Therefore, a fraction of pixel continuous translation algorithm is adopted and explained here.
The translation of an image by a non integer number of pixels can be performed in two steps: a
translation of an integer number of pixels, followed by a translation of a fraction of pixel. The
first operation is simple since the image is stored in a matrix; it is sufficient to move the matrix
elements of the given integer number of rows and columns, while the case of fractional translation
the problem is more complicate.

Figure 6. Translation model Figure 7. Rotation model

Let−1 < fR < 1 and−1 < fL < 1 be the fractional translations in row and column, respectively
(see Fig. 6). In this case there is a partial overlap of four neighboring pixels over the “new” pixel
(i, j); for positive translations, the overlapping pixels are (i − 1, j − 1), (i − 1, j), (i, j − 1), and
(i, j). The intensity of pixel (i, j), after translation, can be computed as a weighted sum of four
contributions

Mn(i, j) = Mo(i− 1, j − 1)fRfL +Mo(i− 1, j)(1− fR)fL + (7)

+Mo(i, j − 1)fR(1− fL) +Mo(i, j)(1− fR)(1− fL)
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where Mn(i, j) and Mo(i, j) are the gray tone of the (i, j) pixel in the translated and original
images, respectively. Using Eq. (7) for every pixel in the original image, and rounding the results
to the nearest gray levels, we obtain the translated image. A consequence of analog translation
is a smoothing effect, due to the distribution of pixel intensities on the neighboring pixels. This
gray tone redistribution based on overlapping areas is exact if the gray tone level for each pixel is
constant inside the pixel. This is certainly a zero-mean approximation.

Image rotation

As for image rotation algorithm, let us consider the (x, y) pixel gray tone a lumped mass of
weight M centered at the pixel center (position P in Fig. 7). Consider the rotation performed about
the center O(0, 0) by the counterclockwise angle ϕ. Then, the (x, y) pixel mass is moved into the
new position (x′, y′). Then, we have the following formulae{

x′ = x cosϕ− y sinϕ
y′ = x sinϕ+ y cosϕ

(8)

being (x, y) the coordinates of the pixel center P , with respect to O. The angle ϕ is assumed
positive if counterclockwise.

The original pixel “affects” four pixels in the rotated image; Let (m,n), (m+ 1, n), (m,n+ 1),
and (m+ 1, n+ 1) be their coordinates, where m = bx′c, and n = by′c, and where buc denotes the
maximum integer less than u. The pixel “mass” M (i.e. the gray tone) is distributed among the four
pixels, so that the center of gravity of the resulting four masses coincides with the rotated center P ′.
Let, {

α = m+ 1− x′
β = n+ 1− y′ (9)

then, the new gray levels due to the rotation of P , are computed as follows. First, we distribute the
mass M in the horizontal direction{

Mf (m+ 1, n+ 1) = Mf (m+ 1, n) = (1− α)M
Mf (m,n+ 1) = Mf (m,n) = αM (10)

where Mf indicates the image after the horizontal distribution. Then, we distribute the mass in the
vertical direction

Ms(m,n+ 1) = Mf (m,n+ 1)(1− β) = Mα(1− β)
Ms(m+ 1, n+ 1) = Mf (m+ 1, n+ 1)(1− β) = M(1− α)(1− β)
Ms(m,n) = Mf (m,n)β = Mαβ
Ms(m+ 1, n) = Mf (m+ 1, n)β = M(1− α)β

(11)

where Ms indicates the image matrix after the vertical distribution. The sum of the four masses
must be preserved, Mα(1− β) +M(1−α)(1− β) +Mαβ +M(1−α)β = M. This validates the
correctness of the above formulae (equal to the “mass” of the rotated pixel). The coordinates of the
center of gravity of the four masses are{

xg = m+ 1− α = x′

yg = n+ 1− β = y′
(12)

Adding the effects of every pixel in the original image, and rounding the results to the nearest gray
levels, we obtain the rotated image.
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Distance estimation error

Information about the distance to the observed body can be derived from the body radius evalua-
tion. This is shown in Fig. 8, where r is the body observed radius (mm), f is the lens focal length
(mm), D is the distance to the body (km), and R the body radius (km).

