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An analysis and comparison of two different strategies to implement the quaternion
Kalman filter is presented. Circumstances under which the two strategies are equivalent
will be investigated, together with conditions for covariance singularity. Normalization will
also be analyzed. Optimality will be shown in a stochastic sense and not only in a geometric
sense as previously reported.

I. Introduction

Attitude estimation has been the topic of much research and debate in the past two decades.1 The
interest arises from the fact that the representation of the attitude is not a vector space and redundancy
is necessary to avoid singularities and discontinuities.2 For realtime space applications, the quaternion-of-
rotation is a favorite attitude representation. In sequential realtime quaternion estimation two schools of
thinking received the most attention: the Additive Extended Kalman Filter3 (AEKF) and the Multiplicative
Extended Kalman Filter19 (MEKF). While the additive approach resembles closely the standard extended
Kalman filter (EKF), several shortcomings of the AEKF were pointed out. These are

1. The estimation error does not have a physical meaning.

2. The estimation error covariance becomes ill-conditioned.

3. It requires a brute force normalization procedure.

Theoretical studies show that the covariance in the AEKF should be nearly singular,4 while practical ap-
plications do not reveal the problem.5 In this work, we provide arguments to show that in the presence of
process noise there is no need for the covariance matrix to be ill-conditioned.

Both the AEKF and MEKF necessitate restoring the norm constraint after the update. The most obvious
method to accomplish this is to scale the updated quaternion by its norm, thereby minimizing the Euclidean
distance between the unconstrained and the constrained estimates.6 The main focus of this work is to obtain
the optimal estimate while simultaneously constraining the norm. The result is that the normalization process
provides the unitary estimate with minimum mean square error–a fact heretofore unproven.

It is well-known that the Kalman filter provides the unconstrained optimal solution of the stochastic
estimation problem.7–9 The Kalman filter algorithm has two main phases: the state estimate propagation
phase between measurements, and the state estimate update phase when measurements become available.
Unconstrained implies that the optimal state estimate is not constrained during the state estimate update
phase as the measurements are processed. The Kalman filter provides the optimal state estimate considering
n degrees of freedom (that is, the entire vector space <n). However, if r state constraints are applied, the
degrees of freedom are reduced to n− r. Simply projecting the unconstrained solution into the constrained
space will not guarantee optimality.

It is assumed throughout this paper that through the mathematical model (that is, through the state
equation) the underlying physics, including the state constraints, are satisfied during periods between mea-
surements. The mathematical model of the system should adequately represent any desired state constraints.
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The challenge is to modify the Kalman filter solution so as to constrain the state update appropriately,
while retaining the fundamental properties and characteristics of the familiar discrete Kalman filer algorithm.
In the discrete formulation of the Kalman filter, the state can be related to the control algebraically. We
can then view the optimization problem as a parameter optimization problem, therefore the state constraint
can be expressed as a control constraint.

One method of introducing state constraints is to use pseudo-measurements.10 The fundamental idea
is to introduce a perfect measurement (hence the use of the term “pseudo-measurement”) consisting of the
constraint equation into the estimation solution. This approach has two shortcomings. First, the use of a
perfect measurement results in a singular estimation problem known to occur when processing noise-free
measurements in a Kalman filter. A small noise can be added to the pseudo-measurement to address the
singularity; however with the noise introduced, the constraint is no longer exactly satisfied. Second, when
the constraint is nonlinear (as is the case in this paper), after the linearization of the measurement equation
consistent with the EKF algorithm, the constraint is no longer satisfied exactly.

One can consider state constraints when considering the optimization problems based on least squares
methods. The solution to the least squares problem in the presence of linear equality constraints is found
in Lawson.11 Another approach is to project the Kalman solution into the desired subspace. Since the
projection can be done in different ways, a performance index can be defined to find the optimal projection.
The optimal projection for the linear state equality constraint problem is presented in Simon and Chia.12

The projection of the Kalman solution can be done at any time, not only during the update.

II. Nomenclature

The quaternion format used here is vector first and scalar last, Q =
[
qT q4

]T. The rotation matrix from
one frame to another (say from inertial to body) is given by:

T(Q) =
(
q2
4 − qTq

)
I3×3 − 2q4[q×] + 2qqT.

The vector product matrix [q×] is defined such that

[q×]v = q× v.

The quaternion product ⊗ is defined such that the quaternions are multiplied in the same order as the
attitude matrices. Originally, Hamilton defined the product in opposite order. Hamilton’s product will be
denoted by ~, and

Q⊗P = P ~ Q,

where Q and P are quaternions. The quaternion product matrices are defined as follows

Q⊗P = [Q⊗]P = [P~]Q,

from which

[Q⊗] = [Ψ(Q) Q] where Ψ(Q) =

[
q4I3×3 − [q×]

−qT

]

and

[P~] = [Ξ(P) P] where Ξ(P) =

[
p4I3×3 + [p×]

−pT

]
.

