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A NOVEL SEQUENTIAL MONTE CARLO FILTER WITH GAUSSIAN
MIXTURE MODELS AND KERNEL DENSITY ESTIMATION

Sehyun Yun*, Renato Zanetti† and Brandon A. Jones‡

In this paper, a modified kernel-based ensemble Gaussian mixture filtering (EnGMF) is
introduced to produce fast and consistent orbit determination capabilities in a sparse mea-
surement environment. The EnGMF is based on kernel density estimation (KDE) to com-
bine particle filters and Gaussian sum filters. This work proposes using Silverman’s rule
of thumb to reduce the computational burden of KDE. Equinoctial orbital elements are
used to improve the accuracy of the KDE bandwidth parameter in the modified EnGMF.
Through numerical simulation, the proposed implementation is compared to state-of-the-
art approaches in terms of accuracy, consistency, and computational speed.

INTRODUCTION

In recent years, there has been an increasing interest in tracking an ever-growing number of space ob-
jects (SOs) for collision avoidance and space domain awareness.1–3 As very large, low earth orbit (LEO)
constellations are being developed and launched, the risk of collision in LEO keeps increasing because of
a high density of SOs in this region. The high number and density of LEO SOs require accurate orbit
determination and data association.4 Currently, only a limited number of radar-based surveillance sensors
are available and used to estimate the state of an SO in LEO. The current approach to maintaining a LEO
catalogue is not scalable to tens of thousands of spacecrafts. The solution of this problem is either adding
more hardware (more tracking stations and/or clusters of supercomputers) or improving the computational
efficiency of tracking and data association software used to maintain the catalogue.

A software-only solution is one in which the number of available measurements per SO is reduced because
the current surveillance network is tasked to acquire data from many more SOs. It requires an efficient data
association algorithm and an estimator able to extract as much information as possible from the sparse data.
This paper addresses the latter, and proposes an accurate and computationally fast nonlinear estimation
algorithm for orbit determination.

For linear systems with linear measurements, the well-known Kalman filter5 provides a globally optimal
solution, i.e., it extracts as much information from the data as possible (in a minimum mean square error
sense). In the presence of nonlinearities (either in the dynamics, the measurements, or both), a nonlinear
filter is able to produce a more accurate estimate than a linear one, i.e., extract more information from the
data. Radar measurements of range, range-rate, and angles to an SO are inherently nonlinear. A nonlinear
filter, therefore, will outperform a linear filter such as the extended Kalman filter (EKF)6 or unscented
Kalman filter (UKF)7 even in the presence of near-linear dynamics.
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To cope with the sparse data problem, this paper compares two nonlinear algorithms: the adaptive entropy-
based Gaussian mixture information synthesis (AEGIS)8 and the kernel-based ensemble Gaussian mixture
filtering (EnGMF).9 This work proposes a new modification to EnGMF to greatly improve its computational
complexity. Two implementations of the UKF are also compared to the proposed approach, representing the
SO with both Cartesian and equinoctial coordinates.10

For linear measurements and dynamics, the UKF reduces to the Kalman filter and is the optimal output
of all linear estimators regardless of the probability distributions (in a minimum mean square error, MMSE,
sense). The UKF is typically more robust to nonlinearities than the EKF7 but can still fail to produce
an adequate estimate in the case of high nonlinearities. The nonlinearities of orbital dynamics are easily
mitigated by choosing to represent the SO’s state with an appropriate set of orbital elements, for example
equinoctial elements. Changes in these elements, specifically the angle quantity, are linear, and variations
due to nonlinear effects are relatively small. This choice of coordinates, therefore, allows for accurate and
computationally inexpensive long time propagations of the mean and covariance matrix,11, 12 for example
when using the unscented transformation (UT). The price to pay for linear dynamics is typically an even
more nonlinear measurement model, which may cause UKF divergence in a scarce-measurement environ-
ment, as shown in the numerical results section of this paper. In measurement-rich environments, when long
propagations are followed by dense measurements arcs, a batch least-squares approach is often the preferred
orbit determination solution,13 as it allows to extract more information from nonlinear measurements than
linear sequential filters. After processing the measurement batch, the mean and covariance of the estimate
can be propagated with the UT to start a new iteration. Batch least squares does not provide full informa-
tion about the probability distribution function and it only returns the mean and covariance matrix and the
underlying distribution is typically assumed Gaussian, hence they work best when many measurements are
available such that the resulting uncertainty is close to Gaussian. Nonlinear recursive filters, on the other
hand, approximate the optimal MMSE estimator, which has the lowest square estimation error (on average),
and provides a full description of the underlying PDFs. AEGIS and our proposed modification to EnGMF
are two examples of nonlinear filters.

While this work focuses on the estimation problem, adding data association to a single-target nonlinear
filter is a well-studied problem. Data association and collision detection benefit from full knowledge of
the PDF, which can be approximated with AEGIS and the EnGMF but inevitably results in a Gaussian
assumption for linear estimators. As long as the PDF remains approximately Gaussian after measurements
are incorporated, linear filters produce excellent performance. Ref.,14 for example, assumes that the initial
orbit determination solution is an estimate with a Gaussian distribution, and employs modified equinoctial
elements to propagate the state and associate a sequence of observations to an SO using the Mahalanobis
distance.