r

f
=

R√
D2 −R2

(13)

by performing the derivative it is possible to quantify the error associated with the distance estima-
tion using the computed body radius

dr

dD
= − f RD

(D2 −R2)3/2
→ σ2D =

(D2 −R2)3

f2R2D2
σ2r (14)

Figure 8. Distance estimation sensitivity geometry

Figure 9. Distance estimation sensitivity for various radius estimation accuracy values
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TRAJECTORY ESTIMATION USING NONRATIONAL BÉZIER FUNCTIONS

Gooding’s IOD method [3] provides, in general, better performances than most alternative meth-
ods. This is because Gooding’s method is based on the Lambert problem, which is a known Two-
Point Boundary Value Problem (TPBVP), while most of the other methods can be considered falling
into the Initial Value Problem (IVP) category. These two approaches have both different complexity
and different obtained accuracy.

In general, an IVP is easy to solve but sometimes the solutions provided are not very accurate.
This is because all the information is concentrated in the starting point∗. Small variations in initial
conditions (i.e. at the same point) may cause huge variations in the solution’s accuracy or even
chaos. On the other hand a TPBVP relies on information provided in two distinct points, initial
and final. This makes them usually more accurate and, more importantly, less sensible to small
perturbations of the initial data; on the other hand, they are harder to solve than an IVP.

Based on the above discussion, this paper investigates the use of Bézier curves to approximate
trajectories because, in these curves, the information is also provided at intermediate points (i.e.,
control points) along the curve, and not only at the endpoints, as in TPBVP. This is expected to
increase stability and accuracy of the solution.

In addition, simulate cislunar trajectories requires numerical integration of a multi-body problem
under solar pressure perturbation which is difficult to model as it depends on the unknown spacecraft
attitude and on the unknown solar activity. Note that, even if the solar pressure is in general a weak
perturbation its contribution cannot be neglected due tot he typical travelling times on cislunar
trajectories. On the other hand, this approach based on Bézier curves is completely independent by
any dynamic consideration, which means it has not only a much lighter computational load, but it is
also universally applicable to any type of trajectory, as long as a sufficient number of measurements
is known. In the following we investigate the capability to estimate a cislunar trajectory with “Bij”-
curves, where “i” is the degree of the Bézier curve used to describe the position vectors and “j” is
the degree of the Bézier curve used to describe the time.

Trajectory Best Fitting using Nonrational Bézier Functions

A nonrational Bézier function can be written as linear combination of Bernstein polynomials,

r =
n∑

k=0

ckB
n
k (s) where Bn

k (s) =

(
n

k

)
sk(1− s)n−k, s ∈ [0, 1]. (15)

By using the binomial theorem, a generic Bernstein polynomial can be rewritten:

Bn
k (s) =

(
n

k

)
sk

n−k∑
j=0

(
n− k
j

)
(−s)n−(k+j)

 =

(
n

k

)n−k∑
j=0

(
n− k
j

)
(−1)n−(k+j)sn−j

 .
(16)

Therefore, any nonrational Bézier function has an expression of the form:

r =

n∑
k=0

ck(n
k

)n−k∑
j=0

(
n− k
j

)
(−1)n−(k+j)sn−j

 . (17)

∗A similar criticism can be addressed to the least-squares problem of fitting data points using truncated Taylor series.
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Given m points along a curve and the corresponding values of the parameter s Eq. (17) can be
rewritten in a more compact form using linear algebra:

R = CMS (18)

where


R = [ r1, r2, . . . , rm ]

C = [ c0, c1, . . . , cn ]
and S =


sn1 sn2 · · · snm−1 snm
sn−11 sn−12 · · · sn−1m−1 sn−1m

...
...

. . .
...