The kinematics of the quaternion are given by

Q̇ =
1
2

[
ω

0

]
⊗Q =

1
2
Ξ(Q)ω =

1
2
Ω(ω)Q where Ω(ω) =

[[
ω

0

]
~

]
,

where the angular velocity ω is expressed in the rotating frame (such as the body frame).
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III. Mean-Square Error and Families of Estimators

In a stochastic setting, virtually every time a state estimate is computed, the estimate differs from the
true state. The standard statistical measure to quantify the mismatch is the estimation error, defined as
the difference between the true and the estimated states. When the true state and/or the measurements are
random vectors, the expected value of the estimate error is of great interest. The mean-square error (MSE)
of a scalar estimate x̂ is defined as13

E[e2] = E[(x̂− x)2].

For random vectors the MSE uses the vector 2-norm

E[‖e‖2] = E[eTe] = E[trace(eeT)] = traceE[eeT].

The mean square error is a common way of evaluating estimators, and is equivalent to the trace of the mean-
square estimate error covariance. It seems sensible to choose the estimator that on average has the smallest
error (in a 2-norm sense). Unfortunately the set of all possible estimators is too big, and there is a lack of
global optimality results. It is therefore common to look only at certain families of estimators, for which
optimality results exist. One such a family are the unbiased estimators. An estimator is said to be unbiased
when the estimation error is zero mean. This family of estimators is particularly important because it is
desirable to have an estimator whose error is on average zero. However the best unbiased estimator could
still perform worse (in a MSE sense) than other classes of estimators. The classical example is estimating
the covariance of a normal variable where the maximum likelihood estimator has a lower MSE that the best
unbiased estimator.13

The best unbiased estimator (in MSE sense) of x based on the observation y is given by:

x̂ = E[x|y].

Note that
E[eeT] = Cov(e, e) + E[e] E[eT].

It follows that for unbiased estimators the MSE is given by

traceCov(e, e)

since the mean of the estimation error is zero. When searching for the best unbiased estimator, minimizing
the trace of the estimation error covariance is equivalent to minimizing the MSE. This fact is generally not
true, and it often makes little sense to minimize the covariance. Minimizing the covariance implies shrinking
the estimation error around its mean, which is not necessarily desirable, since the mean might be large.
Figure 1 illustrates this concept; the errors of two estimators are plotted. The first estimator is biased
with E[e1] = [5 5]T and covariance Cov(e1, e1) = 0.04 I2×2, while the second estimator is unbiased with
covariance Cov(e2, e2) = I2×2. The biased estimator has clearly much smaller covariance but much larger
MSE.

Other possible families of estimators for which optimality conditions can be satisfied are the linear and
the affine estimators. The best linear estimator in MSE sense is

x̂ = E[xyT]E[yyT]−1y. (1)

Notice that this estimator could be, and usually is, biased. The best affine estimator in MSE sense is

x̂ = Cov(x,y)Cov(y,y)−1(y − E[y]) + E[x]. (2)

The optimal affine estimator is unbiased. The best affine estimator is an unbiased estimator, and is not,
generally, the best unbiased estimator. Of course in the presence of gaussian noise they are the same.

A. Recursive Estimation

It is not convenient to store all the measurements, rather it is desirable to process all measurement as they
become available. Equations (1) and (2) are valid for every distribution of the measured random vector y.
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Figure 1. Comparison of mean square errors of two estimators.

In the attempt to derive a recursive estimator, we pay the price of having to assume a very special form for
y. Suppose that the measurement is given by

yT =
[
yT

1 yT
2

]
,

and x̂1 is the best affine estimator based on y1. Define

P1 , E[(x− x̂1)(x− x̂1)T] = E[e1eT
1 ].

If
y2 = Hx + u, E[u] = 0, E[uuT] = R,

and
E[xuT] = 0, E[y1uT] = 0,

then the best affine estimator based on y is

x̂2 = x̂1 + P1HT(HP1HT + R)−1(ŷ2 −Hx̂1).

Since x̂1 is unbiased, P1 is the covariance of the estimation error. The covariance of the a posteriori
estimation error is

P2 , E[(x− x̂2)(x− x̂2)T] = P1 −P1HT[HP1HT + R]−1HP1.

Under the same hypothesis, if x̂1 is the best linear estimator based on y1, then x̂2 is the best linear estimator
based on y.14 Notice that in this case P1 and P2 represent mean-square errors and not error covariances.