The AEGIS method is based on the standard Gaussian sum filter (GSF).15, 16 The GSF is a nonlinear
estimator for nonlinear systems and it has been applied to SO tracking applications.17, 18 To deal with mul-
timodal and non-Gaussian distributions, the GSF approximates the probability density functions (PDF) as
a Gaussian mixture model (GMM). The GSF provides a nearly optimal solution when enough components
are taken and each Gaussian component has a small enough covariance matrix such that the nonlinear dy-
namic and measurement functions can be accurately approximated to linear functions in the support of each
Gaussian component. In the presence of a Gaussian prior and a nonlinear measurement, the GSF outper-
forms linear filters when the prior is approximated by many Gaussian of smaller covariance such that the
measurement is approximately linear in their support.

One of the limitations of the standard GSF is that the weights of the Gaussian components remain the
same during nonlinear propagations. Several studies recently have been proposed to address this issue
and improve the standard GSF algorithm to better account for nonlinear dynamics.8, 19, 20 One of these
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approaches is AEGIS, which splits the Gaussian components to reduce the effects of nonlinearities of a
dynamical system during the prediction of state uncertainty.8

Another approach to nonlinear filtering is sequential importance sampling with resampling (SISR), com-
monly known as particle filters (PFs).21 PFs are known to suffer from degeneracy with near-deterministic
dynamics, i.e., with little process noise. As orbital dynamics is well characterized, a particle filter implemen-
tation of orbit determination inevitably requires low process noise. Modifications have been investigated
to improve the standard SISR methods such as the bootstrap particle filter (BPF), auxiliary particle filter
(APF), and regularized particle filter (RPF)22 by combining particle filters and GSF.9, 23–26 For example, the
sequential Monte Carlo filtering with Gaussian mixture model (SMCGMM) proposed in23 assumes that each
particle of the pre-propagation distribution to be a Gaussian component having a zero or small covariance
matrix. Refs.24 and25 integrate a PF with a clustering algorithm (e.g., K-means algorithm or expectation-
maximization (EM) algorithm) to approximate the prior distribution with a GMM. Although clustering to
form the GMM provides an accurate solution for a highly nonlinear system, it is computationally expensive
and not of practical use for tracking large LEO constellations.

Other examples of hybrid PF/GSF algorithms include Refs.9 and26 which approximate each propagated
particle as a Gaussian component with a non-zero covariance matrix calculated by bandwidth selection for
kernel density estimation (KDE). KDE is a non-parametric technique to estimate the PDF of a random
variable.27 The KDE algorithm with a Gaussian kernel is similar to the EM clustering algorithm in that
they construct a GMM using the particles. However, in the KDE algorithm, every particle is considered as
a Gaussian component to establish a GMM whereas EM clustering algorithm groups several particles into
each Gaussian mixture components. An adaptable bandwidth selection suffers from a high computational
cost similar to the clustering algorithms presented in24 and.25

In this paper, the EnGMF algorithm is modified to efficiently track SOs in LEO with short and sparse
observation data. A key element of the EnGMF algorithm is the determination of the covariance matrix of
each Gaussian component in a GMM. The covariance matrix is determined by the bandwidth parameter of a
kernel function. Although the optimal bandwidth parameter can be obtained using a data-driven method,28, 29

this approach is computationally expensive. Alternatively, we can compare the simulation results of a system
using a range of the bandwidth parameter26 and tune this parameter according to the system. In this paper,
we propose an approach to achieve a near-optimal bandwidth parameter with a low computational cost for
orbit determination with sparse observation data. We achieve this by computing the bandwidth of a Gaussian
kernel in the KDE algorithm with Silverman’s rule of thumb30 to reduce the KDE computational burden.

The remainder of this paper is organized as follows. First, the dynamics and measurement models are
described and the coordinate systems are presented. Then, the two nonlinear estimation techniques, the
AEGIS and a modified EnGMF, are introduced in section III. In section IV, simulation results are shown
using the proposed algorithms followed by some concluding remarks on the methodology and results.

SYSTEM MODELS

Dynamics Model

The inertial position and velocity of an SO are denoted by rI = [x y z]T and vI = [vx vy vz]
T. The

orbital dynamics of an SO in Earth-Centered Inertial (ECI) coordinates are given by[
ṙI

v̇I

]
=

[
vI

− µ
r3
rI + aINS + aI3B + aIdrag + aIsrp

]
(1)

where µ is the Earth’s gravitational parameter and r is the Euclidean norm of rI . aINS is the gravitational
perturbation due to non-spherical effect of the Earth gravity, aI3B indicates the third-body perturbations of
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the Moon and the Sun, and aIdrag and aIsrp represent the acceleration perturbation due to atmospheric drag
and solar radiation pressure (SRP), respectively. For this study, the EGM200831 gravity model is used for
the Earth and 70 × 70 degrees and order are applied for gravity modeling, and the planetary and lunar
ephemeris DE43032 is selected to compute the location of the Moon and the Sun.