...
s1 s2 · · · sm−1 sm
1 1 · · · 1 1

 (19)

and the elements of matrix M are of the form M(k, j) =
(
n
k

)(
n−k
j

)
(−1)n−(k+j), j = 1, . . . , n−1. It

follows from this formula that M(k, j) = M(j, k), i.e. M is a symmetric matrix, and also M(k, j) =
0 whenever k + j > n+ 1. Thus, for instance for a quadratic Bézier polynomial the expressions of
M and M−1 are

M2 =

 1 −2 1
−2 2 0

1 0 0

 and M−12 =

0 0 1
0 1/2 1
1 1 1

 , (20)

while for a cubic polynomial

M3 =


−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0

 and M−13 =


0 0 0 1
0 0 1/3 1
0 1/3 2/3 1
1 1 1 1

 (21)

From Eq. (17) the control points can be estimated with a Least Squares approach:

C = RST (SST)−1M−1 (22)

Distribution of the parameter

To solve Eq. (22), a distribution of the parameter s corresponding to the measurements has to be
assumed. If the data is provided at constant time step, uniform distribution can be used:

sk =
k − 1

n− 1
where k ∈ [1, n]. (23)

Another valid approximation relates the distribution with the relative distance of subsequent data
points, as per the following:

{
s1 = 0
sm = 1

and sk =

k∑
j=2

|rj − rj−1|

m∑
j=2

|rj − rj−1|
where k ∈ [2,m− 1]. (24)
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In general, however, solving Eq. (22) with either distribution will lead to points displaced from the
actual measurements, by a value of:

dk = |CMsk − rk| k ∈ [1,m]. (25)

where sk is a vector of all the powers of sk. Obviously, changing a certain sk will only affect the
value of the corresponding dk. Thus, it is possible to find a new set of parameters by minimizing an
aptly chosen cost function Lk, point by point:

Lk = (CMsk − rk)T(CMsk − rk) (26)

Lk = sT
kMCTCMsk − 2rT

kCMsk + rT
krk (27)

By applying the necessary condition for a stationary point:

dLk

dsk
=
dLk

dsk
· dsk
dsk

= 2 sT
kMCTCM

dsk
dsk
− 2rT

kCM
dsk
dsk

= 0 (28)

which implies

F (sk) = sT
kMCTCM

dsk
dsk
− rT

kCM
dsk
dsk

= 0 (29)

Eq. (29) is a polynomial in s which can be solved for instance via Newton-Raphson method, given
an initial guess s̄k. Indeed:

s∗k = s̄k −
F (s̄k)

F ′(s̄k)
(30)

where

F ′(sk) =
dF (sk)

dsk
=
dsT

k

dsk
MCTCM

dsk
dsk

+ sT
kMCTCM

d2sk
ds2k

− rT
kCM

d2sk
ds2k

(31)

In Eq. (25 - 31), the vector sk and its derivatives have the following expressions:

sk =



snk
sn−1k

...
sk
1


dsk
dsk

=



nsn−1k

(n− 1)sn−2k
...
1
0


d2sk
ds2k

=



n(n− 1)sn−2k

(n− 1)(n− 2)sn−3k
...
0
0


(32)

Minimizing Eq. (26) independently for each k ∈ [2,m − 1] (the first and last point are left un-
changed, to ensure the parameter always spans the range [0, 1]), leads to a new parameter distribu-
tion, that can in turn be used in Eq. (22) to find a new set of control points. This process can be
iterated multiple times until a certain convergence criteria has been met, for instance a measure of
the distance between measured and estimated trajectory points. Schematically:
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Choosing the optimal degree

Depending on the shape of the actual trajectory, Bézier curves of different degree provide different
levels of approximation. Although an explicit rule has not been found, and could be subject of
further research, in general trajectories of higher curvature require polynomials of higher degree.
On the other hand, the maximum degree usable for a given segment is limited by the number of data
points available, namely:

n =
⌈m

3
− 1
⌉
. (33)

If n doesn’t satisfy this relation, Eq. (22) cannot be properly defined. Moreover, as n increases
the matrix SST becomes ill-conditioned and numerical issues arise. An exploratory analysis has
been conducted to find the optimal degree for each of the segments, using the mean error along the
trajectory as a performance index. Results are illustrated in Fig. (10), (11) and (12).

The first segment(Fig. (10)), having the greatest curvature, is better estimated with a higher
degree. This result persists when noisy measurements are taken into account. Segments 2 and 3
(Figg. (11) and (12)) have a much less pronounced curvature and therefore are best approximated
by polynomials of 5th and 6th degree respectively. However, when considering noise, the results are
dramatically different; this is due to the curvature being so small that it is completely masked by the
noise.