In engineering applications emphasis is placed on the error covariance and how it should be minimized.
It is therefore important to notice that minimizing the trace of the covariance derives from the desire to
minimize the MSE of an unbiased estimator. When the mean of the estimation error is different from zero
matrices P of the Kalman filter are mean-squares and contain the mean of the estimation error. For example,
the quaternion estimation error

eQ , Q− Q̂

being zero-mean before the normalization process, does not guarantee that it will be zero-mean after brute
force normalization.
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The estimation error is a way of quantifying the difference between the true state and the estimated state,
therefore it does not necessarily have to be physically meaningful. The same holds true for the MSE, which
is one measure of the performance of the estimator. A small MSE it is desirable independent of the physics
of the problem and independent of the covariance matrix (which might be singular). Like any performance
index, its use could be replaced by another measure leading to a different optimization solution.

IV. Quaternion Estimation

Quaternion estimation has the goal of making the distance between the estimated and the estimate
variables small. It is common to define this distance to be a quaternion-of-rotation itself, where

δQ = Q⊗ Q̂−1.

This approach guarantees a physical interpretation of the estimation error. The relation between the multi-
plicative error and the additive error is given by

eQ = Q− Q̂ = Q− δQ−1 ⊗Q = Q−
[
−Ξ(Q) Q

]
δQ.

The true state, Q, is often treated as deterministic, and therefore taken outside the expectation operation.
This operation is legitimate only in the absence of process noise. In the presence of process noise, Q is
a random quantity and taking it outside the expected value results in an approximation, therefore only
approximate conclusions can be inferred from this procedure.

The covariance which is associated with the additive Kalman filter is

Pa = E[eQ eT
Q]

and for the multiplicative approach we have

P4m = E[δQ δQT].

In calculating Pa, the Kalman filter does not compensate for the mean of eQ, therefore any theoretical study
of Pa should not contain E[eQ] unless it is proven to be zero. It was shown15 that when the estimation
error is a small rotation, P4m becomes ill-conditioned. Assuming the true quaternion Q is deterministic and
relating the two matrices, will result in Pa being ill-conditioned as well. However, when Q is a random vector
it cannot be taken outside the expected value, and no conclusions can be made on Pa from the condition of
P4m. The matrix Pa will depend on the joint distribution of Q and δQ and not solely on δQ.

In the absence of process noise, the Kalman filter covariance will eventually converge to zero. Therefore,
the fact that in the absence of process noise Pa becomes ill-conditioned is an expected characteristic of the
AEKF scheme.

A. Relationship Between Additive and Multiplicative Error Representation

The MEKF is equivalent to the AEKF∗. Let the measurement y be related to the quaternion through a
nonlinear function h and noise u as

y = h(Q) + u = h(Q̂ + eQ) + u = h(δQ⊗ Q̂) + u = h
([

Q̂~
]
δQ

)
+ u ' h

(
Ξ(Q̂)δq + Q̂

)
+ u

which is approximately

h(Q̂ + eQ) ' h(Q̂) +
d

deQ
h(Q̂ + eQ)

∣∣∣∣
eQ=0

eQ, and

h
(
Ξ(Q̂)δq + Q̂

)
' h(Q̂) +

d

dδq
h

(
Ξ(Q̂)δq + Q̂

)∣∣∣∣
δq=0

δq.

∗Shuster16 cites Ferraresi17 to prove the equivalency, Ferraresi’s work was not available to the authors.
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Defining H(Q) as the jacobian of h(Q) and using the chain rule it follows that

Ha(Q̂) , d

deQ
h(Q̂ + eQ)

∣∣∣∣
eQ

= H(Q̂), and

Hm(Q̂) , d

dδq
h

(
Ξ(Q̂)δq + Q̂

)∣∣∣∣
δq=0

= H(Q̂)Ξ(Q̂) = Ha(Q̂)Ξ(Q̂).

Let Pm ∈ <3×3 be the multiplicative error covariance matrix. If the a priori estimates are the same and if
the a priori covariances obey the following relation

P−a = Ξ(Q̂−)P−mΞ(Q̂−)T,

then the additive Kalman gain is (dropping the arguments of the matrix functions)

Ka = P−a HT(HP−a HT + R)−1 = ΞP−mΞTHT(HΞP−mΞTHT + R)−1

= ΞP−mHT
m(HP−mHT

m + R)−1 = ΞKm.

The filter residual is ε = εa = εm = y − h(Q̂), the a posteriori estimates are

Q̂+
m =

[
Kmε

1

]
⊗ Q̂− = ΞKmε + Q̂−, and

Q̂+
a = Q̂− + Kaε = Q̂− + ΞKmε = Q̂+

m.

The a posteriori additive covariance is

P+
a = (I−KaHa)P−a = (I−ΞKmHa)ΞP−mΞT = Ξ(I−KmHaΞ)P−mΞT.

= Ξ(I−KmHm)P−mΞT = ΞP+
mΞT.