The primary non-gravitational force acting on SOs in low earth orbit (LEO) is the drag force. The drag
acceleration due to atmospheric density relies upon the drag coefficient, the cross-sectional area of an SO
face perpendicular to velocity vector, and the height of an SO above the Earth’s surface. The acceleration
due to drag is then given by

aIdrag = −1

2
Cd

A

m
ρd‖vrel‖vrel (2)

where Cd is the drag coefficient, m and A are the mass and cross-sectional area of the SO, respectively, ρd
is the atmospheric density at altitude of the SO, ‖ · ‖ means the Euclidean norm, and vrel is the atmosphere-
relative velocity vector. For computing the atmospheric density, the exponential density model is employed
in this study.33

The acceleration due to SRP depends on the shape of an SO and the cannonball model, i.e., spherical
object, is assumed in this paper. The acceleration perturbation due to SRP is then given by

aIsrp = −SFACRu
I
sun

mc
(3)

where SF is the solar flux,m is the mass of the SO, c is the speed of light,CR is the coefficient of reflectivity,
uIsun is the unit vector pointing from the SO to the Sun in the ECI frame.

Measurement Model

Range ρrange and range-rate ρrangerate measurements along the line of sight (LOS) from a ground-based
radar sensor to an SO is provided. The relative position vector ρI = [ρx ρy ρz]

T between the SO and a
ground station rIS coordinatized in ECI is given by:

ρI = rI − rIS (4)

The error-free range measurement is given:

ρrange = ‖ρI‖ = ‖rI − rIS‖ (5)

By differentiating Eq. (5) with respect to time, the error-free range-rate measurement is obtained as follows:

ρrangerate =

(
rI − rIS

)T (
vI − vIS

)
‖rI − rIS‖

(6)

where vIS is the time rate of change of the ground station position vector with respect to the inertial frame.

Along with the range and range-rate, angle data in the form of right ascension α and declination δ are
measured to estimate the states of the SO. The error-free angle observation equations are described as fol-
lows:

α = tan−1
(
ρy
ρx

)
, δ = sin−1

(
ρz
‖ρI‖

)
(7)

All measurements are corrupted by zero-mean, Gaussian noise. In this study, light travel time delay and
measurement biases are not considered.
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Coordinate systems

The dynamic equations of the SO presented above are expressed in Cartesian coordinates, which results in
nonlinear differential equations. Alternatively, equinoctial orbital elements10 offer a near-linear dynamics.
The Keplerian motion is exactly linear, and nonlinearities arise only due to perturbations such as non-
central gravity and drag. The equinoctial orbital elements are expressed as functions of the Keplerian orbital
elements as follows:

a = a

h = e sin (ω + Ω)

k = e cos (ω + Ω)

λ0 = M0 + ω + Ω

p = tan (i/2) sin (Ω)

q = tan (i/2) cos (Ω)

(8)

where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the longitude of the ascending
node, ω is the argument of periapsis, and M0 is the mean anomaly.

ESTIMATION TECHNIQUES

This section reviews the UKF and AEGIS and introduces the proposed nonlinear estimation algorithms
to cope with the sparse data problem: a modified EnGMF.

Unscented Kalman Filter

The UKF approximates nonlinear functions with statistical linearization using a set of sigma points.34

The most common schemes to effectively calculate sigma points are to assume that all distributions are
Gaussian.7 Given an nx × nx error covariance matrix P xxk|k, we generate 2nx + 1 sigma points as follows:

Xk|k = x̂k|k11×(2nx+1) +
[
0nx×1,

√
nx + λSk

]
(9)

where nx is the dimension of the state, k is an integer that indicates the discrete time step, x̂k|k is the a
posteriori state estimate, 11×(2nx+1) is an indicator function,

Sk =

[(
P xxk|k

)1/2
−
(
P xxk|k

)1/2]
, (10)

(
P xxk|k

)1/2
is the square root of the P xxk|k such that P xxk|k =

(
P xxk|k

)1/2 (
P xxk|k

)1/2(T)
, and λ = α2(nx+κ)−nx

is a scaling parameter.35 The parameter α tunes the spread of the sigma points around x̂k|k and it is usually
set to a small positive number (10−4 ≤ α ≤ 1). κ is a secondary scaling parameter which is usually set to
3− nx. Based on the above sigma points, the corresponding weights are calculated as follows:

Wm
0 =

κ

nx + κ
, W c

0 =
κ

nx + κ
+ (1− α2 + β) (11)

Wm
j = W c

j =
0.5

nx + κ
, for j = 1, · · · , 2nx (12)
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where the parameter β is used to include prior knowledge of the distribution of x. With the above sigma
points and weights, the time update equations are expressed as follows:

Xj,k+1|k = fk(Xj,k|k), j = 0, · · · , 2nx (13)

x̂k+1|k =

2nx∑
j=0

Wm
j Xj,k+1|k (14)