Non-linear Time Best Fitting

In the previous discussion, while the spacecraft trajectory was assumed to be a Bézier curve
of any degree, the relationship between time t and parameter s has been considered linear, in the
form t = ti (1 − s) + tf s, which can be seen as a Bézier polynomial of degree 1 . This is a
reasonable choice when measurements have been taken evenly spaced in time. However, non-
linear time models better accommodate velocity variations along the trajectory. Therefore, higher
degree curves can be used to describe time, and not necessarily of the same degree used for the
trajectory. In principle, the two curves exist in different dimensional spaces, with the “time curve”
being effectively one dimensional. However, they still are related via the parameter s, because
each measurement is associated with a time instant. Therefore, upon reaching convergence in the
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Figure 10. Approximation errors of Bézier curves of different degrees for the first
segment of the trajectory

estimation of the sk, the control points τ for the “time curve” are easily found by applying the same
procedure as above:

t̃ = τMpSp → τ = t̃ST
p (SpST

p)
−1M−1p (34)

where the matrix Sp contains all the powers of the parameter values and the subscript p indicates
the degree of the polynomial, which can be progressively increased until the distance between the
measured and estimated times is minimal:

min
p
|t̃− t̂|2 (35)

and therefore find an optimal degree for the “time curve”.

Because of the monotonic behavior of time, these control points must satisfy the inequality

ti < τ1 < · · · < τn−1 < tf . (36)

Estimator model B21 B22 B31 B32 B33 . . . Bij
Number of variables 9 10 12 13 14 . . . 3i+ j − 2

Table 1. Number of optimization variables of Bézier trajectory estimators

It is worth emphasizing that any of the τk certainly lie between ti and tf and are expressed in
seconds, but are not times associated with any specific point of the trajectory. These are not “times”
but are control points (expressed in seconds) associated with the time description of the trajectory.
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Figure 11. Approximation errors of Bézier curves of different degrees for the second
segment of the trajectory

Time-varying Bézier Best Fitting

Another way of dealing with non-linear time, is to extend nonrational Bézier function to include
times, as follows

X
4×m

=

[
r1 r2 · · · rm−1 rm
t1 t2 · · · tm−1 tm

]
= C

4×(n+1)
M

(n+1)×(n+1)
S

(n+1)×m
(37)

where

S
(n+1)×m

=


0 sn2 sn3 · · · snm−2 snm−1 1

0 sn−12 sn−13 · · · sn−1m−2 sn−1m−1 1
...

...
...

. . .
...

...
...

0 s2 s3 · · · sm−2 sm−1 1
1 1 1 · · · 1 1 1

 (38)

and (note that here 00 = 1) †

C
4×(n+1)

=

[
c0 c1 · · · cn−1 cn
τ0 τ1 · · · τn−1 τn

]
where

{
τ0 = t1

τn = tm
(39)

Equation (37) consists of (4m − 2) scalar equations, while the unknowns are: 3(n + 1) for the
position control points, (n − 1) for the time control points, (m − 2) for the Bézier parameters.
Therefore, the Bézier best fitting problem admits solution if 4m− 2 ≥ 4n+m, that is, if

m ≥
⌈

4n+ 2

3

⌉
(40)

†Note that, since s1 = 0 and sm = 1, the two identities, τ0 = t1 and τn = tm, come out automatically.
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Figure 12. Approximation errors of Bézier curves of different degrees for the third
segment of the trajectory

This means that for a quadratic (n = 2), m ≥ 4 points are needed, for a cubic m ≥ 5, for a quartic
m ≥ 6, for a quintic m ≥ 8, etc. With this approach, however, the “time curve” is forced to be the
same degree as the trajectory curve, which might be suboptimal, depending on the specific problem.

Iterative Batch Least-Squares

The standard batch least-squares orbit determination technique [5] is used as a mean to assess
the performance of the proposed method. Rather then processing the Moon direction and Radius
separately, a single derived measurement is obtained. From the apparent Moon radius and the focal
length, the “measured” distance from the Moon ρk is deduced. Then a measurement ỹk of the
vehicle position from the center of the Moon is calculated

ỹk = f
R$
R̃k

C T
k b̃k (41)

where R$ is the Moon radius, f is the camera focal length, and Ck is the J2000-to-camera attitude.