The estimates during propagation are

d

dt
Q̂(t) =

1
2
Ω (ω(t)) Q̂(t).

The propagation of the covariance between measurements is given by

Ṗa(t) =
1
2
Ω (ω(t))Pa(t)− 1

2
Pa(t)Ω (ω(t)) + Ua(t); Pa(tk) = P+

a (tk)

Ṗm(t) = −[ω(t)×]Pm(t) + Pm(t)[ω(t)×] + Um(t); Pm(tk) = P+
m(tk)

where Ua and Um are the spectral densities of the process noise.
It is now going to be shown that if

Ua(t) = Ξ
(
Q̂(t)

)
Um(t)ΞT

(
Q̂(t)

)
,

then
Pa(t) = Ξ

(
Q̂(t)

)
Pm(t)ΞT

(
Q̂(tk)

)
. (3)

Since the equality holds at the beginning of the propagation, it is sufficient to show that both sides have the
same derivative. For convenience let

Ξ , Ξ
(
Q̂(t)

)
, [ω×] , [ω(t)×], and Ω , Ω (ω(t)) .

Taking the derivative of both sides of Eq. (3) yields

1
2
ΩPa − 1

2
PaΩ + Ua = Ξ̇PmΞT −Ξ[ω×]PmΞT + ΞPm[ω×]ΞT + ΞUmΞT + ΞPmΞ̇

T
(4)
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where

Ξ̇ = Ξ
( ˙̂Q

)
=

1
2
Ξ

(
ΩQ̂

)
=

1
2
Ξ

([
q̂× ω + q̂4 ω

−ωTq̂

])
=

1
2

[
−ωTq̂ I3×3 + [(q̂× ω)×] + q̂4[ω×]

(ω × q̂)T − q̂4 ωT.

]

Utilizing the following identities

[(q̂× ω)×] = ωq̂T − q̂ωT, [q̂×] · [ω×] = ωq̂T − ωTq̂I3×3

it follows that

Ξ̇ =
1
2

[
−ωTq̂ I3×3 + ωq̂T − q̂ωT + q̂4[ω×]

−q̂T[ω×]− q̂4 ωT

]
=

1
2

[
−ωTq̂ I3×3 + ωq̂T + q̂4[ω×]

−q̂T[ω×]

]
− 1

2
Q̂ωT

=
1
2

[
−[q̂×] · [ω×] + q̂4[ω×]

−q̂T[ω×]

]
− 1

2
Q̂ωT =

1
2
Ξ[ω×]− 1

2
Q̂ωT, (5)

and

ΩΞ =

[
−q̂4[ω×]− [ω×] · [q̂×]− ωq̂T

−q̂4ω
T − ωT[q̂×]

]
= −Ξ [ω×]− Q̂ωT. (6)

Substituting Eq. (5) in Eq. (4) yields

1
2
ΩPa − 1

2
PaΩ =

1
2
Ξ[ω×]PmΞT − 1

2
Q̂ωTPmΞT −Ξ[ω×]PmΞT + ΞPm[ω×]ΞT − 1

2
ΞPm[ω×]ΞT − 1

2
ΞPmωQ̂T

=
1
2

{
−Ξ[ω×]− Q̂ωT

}
PmΞT − 1

2
ΞPm

{
[ω×]ΞT − ωQ̂T

}

which is equivalent because of Eq. (6) and Eq. (3). The proof is complete.
The above arguments show that every MEKF is equivalent to an AEKF. It does not show the converse.

A MEKF designed with
Q̂m(t0), Pm(t0), Rm,k, and Um(t)

is equivalent to an AEKF with

Q̂a(t0) = Q̂m(t0), Pa(t0) = Ξ
(
Q̂0

)
Pm(t0)ΞT

(
Q̂0

)
, Ra,k = Rm,k, and

Ua(t) = Ξ
(
Q̂(t)

)
Um(t)ΞT

(
Q̂(t)

)
.

Every MEKF is equivalent to an AEKF with a singular covariance matrix. This does not imply that every
AEKF has a singular covariance. It is sufficient to choose a nonsingular Pa(t0). It would be reasonable to
ask whether the converse is true: it is possible to design an MEKF equivalent to any given (non-singular)
AEKF? The answer is no.

Once more the a posteriori estimates are

Q̂+
m = Q̂− + ΞKmε, and

Q̂+
a = Q̂− + Kaε.

The filters give the same estimate if

(ΞKm −Ka)ε = 0,

[ΞPmHT
m(HmPmHT

m + R)−1 −PaHT
a (HaPaHT

a + R)−1]ε = 0, and

[ΞPmΞTHT
a (HaΞPmΞTHT

a + R)−1 −PaHT
a (HaPaHT

a + R)−1]ε = 0.