P xxk+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Xj,k+1|k − x̂k+1|k

]T
+Qk (15)

where fk is the nonlinear dynamic function, x̂k+1|k is the a priori state estimate, P xxk+1|k is the a priori state
estimation error covariance, and Qk is the covariance matrix of the process noise νk. It is assumed that νk is
independent from the initial distribution of x. Using the propagated estimates x̂k+1|k and P xxk+1|k, a new set
of sigma points Xk+1|k and the corresponding weights are recalculated. The measurement update equations
are then expressed as follows:

Yj,k+1|k = hk+1(Xj,k+1|k), j = 0, · · · , 2nx (16)

ŷk+1 =

2nx∑
j=0

Wm
j Yj,k+1|k (17)

P yyk+1|k =

2nx∑
j=0

W c
j

[
Yj,k+1|k − ŷk+1

] [
Yj,k+1|k − ŷk+1

]T
+Rk+1 (18)

P xyk+1|k =

2nx∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Yj,k+1|k − ŷk+1

]T (19)

x̂k+1|k+1 = x̂k+1|k + P xyk+1|k

(
P yyk+1|k

)−1 (
yk+1 − ŷk+1

)
(20)

P xxk+1|k+1 = P xxk+1|k − P
xy
k+1|k

(
P yyk+1|k

)−1 (
P xyk+1|k

)T
(21)

where hk+1 is the nonlinear measurement function, P yyk+1|k is the measurement residual covariance, P xyk+1|k
is the cross covariance, andRk+1 is the covariance matrix of the measurement noise ηk+1. ηk+1 is assumed
to be independent from all other random quantities.

Adaptive Entropy-based Gaussian Mixture Information Synthesis

AEGIS uses an entropy-based method to detect nonlinearity of a dynamical system during the prediction
of state uncertainty and then applies a splitting technique to decrease the approximation error caused by
truncating the nonlinear functions of the system to low-order. The AEGIS method is based on the standard
GSF which is a nonlinear estimator. In the GSF, non-Gaussian PDFs are approximated as a GMM as follows:

p(x) =
N∑
i=1

ω(i)n(x;µ(i), P (i)) (22)

where x is a random variable, p(x) is the PDF of x,N is the number of all Gaussian components, n(x|µ, P )
represents the Gaussian PDF with mean µ and covariance P ; and µ(i), P (i), and ω(i) are the means, covari-
ance matrices, and weights of the ith Gaussian component. The PDF normalization and positivity properties
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lead to the following constraints on the weights:

ω(i) ≥ 0, ∀i
N∑
i=1

ω(i) = 1 (23)

The performance of the GSF mainly depends on both the number and the weights of the components of a
GMM; however, both of them are held constant during the propagation step. To improve the standard GSF
algorithm to better adapt to nonlinearities of the system, the AEGIS approach allows for the modification of
the Gaussian components over the propagation step based on two main mechanisms.

The first step of AEGIS is to monitor the nonlinearity of the dynamics using a property derived from
the differential entropy for linearized dynamical systems. The differential entropy of a continuous random
variable x is defined as follows:8

H(x) = −
∫
S
p(x)log (p(x)) dx = E{−log (p(x))} (24)

where S is the support set. In this paper, all logarithms are assumed to be natural. The analytic solution of
the differential entropy for a multivariate Gaussian distribution is then expressed as follows:

H(x) =
1

2
log|2πeP | (25)

where P is the covariance matrix and | · | represents the matrix determinant. By taking a derivative with
respect to time for Eq. (25), the time rate of the differential entropy can be calculated as follows:

Ḣ(x) =
1

2
trace{P−1Ṗ} (26)

where Ṗ is the time rate of change of the covariance matrix, which in the absence of process noise evolves
as:

Ṗ (t) = F (µ(t), t)PT(t) + P (t)FT (µ(t), t) (27)

where µ(t) is the time-varying mean of the Gaussian distribution and F (µ(t), t) is the Jacobian of the
dynamics evaluated at the mean µ(t). By substituting Eq. (27) into Eq. (26), the time rate of the differential
entropy for a linearized dynamical system is obtained as follows:

Ḣ(x) = trace{F (µ(t), t)} (28)

Therefore, the entropy value for a linearized system can be calculated by numerically integrating Eq. (28)
with an appropriate initial condition, which requires only the evaluation of the trace of the dynamics Jaco-
bian. On the other hand, a nonlinear determination of the differential entropy can be evaluated via Eq. (25)
by a nonlinear implementation of the integration of the covariance matrix; for example, unscented transfor-
mation is one of the most popular and effective methods for moment evaluation. Any deviation between the
linear and nonlinear values of the entropy then indicates that nonlinearity is impacting the Gaussian com-
ponent. As a result, the difference between the linearized and nonlinear predictions of the entropy can be
monitored without the full solution to both the linearized and nonlinear predictors. In other words, when the
difference between these values of entropy exceeds a preassigned threshold, a splitting algorithm is applied
to the Gaussian component during a propagation. A smaller threshold leads to more frequent splitting during
the propagation.