To obtain the batch least-squares solution we start from an initial estimate x̂T
0 = { r̂T

0, v̂
T
0 } and

propagate it forward to each measurement time using Earth and Moon’s central gravities. Together
with the state we integrate the state transition matrix Φ(tk, t0) that takes linearized state deviations
from the time of the initial estimate to the time of the k-th measurement. At each measurement time
we accumulate the current observation:

H̃k =
[
I3×3 03×3

]
(42)

Hk = Φ(tk, t0) (43)

Λ = Λ +H T
kHk (44)

N = N +H T
k [ỹk − (rmk − r̂k)] (45)
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where Λ and N are initialized at zero, H̃k is the partial of the measurement with respect to the
current state, Hk is the partial of measurement with respect to the initial state, r̂k is the estimated
position of the vehicle with respect to the center of Earth and rmk is the position of the Moon also
with respect to Earth.

After all measurements are accumulated the initial estimate is updated as:

x̂0 = x̂0 + Λ−1N (46)

This procedure can be iterated multiple times.

Least-squares Trajectory Estimate using Bézier Function

The direction to the Moon center, b̃k (in camera reference frame), and the apparent Moon radius,
R̃k, evaluated at time tk, are measured from image processing. These, together with Eq. (13), can be
combined to obtain the satellite-to-Moon vector as in Eq. (41). This vector is the difference between
the the Earth-to-Moon vector, rMk, and the satellite position estimated by the Bézier function,
rk(c, sk). Therefore, the trajectory estimation using Bézier functions consists of finding the set of
n+ 1 control points that minimizes the cost function involving all m measurements

L =
1

2

m∑
k

σ−2k (ỹk − ŷk)2 =
1

2

m∑
k

σ−2k [ỹk − rMk + rk(c, sk)]2 . (47)

where σ−2k is the inverse variance of the measurement vector, ỹk, which is estimated by translation
and rotation as explained in the previous section. Since rk(c, sk) is linear in the control points, the
minimization problem consists of n+ 1 equations, ∂L/∂ci = 0, where i = 0, · · · , n

m∑
k

σ−2k [ỹk − rMk + rk(c, sk)]
∂rk
∂ci

= 0, (48)

where
∂rk
∂ci

=

(
n

i

)
sik (1− sk)n−i. (49)

Numerical results

The following results have been obtained by taking segments on a trajectory between Earth and
Moon generated with GMAT. The performance of the method described in this paper is compared
with an Iterative Batch Least Square which propagates the equations of motion of a three-body
problem.

CONCLUSIONS

Bézier curves appear to be a valid model to approximate cislunar trajectories. As seen in Fig.
(13) to Fig. (15), the average error along the trajectory is lower or comparable with the Iterative
Least Square method. However, there are three major advantages Bézier functions have over the
Iterative LS method:

• While the Iterative LS requires an “initial guess”, which can affect the convergence, Bézier
curves only need a sufficiently large number of measurements to generate a consistent solu-
tion.
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Figure 13. Comparison between Batch Least Square and Bézier curves. First trajec-
tory segment, n = 6

Figure 14. Comparison between Batch Least Square and Bézier curves. Second
trajectory segment, n = 2
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Figure 15. Comparison between Batch Least Square and Bézier curves. Third tra-
jectory segment, n = 2

• The method proposed in the paper has a much lower computational cost than an Iterative
Least Square. This is because the only computationally intensive operation is the inversion
of a matrix of integers, namely M, which needs to be done only once even if the whole
procedure is iterative. Also, the convergence of the Newton-Raphson method to find the
optimal parameter distribution has been extremely fast in all the simulations.

• Lastly, and most important, Bézier curves don’t need any knowledge of the physic laws affect-
ing the system, which not only means at no point in the computation process it is necessary
to introduce equations of motion of any kind, but also this method is completely generic and
can be potentially used to estimate trajectories in different class of problems, for instance
interplanetary missions or re-entry trajectories.
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