Unless the residuals have an unusual structure, it is impossible that every realization belongs to the null
space of the same matrix, therefore the term in brackets must be zero. If rank(Pa) = 4

ΞPmΞT 6= Pa ∀Pm.
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The following equation should be considered

ΞPmΞTHT
a (HaΞPmΞTHT

a + R)−1 = PaHT
a (HaPaHT

a + R)−1. (7)

Solving Eq. (7) is not always possible. Assume, for example, that the initial orientation is along the reference
frame and the initial covariance is

Pa = κI4×4; Ξ =

[
I3×3

O1×3

]
,

where κ is a given positive number. Then Eq. (7) becomes
[

Pm O3×1

O1×3 0

]
HT

a

(
Ha

[
Pm O3×1

O1×3 0

]
HT

a + R

)−1

= κHT
a (κHaHT

a + R)−1.

It can be seen that no Pm will work because the fourth row of the left side of the equation is always going
to be zero.

In summary, every design of a MEKF corresponds to a singular AEKF, while not every non-singular
AEKF corresponds to a MEKF. Researchers agree that the covariance of the AEKF does not need to be
strictly singular4. Therefore, there are many possible AEKFs that are not equivalent to a corresponding
MEKF. Both approaches should be explored in searching for the best estimator for an attitude estimation
problem.

B. Normalization

Both multiplicative and additive approaches provide estimates with unit norm to first order16 with respect
to the estimation error. It will be proven that in the multiplicative approach the a posteri estimate norm is
always greater than the a priori norm, and that the estimate norm is unchanged through propagation. As
a consequence, brute force normalization is essential in the multiplicative update to avoid the norm of the
estimate becoming arbitrarily large. Of course this can be avoided by using the full nonlinear transformation
between the three-dimensional representation of the attitude error and the quaternion. The downside would
be that the estimate will depend on the parametrization (rotation vector, Gibbs vector, modified Rodrigues
parameters) which is counterintuitive.

The a posteriori estimate is given by

Q̂+ = δQ̂⊗ Q̂− =

[
δq̂4q̂− − [δq̂×]q̂− + q̂−4 δq̂

−δq̂Tq̂− + δq̂4q̂
−
4

]
.

The norm can be computed to be

‖Q̂+‖2 = ‖Q̂−‖2 · ‖δQ̂‖2, and

‖δQ̂‖2 = 1 + ‖δq̂‖2 > 1.

Therefore, the a posteriori estimate norm is always greater than the a priori estimate norm. During propa-
gation, the norm remains unchanged since the quadratic form of a skew-symmetric matrix is always zero,

d

dt
‖Q‖2 =

d

dt

(
QTQ

)
= 2QTQ̇ = 2QTΩ(ω)Q = 0.

The square of the norm remaining constant implies that the norm remains constant since the norm is always
positive.

In summary, it was shown that at every update the norm of the estimate increases, while during prop-
agation the estimate norm remains the same. Hence the norm of the estimate of a MEKF will constantly
increase. To avoid this situation, it is necessary to normalize the estimate.

The rate at which the estimate norm increases can be reduced by using the second order MEKF, in which

δQ̂ =

[
δq̂

1− ‖δq̂‖2/2

]
.
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The norm is still greater than one,

‖δQ̂‖2 = ‖δq̂‖2 + 1 + ‖δq̂‖4/4− ‖δq̂‖2 = 1 + ‖δq̂‖4/4 > 1.

Therefore normalization is still necessary. In the MEKF, the error on the norm is of first order (or second),
but always positive, and the cumulative effect after many updates could result in large deviations from unitary
norm. In the AEKF, the error in the norm could be either positive or negative, making the normalization
necessary but less crucial after some time. Figure 2 shows the evolution of the norm in the additive and
multiplicative case if the normalization was not enforced after each update. Estimating the quaternion
without normalization is not recommended.15 However, from Fig. 2 it should be clear that normalization is
an essential part of the MEKF as it is for the AEKF.
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Figure 2. Norm evolution without brute force normalization. Dashed line is the multiplicative update, con-
tinuous line is the additive update.

Theoretically, the norm constraint could be enforced with a perfect measurement of the state norm. A
perfect measurement would produce a singular covariance matrix, where the singularity is a byproduct of
the linearization process4 and does not signify that the covariance in the AEKF is singular.

The Mean Square Error is the standard way of evaluating estimators. Having a small mean square error
is desirable, independent of the possible physical interpretation. It was also shown how a more physically
meaningful definition of the attitude estimation error leads to a Kalman filter formulation equivalent to the
one defining the error in standard way. Arguments were presented to provide an explanation of the fact that
in practical applications, the covariance of the AEKF does not become ill-conditioned when process noise is
present. Finally, it was shown that brute force normalization is fundamental in both schemes. A justification
of brute force normalization will be presented next.