Once the nonlinear effects have been detected from the first step, a splitting algorithm is applied to mit-
igate the effects by replacing a Gaussian component with several Gaussian components. For the univariate
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Table 1. Three-component splitting library

i ωi µi σi
1 0.2252246249 -1.0575154615 0.6715662887
2 0.5495507502 0 0.6715662887
3 0.2252246249 1.0575154615 0.6715662887

case, each Gaussian component can be decomposed into 3 components using splitting libraries which are
shown in Table 1. The splitting technique for a univariate case with splitting library can be then extended
to the multivariate case by considering the principal directions of the covariance matrix. The details of the
algorithm are explained in Ref.8 After the propagation, the posteriori mean and covariance matrix, and
mixture weights are obtained using the measurement update of the standard GSF.

When allowing the number of Gaussian components to grow unbounded, AEGIS is an accurate and
consistent estimator. In this work we are interested not only in estimation accuracy, but also in computational
efficiency to maintain custody of a very large number of SOs. The proposed solution to achieve this balance
of performance versus accuracy is introduced next.

Modified Kernel-Based Ensemble Gaussian Mixture Filtering

As a recursive algorithm, the knowledge of the distribution p(xk−1|yk−1) at the prior time is assumed
and approximated by N independent and identically distributed (i.i.d.) samples x(i)

k−1 such that

p(xk−1|yk−1) ≈
N∑
i=1

1

N
δ(xk−1 − x

(i)
k−1) (29)

where y is a measurement vector and δ(·) is the Dirac delta function. Following the same procedure as the
BPF,36 a set of samples at the next time step is obtained using the Markov transition kernel p(xk|xk−1). The
Markov kernel indicates the dynamics of a system and all estimators use the true dynamic model without
process noise in this paper.

The next step is to convert the samples into Gaussian mixtures using KDE. In other words, each particle is
considered as a Gaussian component with non-zero covariance. The approximated GMM of the propagated
samples is then expressed as follows:

p(xk) ≈
N∑
i=1

1

N
n(xk;x

(i)
k|k−1, B) (30)

where the bandwidth matrix B is can be calculated by26

B = βP̂ (31)

where β is the bandwidth parameter, 0 ≤ β ≤ 1, and P̂ is the sample covariance matrix calculated from
the particles. The Gaussian components’ means are the particles x(i)

k|k−1 and all GMM weights are equal to
1/N . The covariance matrix of each Gaussian component is determined by the bandwidth parameter. The
larger bandwidth parameter β, the smaller the probability assigned to the particle and vice versa.

Finally, we can incorporate the measurement information by updating the means, covariance matrices,
and the weights of all N Gaussian components in the same way as the measurement update of the GSF. N
i.i.d. samples are then drawn from the GMM approximation of the posterior distribution. These samples
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are used as a starting point for the next iteration. The details of the measurement update of the GSF and the
method to draw N i.i.d. samples from a GMM are explained in.23

In the EnGMF algorithm, it is crucial to choose the most appropriate bandwidth which determines the
performance of the filter. Bandwith selection is an accuracy vs. computational cost trade off, with the
most accurate algorithms numerically solving an optimization problem. In this paper, we propose to use
Silverman’s rule of thumb30 to estimate the bandwidth (i.e., covariance) matrix BS as follows:

BS = βSP̂ =

(
4

nx + 2

) 2
nx+4

N−
2

nx+4 P̂ (32)

We can, therefore, obtain a near-optimal bandwidth parameter for orbit determination with sparse obser-
vation data without the need of performing any numerical optimization. If the sampling distribution were
Gaussian, Silverman’s rule of thumb would provide the optimal bandwidth parameter based on the mean
integrated square error (MISE) as a performance criterion.30 However, it may result in conservative (large)
estimates when the distribution is not close to Gaussian. This is a very desirable feature, since inaccuracies
results in conservatism rather than over-confidence and divergence. The flow chart of the modified EnGMF
for orbit determination is described in Figure 1.

Initialize particles

Propagate the particles 
using the dynamics

Calculate the bandwidth matrix of 
the Gaussian components

using Silverman's rule of thumb

Incorporate measurement information 
in the same way as the measurement 

update in the GSF 
(Each Gaussian component is updated 

using the UKF)

Draw N i.i.d. particles 
from the posterior PDF

Measurement

Figure 1. The flow chart of the modified EnGMF for orbit determination
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NUMERICAL RESULTS

To evaluate the performance of the UKF, AEGIS, and EnGMF, one numerical example is considered.
The system dynamic equations are numerically integrated with an embedded Runge-Kutta 8(7) method.37

Range, range-rate, and angle measurements are simulated using a ground station located at the North Pole
(latitude = 90◦, longitude = 0◦, altitude = 0 km). In this simulation, observation data are short and sparse,
which means that the observation interval time is much longer than the observation duration. The measure-
ments are available every 10 seconds with a pass lasting only 2 minutes, i.e., 12 measurements per pass.
Each observation consists of range, range-rate, right ascension, and declination and the measurements are
corrupted by additive zero-mean Gaussian white noise with standard deviation of 30 m and 0.3 m/s for the
range and range-rate, respectively, and 100 arc-seconds on the right ascension and declination observation.