V. Norm Constrained Kalman Filtering

In this section, it will be shown that brute force normalization is optimal in a MSE sense, not only in
a geometrical sense as previously shown.6 Normalization is a nonlinear transformation, therefore similar
approximations to those associated with the extended Kalman filter will be made. Optimality does not hold
strictly, but conditionally on the above approximations.

Define the a priori state estimate x̂−k to be the state estimate at time tk just prior to employing the
measurement yk in the state estimate update algorithm. Similarly, define the a posteriori state estimate x̂+

k

to be the state estimate at time tk just after the state estimate update. The performance index is defined as

Jk = E
[(

e+
k

)T
e+

k

]
(8)
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where the a priori and a posteriori estimation errors are given by

e−k = xk − x̂−k , and

e+
k = xk − x̂+

k ,

respectively. Associated with the estimation errors, we can define the matrices

P−k = E
[
e−k

(
e−k

)T
]
, and (9)

P+
k = E

[
e+

k

(
e+

k

)T
]

,

before and after the measurement update, respectively. Note that

Jk = traceP+
k .

The norm of the state vector is desired to have a predefined value

‖x̂+
k ‖ =

√
l.

This constraint is equivalent to the following scalar quadratic representation

(x̂+
k )Tx̂+

k = l. (10)

The update is
x̂+

k = x̂−k + Kkεk,

where εk = yk − ŷk is the residual. Substituting the residual into Eq. (10), the state constraint can be
expressed more conveniently as a control constraint:

εT
k KT

k Kkεk + 2x̂T
k Kkεk + x̂T

k x̂k − l = 0. (11)

The goal is to find the gain Kk such that Eq. (8) is minimized and the constraint given by Eq. (11) is
satisfied.

A. First Order Condition

The a posteriori error mean square is given by †

P+
k = (I−KkHk)P−k (I−KkHk)T + KkRkKT

k

where P−k is the a priori state error mean square. Define

Wk , HkP−k HT
k + Rk.

Therefore the Joseph formula can be rewritten as

P+
k = P−k −KkHkP−k −P−k HT

k KT
k + KkWkKT

k .

The performance index to be minimized is then given by

Jk = trace
[
P−k −KkHkP−k −P−k HT

k KT
k + KkWkKT

k

]
.

The Kalman gain should be computed to satisfy the constraint in Eq. (11). Matrix P−k is n × n, Kk is
m× n, l is a scalar and the remaining are of appropriate dimensions. The augmented performance index is

Jk = trace
[
P−k −KkHkP−k −P−k HT

k KT
k + KkWkKT

k

]
+ λk

[(
x̂−k

)T
x̂−k + 2εT

k KT
k x̂−k + εT

k KT
k Kkεk − l

]
.

The n×m + 1 optimal values of λk and Kk are obtained solving the n×m equations resulting from taking
the derivative of Jk with respect to Kk and setting it to zero

−2P−k HT
k + 2KkWk + 2λk(x̂−k εT

k + KkεkεT
k ) = 0, (12)

†see page 13.
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and the scalar constraint (11). The vector and matrix derivatives used to obtain Eq. (12) are listed in the
appendix.

Equation (12) can be rewritten to obtain the following first order conditions

Kk = (P−k HT
k − λkx̂−k εT

k )(Wk + λkεkεT
k )−1, and

εT
k KT

k Kkεk + 2
(
x̂−k

)T
Kkεk +

(
x̂−k

)T (
x̂−k

)− l = 0.

Using the matrix inversion lemma (see Appendix), it follows that

Kk = P−k HT
k W−1

k − λkx̂−k εT
k W−1

k −P−k HT
k W−1

k

λkεkεT
k W−1

k

1 + λkεT
k W−1

k εk

+ λkx̂−k εT
k W−1

k

λkεkεT
k W−1

k

1 + λkεT
k W−1

k εk

.

Substituting into Eq. (11), after some manipulations, the following scalar equation with the scalar unknown
λk is obtained

λ2
k ε̃2k

(
− (

x̂−k
)T

x̂−k +
(
x̂−k

)T (
x̂−k

)− l
)

+ λk ε̃k

(
−2

(
x̂−k

)T
x̂−k + 2

(
x̂−k

)T (
x̂−k

)− 2l
)

+

+
(
εT

k W−1
k HkP−k P−k HT

k W−1
k εk + 2

(
x̂−k

)T
P−k HT

k W−1
k εk +

(
x̂−k

)T (
x̂−k

)− l
)

= 0,

where
ε̃k = εT

k W−1
k εk.

Therefore, the optimal lagrange multiplier is

λk =
−b/2±

√
b2/4− ac

a
,

where

a = −lε̃2k, b = −2ε̃kl, and

c = εT
k W−1

k HkP−k P−k HT
k W−1

k εk + 2
(
x̂−k

)T
P−k HT

k W−1
k εk +

(
x̂−k

)T (
x̂−k

)− l.

Finally, it follows that

λk =
ε̃kl ±

√
ε̃2kl2 + lε̃2kc

−lε̃2k
=

1±
√

1 + c/l

−ε̃k
. (13)

Notice that

1 + c/l = (εT
k W−1

k HkP−k P−k HT
k W−1

k εk + 2
(
x̂−k

)T
P−k HT

k W−1
k εk +

(
x̂−k

)T (
x̂−k

)
)/l

= (εT
k W−1

k HkP−k +
(
x̂−k

)T
)T(εT

k W−1
k HkP−k +

(
x̂−k

)T
)/l ≥ 0

Therefore, λk is always a real number and can be rewritten as

λk =
−1
ε̃k

± ‖x̂−k + P−k HT
k W−1

k εk‖
ε̃k

√
l

.

B. Second Order Condition

Taking the second derivative of the performance index presents some representation issues. Each of the
entrees of the first derivative could be differentiated again, but this approach will result in m × n matrix
equations. Another approach would be to perturb the gain and show that the perturbation results in an
increment of the performance index.

In the case of scalar measurement, the gain Kk can be partitioned as

Kk =

[
kk

kk

]
,
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where kk is a scalar. The constraint becomes

ε2kk
T
k kk + ε2kk2

k + 2εk

(
χ̂−k

)T

kk + 2εkx−k kk +
(
χ̂−k

)T

χ̂−k − l = 0,

where

x̂−k =

[
χ̂−k
x̂−k

]
.

Differentiating the constraint, yields

2(ε2kk
T
k + εk

(
χ̂−k

)T

)dkk + 2(ε2kkk + εkx̂−k )dkk = 0.

Assuming the residual is not zero (if the residual is zero the a posteriori estimate is always equal to the a
priori estimate), it follows that

dkk = −
εkkT

k +
(
χ̂−k

)T

εkkk + x̂−k
dkk.

The second-order differential is

dJ 2
k = dKT

k GKKdKk,

GKK = 2Wk + 2λkε2k, and

dJ 2
k = (2Wk + 2λkε2k)(dKT

k dKk) = (2Wk + 2λkε2k)(dkT
k dkk + dk2

n)

= 2(Wk + λkε2k)dkT
k


I +

εkkk + χ̂−k
εkkk + x̂−k

εkkT
k +

(
χ̂−k

)T

εkk + x̂−k


 dkk.

The sufficient condition for a minimum is

2(Wk + λkε2k)
(εkkk + x̂−k )2

[
(εkkk + x̂−k )2I + ε2kkkkT

k + εkχ̂−k KT
k + εk

(
χ̂−k

)T

+ εkkkχ̂−k
(
χ̂−k

)T
]

> 0

kk =

(
P̃−k

)T

HT
k − λkεkχ̂−k

Wk + λkε2k
, kk =

pTHT
k − λkεkx̂−k

Wk + λkε2k
, P−k =

[
P̃−k pk

]
.

Substituting in the gain and eliminating positive scalars, yields

(Wk + λkε2k)
{

(εkkk + x̂−k )2I +
ε2k

(Wk + λkε2k)2

[(
P̃−k

)T

HT
k HkP̃−k − λkεkχ̂−k HkP̃−k − λkεk

(
P̃−k

)T

HT
k

(
χ̂−k

)T

+λ2
kε2kχ̂−k

(
χ̂−k

)T
]

+
r

Wk + λkε2k

[(
P̃−k

)T

HT
k

(
χ̂−k

)T

+ χ̂−k HkP̃−k − 2λkεχ̂−k
(
χ̂−k

)T
]

+ χ̂−k
(
χ̂−k

)T
}

> 0.

An equivalent condition is

(Wk + λkε2k)

{
(εkkk + x̂−k )2(Wk + λkε2k)2I +

[
εk

(
P̃−k

)T

HT
k + Wkχ̂−k

] [
εk

(
P̃−k

)T

HT
k + Wkχ̂−k

]T
}

> 0.

(14)
The matrix in brackets is of the form

µ2I + vvT,

which is positive definite when µ 6= 0. As a consequence, the optimal gain produces a minimum performance
index when the scalar Wk + λkε2k is positive. Since

Wk + λkε2k = ±
√

W 2
k + c/l,

the minimum occurs when the plus sign is chosen for the lagrange multiplier. Also, if the minus sign is
chosen, the performance index will be maximized. The same arguments hold true when the measurement is
a vector.
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C. Constrained Minimum Solution

The performance index is minimized and the constraint is satisfied when the optimal gain is chosen as

K∗
k = (P−k HT

k − λkx̂−k εT
k )(Wk + λkεkεT

k )−1, where

λk =
−1
ε̃k

+
‖εT

k W−1
k HkP−k +

(
x̂−k

)T ‖
ε̃k

√
l

.