The SO is in a near polar orbit with the following Keplerian orbital elements: a = 7,078.0068 km, e =
0.01, i = 85◦, and ω = Ω = ν = 0. The simulation epoch is 4-January-2010 at 00:00:00 UTC. The shape of the
SO is assumed to be a sphere with a cross-sectional area of 1 m2 and a mass of 500 kg. The drag coefficient
and the coefficient of reflectivity of the SO are set to be 2 and 1.5, respectively. The initial distribution is
defined in Cartesian coordinates as

x0 ∼ n (x0; µ0, P0) (33)

where

µ0 =



7007.2175
0
0
0

0.6606
7.5509

 (34)

P0 =



1.481e+2 0 0 0 -9.237e-2 -5.333e-2
0 2.885e+1 9.994 -3.232e-2 0 0
0 9.994 5.770 -1.242e-2 0 0
0 -3.232e-2 -1.242e-2 3.687e-5 0 0

-9.237e-2 0 0 0 6.798e-5 3.145e-5
-5.333e-2 0 0 0 3.145e-5 3.166e-5

 (35)

First, a Monte Carlo analysis is performed with 100 simulations, and each simulation has one measure-
ment pass every orbital period, 5926 seconds. Note that, throughout this paper, the starting time of each
measurement pass is randomly selected in close proximity of a multiple of the orbital period. The UKF uses
the following tuning parameters: α = 1, β = 2, κ = 3 - d = -3, for its sigma points spread. For the AEGIS
method, the three-component splitting library is used (AEGIS-3), and the threshold on the allowed deviation
of the differential entropy is set as ∆H = 0.001H0.8 The value ofH0 is unique for each mixture component
and based on the covariance at the latter of the last posterior estimate or the output of a splitting operation.
After each measurements pass, the AEGIS algorithm is forced to have only one Gaussian component with
the posterior mean and covariance matrix. This simple merging algorithm reduces AEGIS computational
burden and adds conservatism that cannot cause divergence (a Gaussian distribution is the most uncertain
given any finite covariance matrix). The EnGMF method uses 1000 particles. Both the AEGIS and the En-
GMF use the UKF measurement update equations for incorporating measurement information in each GMM
component. For the UKF and EnGMF, two implementations with Cartesian coordinates and the equinoctial
orbital elements are compared. AEGIS is only implemented in Cartesian coordinates. An AEGIS imple-
mentation in equinoctial coordinates will result in very few component splits as the splits occur due to
nonlinearity in the propagation, making equinoctial AEGIS very similar to the equinoctial UKF.
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These three algorithms are compared based on accuracy, complexity, and consistency. The accuracy of
the filters is represented by their root-mean-square error (RMSE), which is computed from the true and
estimated states at each measurement update time for all Monte Carlo simulations. The filters’ complexity
is represented by their average execution time per filtering run in a C++ implementation on a 3.2 GHz single-
core Ubuntu operating system. The filters’ consistency is examined using the scaled normalized estimation
error squared (SNEES) βR which is defined as follows:

βRk =
1

Md

M∑
j=1

(x
(j)
k − x̂

(j)
k )T(P

(j)
k )−1(x

(j)
k − x̂

(j)
k ) (36)

where M is the number of Monte Carlo simulations, x(j)
k are the true states, x̂(j)

k are the estimated states,
P

(j)
k are the filter’s estimated error covariance matrix of the j-th Monte Carlo run at the time step k. The

size of the state space d = 6 is used to scale the NEES value38 such that a consistent filter will result in a
SNEES of one rather than a NEES of d. If the SNEES value is much greater than 1, it means the estimator is
divergent; however, if the value is much smaller than 1, it indicates the estimator is too conservative. When
the estimator is consistent, SNEES should be nearly one at all times.

The time history of the RMS position errors of the 100 simulations is depicted in Figure 2 and the po-
sition’s RMSE values of each filter are listed in Table 2. Due to their nonlinear nature, AEGIS and En-
GMF provide better performance than the UKF at the very first measurement update. However, in this
measurement-rich environment, equinoctial UKF performs near the top in accuracy, and it is the most con-
sistent at a small fraction of the computational cost of nonlinear filters. From the results, it is also shown
that the UKF and EnGMF with equinoctial orbital elements outperforms the corresponding filter with Carte-
sian coordinates. Nevertheless, the best performance in terms of estimation accuracy is obtained with the
AEGIS, closely followed by equinoctial UKF.

Figure 3 shows the SNEES value for 100 Monte Carlo simulations and the average computation time per
filtering run for all the filters. In Figure 3(a), the SNEES value of the EnGMF is smaller than 1, which means
the EnGMF is too conservative. For the EnGMF, the covariance matrix calculated by Silverman’s rule for
each Gaussian component is over-smoothed since the density is not truly Gaussian. The value of the AEGIS
filter is gradually increased starting from the value 1. For the UKF, it works better when using equinoctial
orbital elements than when using Cartesian coordinates. When the UKF uses Cartesian coordinates, it
diverges in two out of 100 simulations, which means the estimate error completely exceeded the ±3 sigma
predicted standard deviations of the posterior covariance matrix. As is typical for linear estimators without
underweighting,39 equinoctial UKF is overly optimistic in processing the very first batch of measurements,
but due to the measurement-rich scenario, it recovers nicely and achieved very good consistency.