The asterisk was added to distinguish from the unconstrained Kalman gain Kk

Kk = P−k HkW−1
k ,

the unconstrained a posteriori estimate is x̂+
k

x̂+
k = x̂−k + Kkεk.

The minimizing constrained gain can be rewritten as

K∗
k = Kk +

( √
l

‖x̂+
k ‖

− 1

)
x̂+

k

εT
k W−1

k

ε̃k
.

Property 1. The optimal constrained solution shares the same direction as the optimal unconstrained so-
lution.

Proof. Let x̂∗k be the optimal constrained estimate. Then it follows that

x̂∗k = x̂−k + K∗
kεk = x̂−k + Kkεk +

( √
l

‖x̂+
k ‖

− 1

)
x̂+

k

εT
k W−1

k

ε̃k
εk =

√
l

‖x̂+
k ‖

x̂+
k .

So x̂∗k and x̂+
k have the same direction, but different magnitude. Property 1 states that brute force

normalization is optimal not only in a geometrical sense, but also in a Mean Square Error sense.
The a posteriori estimation error is

e∗ = (I −K∗
kH)e− + K∗

kvk.

Under the assumption that measurement noise is independent of process noise and initial estimation error,
we have

P∗k = E[(I−K∗
kHk)e−(e−)T(I−K∗

kHk)T] + E[K∗
kvkvT

k (K∗)T]. (15)

The optimal gain is a function of the a priori state and the residual, therefore it is a random variable and it
should not be taken out the expectation operator. A similar situation happens in nonlinear Kalman filtering.
In the extended Kalman filter, for example, the measurement mapping matrix is a function of the a priori
state, thus making the gain a function of the a priori state as well. In this work, the Kalman gain is taken
out of the expectation sign, following the EKF solution

P∗k = (I−K∗
kHk)P−k (I−K∗

kHk)T + K∗
kRk (K∗

k)T .

Substituting for K∗
k yields

P∗k = P+
k +

1
ε̃k

(
1−

√
l

‖x̂+
k ‖

)2

x̂+
k

(
x̂+

k

)T
, (16)

which is very similar to the correction given by Choukroun et al.18

When two random variables are related through a nonlinear transformation, it is generally impossible to
relate exclusively their second moments but all the moments of the original variable will contribute in the
second moment of the transformed variable. Therefore, the correction on the covariance can be accurate
or not depending on the distribution. Both the AEKF and MEKF provide estimates with unit norm to
first order,16 therefore the regular covariance P+

k is an approximation accurate to first order. If the AEKF
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necessitates a covariance adjustment, so does the first order MEKF since brute force normalization affects
the multiplicative error as well.

Matrix P∗k is an approximation, and like any approximation might not be satisfactory under certain
circumstances. From Eq. (16) it can be seen that P ∗k can be unsatisfactory for small ε̃k and large norm
errors of the unconstrained estimate. This situation could arise, for example, in the presence of scalar
measurement when the estimation error is large.

VI. Simulation Results

In this section the norm constrained estimation algorithm is tested in a spacecraft attitude simulation.
The true quaternion evolution is obtain from a high-fidelity simulation, together with the angular velocity.
The angular velocity is corrupted with scale and misalignment factors together with white noise and a bias
to simulate a gyro measurement. The gyro measurement is available at 10Hz and is used to propagate the
state. Two vector measurements are assumed to be available, each one is modelled as19

yi = T (Q)ri + ui

where ui is the sensor noise that satisfies

E {ui} = 0, E
{
ujuT

i

}
= σ2

i I3×3 δij .

Simulation results show that the filter covariance is not singular and that matches well the estimation error.
Also the estimate has the desired norm at all times. Figure 3 shows the simulation results.
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Figure 3. Error evolution of the norm constrained quaternion filter.

VII. Conclusion

It was shown that the AEKF does not need to possess a singular covariance and that brute force nor-
malization is optimal under standard nonlinear filtering assumptions. The multiplicative approach has the
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advantages of a covariance with smaller dimension and easy physical interpretation of the error, but is
otherwise not superior to the additive approach.

Appendix

The following calculus identities were used in the derivations:

d/dX (aTXTb) = baT

d/dX (aTXb) = abT

d/dX (aTXTXb) = X(aTb + baT)

d/dX (trace(ATXBT)) = d/dX(trace(BXTA)) = AB

d/dX (trace(XAXT)) = X(A + AT).

Capital bold letters indicate matrices, lowercase bold indicates column vector. The matrix inversion lemma
was also used.

if det(C + VAU) 6= 0 ⇒ (A−1 + UC−1V)−1 = A−AU(C + VAU)−1VA
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