The time-averaged SNEES value to the total samples of 100 cases is listed in Table 2. The average
computation time is also presented in Table 2. In terms of computation time, the best performance is obtained

Table 2. Monte Carlo averaged RMSE, SNEES, and computation time for 100 simulations

Position’s
SNEES

Computation
RMSE (km) time (sec)

UKF (Cartesian) 0.2212 507.4479 3.36
UKF (Equinoctial) 0.1839 1.2425 3.55

AEGIS-3 (Cartesian) 0.1810 1.5058 460.34
EnGMF (Cartesian) 0.3320 0.4986 189.47

EnGMF (Equinoctial) 0.3284 0.4920 190.49
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Figure 2. The average RMSE for 100 Monte Carlo simulations, 1 pass per orbit
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Figure 3. The SNEES value and the average computation time per filtering run for
100 Monte Carlo simulations

with the UKF by a wide margin (as expected from a simple linear filter), and the EnGMF reduces the mean
computation time by 58.73% in comparison with the AEGIS. Notice that resetting the GMM in AEGIS to
a single component after each measurement pass greatly reduces its computational cost when compared to
other merging/pruning schemes.

Having established the baseline performance of the estimators with one measurement pass per orbital
period, we focus on the real challenge addressed by this paper: scarcity of measurements. Additional
simulations are performed when the gap between measurement passes is increased to 2, 3, 4, 5, and 6
orbital periods. As in the previous case, a Monte Carlo analysis is performed with 100 simulations. As we
are concerned with computational speed, we set a maximum allowable number of GMM components for
the AEGIS to be 1000 to contain its overall run time, and relaxing this constraint will result in an accurate,
but very slow filter.

Figure 4(a) displays the position RMSE of the UKF, AEGIS, and EnGMF in all the six cases and the
Monte Carlo averaged RMS position errors for all cases are listed in Table 3, where n/a indicates the filter has
diverged. The time-averaged SNEES value of each estimator for all the six cases is displayed in Figure 4(b).
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Figure 4. Monte Carlo averaged RMSE and SNEES value for all the six cases

Table 3. Monte Carlo averaged RMS position errors for all the six cases

1 2 3 4 5 6
UKF (Cartesian) 0.2212 0.6178 n/a n/a n/a n/a

UKF (Equinoctial) 0.1839 0.3823 1.1294 n/a n/a n/a
AEGIS-3 (Cartesian) 0.1810 0.3027 0.4026 0.5060 0.6445 0.6872
EnGMF (Cartesian) 0.3320 0.4248 0.5144 0.5682 0.7219 0.7559

EnGMF (Equinoctial) 0.3284 0.4086 0.4838 0.5444 0.6566 0.6632

The AEGIS outperforms the EnGMF with Cartesian coordinates in terms of RMS accuracy for all the
six cases. However, the EnGMF with the equinoctial orbital elements provides better estimation accuracy
than the AEGIS when the interval time between measurement passes is 6 orbital periods. Also note that
the RMS position error of the AEGIS increases more rapidly with the orbital periods than the EnGMF as
shown in Figure 4(a). While the equinoctial UKF provides excellent performance for the one-orbit interval
period, its performance is severely degraded in terms of accuracy and consistency for the two- and three-
orbits case, and is completely diverging for 4–6 orbital periods in-between measurements pass. This is
another confirmation that linear dynamics is not sufficient to justify the use of a linear estimator, as nonlinear
measurements also need to be addressed.

The choice of using Silverman’s rule in the EnGMF rather than performing bandwidth optimization is
a trade between speed and accuracy/consistency. However, since the choice results in a conservative filter
(estimated covariance larger than actual one) this trade off is deemed worthy when the goal is to maintain
custody of a very high number of SOs. The EnGMF implementation in the equinoctial elements provides
better and better performance than the EnGMF with Cartesian coordinates as the interval between mea-
surement passes is increasing. The UKF with Cartesian coordinates and the equinoctial orbital elements
diverges when the interval time is more than 3 and 4 orbital periods, respectively.

Figure 5 shows the computation time of each filter, which is normalized by the value for the EnGMF with
Cartesian coordinates. Compared to the AEGIS, the EnGMF reduces the computation time by 59.91% on
average.

A more in-depth comparison of the performances of the EnGMF and AEGIS algorithms is shown for the
ten-orbits interval periods. Figures 6 and 7 present the time history of the RMS position errors, SNEES

13



1 2 3 4 5 6

Interval Time [orbital periods]

0

0.5

1

1.5

2

2.5

3

N
o
rm

a
liz

e
d
 c

o
m

p
u
ta

ti
o
n
 t
im

e

Monte Carlo averaged computation time per filtering run

UKF (Cartesian)

UKF (Equinoctial)

AEGIS-3 (Cartesian)

EnGMF (Cartesian)

EnGMF (Equinoctial)

Figure 5. Monte Carlo averaged computation time per filtering run

Figure 6. The average RMSE for 100 Monte Carlo simulations, the ten-orbits case

values, and average computation time per filtering run of the EnGMF and AEGIS, and each value is also
described in Table 4. In terms of accuracy, the EnGMF with Cartesian coordinates or the equinoctial orbital
elements outperforms the AEGIS method over time. This is because the AEGIS filter diverges in seven out
of 100 simulations as shown in Figure 7(a), whereas the EnGMF is conservative. Moreover, Figure 7(b)
shows that the EnGMF reduces the computation time by 60.57% compared to the AEGIS. In Table 4, we
can see that the EnGMF using the equinoctial orbital elements obtains the best performance in terms of
accuracy and mean computation time.

The performance of the estimators gets worse as the gap between measurement passes increases until
it eventually diverges. To evaluate the performance of the EnGMF with the equinoctial elements under a
sparser measurement data condition, a Monte Carlo analysis is performed with 100 simulations when the
gap between measurement passes is increased to 20 orbital periods. The value of 20 orbital periods is chosen
because it causes one divergence out of 100 runs when 1000 particles are used. The analysis is repeated for
an EnGMF implementation with 2000 particles. Figures 8 and 9 show the time history of the RMS position
errors, SNEES values, and average computation time of the 100 simulations, and each value is listed in
Table 5. The result shows that the EnGMF with 2000 particles outperforms the EnGMF with 1000 particles
in terms of the RMSE and SNEES, which is the result of EnGMF with 1000 particles diverging in one out of
100 Monte Carlo simulations as shown in Figure 9(a). The EnGMF with 2000 particles, however, requires
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Figure 7. The SNEES value and the average computation time per filtering run for
100 Monte Carlo simulations, the ten-orbits case

Table 4. Monte Carlo averaged RMSE, SNEES, and computation time for the ten-orbits case

Position’s
SNEES

Computation
RMSE (km) time (sec)

AEGIS-3 (Cartesian) 2.1578 1.6459e+06 865.17
EnGMF (Cartesian) 0.9930 0.8595 342.46

EnGMF (Equinoctial) 0.6688 0.5504 339.86

almost twice the computation time of the EnGMF with 1000 particles. Thus, the choice of the number of
particles in the EnGMF is a trade between speed and accuracy/consistency. In other words, even if only a
few observation data are available, the EnGMF with a large number of particles can provide accurate and
consistent performance tracking SOs in LEO. In future work, we will investigate how to adaptively select
an appropriate number of particles for very sparse measurement scenarios.

CONCLUSIONS

This paper studies a software-only solution to the orbit determination problem with sparse observation
data. The motivation behind the study is the ability to maintain custody of a very large number of LEO
objects. As such, it is of outmost importance in this study to strike a balance between estimation accu-
racy/consistency and computational burden of the methodology employed. A linear filter implementation
(unscented Kalman filter) is shown to be inadequate for very scarce measurement scenarios (measurement
passes every three orbits or more) regardless of the choice of coordinates (Cartesian or equinoctial orbital
elements). A state-of-the-art Gaussian sum filter named AEGIS is shown to perform well at a very high
computational cost, but to fail when the number of Gaussian components is artificially capped in order to

Table 5. Monte Carlo averaged RMSE, SNEES, and computation time for the twenty-orbits case

Position’s
SNEES

Computation
RMSE (km) time (sec)

EnGMF-1000 (Equinoctial) 1.1135 989.5970 676.75
EnGMF-2000 (Equinoctial) 0.9372 0.6234 1374.26
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Figure 8. The average RMSE for 100 Monte Carlo simulations, the twenty-orbits case
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Figure 9. The SNEES value and the average computation time per filtering run for
100 Monte Carlo Simulations, the twenty-orbits case

contain its total execution time.

A newly proposed approach is to modify the kernel-based ensemble Gaussian mixture filter. Each propa-
gated sample of the prior distribution is treated as a Gaussian component with a non-zero covariance matrix.
The covariance matrix of a Gaussian component is calculated with Silverman’s rule of thumb to reduce
the computational cost of numerically optimizing a bandwidth parameter. The rule produces the optimal
bandwidth when the samples are drawn from a Gaussian distribution, and results in a conservative estimate
for non-Gaussian distributions. Numerical simulations show that the modified algorithm is more accurate
and/or faster than the other approaches for sparse measurement scenarios. The conservatism inherent from
using Silverman’s rule cannot cause filter divergence but can result in slight loss of accuracy. This slight loss
of accuracy is deemed an acceptable trade off to computational efficiency for the ultimate purpose of this
work: tracking a very large number of space objects. While this conservatism can potentially trigger false
collision alarms, an efficient strategy to maintaining a large catalog is using the proposed lower complexity
and conservative estimates for the population at-large and to only focus high precision and computation-
ally expensive orbit determination solutions for the very small subset of objects that are deemed at risk for
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collision.
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