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ON UNDERWEIGHTING LIDAR MEASUREMENTS

Renato Zanetti,∗Kyle J. DeMars,† and Robert H. Bishop‡

Underweighting is an ad hoc technique to reduce the Kalman filter update in order
to compensate for unaccounted second order terms in the Taylor series expansion
of the filter’s residual. Existing underweighting techniques are revisited, these
techniques heavily rely on trial and error to finalize the design. For the case of
underweighting lidar measurements, a new scheme is introduced to aid the tuning
of the filter, obtaining a viable underweighting coefficient bounding the second
order terms.

INTRODUCTION

The extended Kalman filter1 (EKF) is a nonlinear approximation of the optimal linear Kalman fil-
ter.2, 3 In the presence of measurements that are nonlinear functions of the state, the EKF algorithm
expands the filter’s residual (difference between the actual measurement and the estimated measure-
ment) in a Taylor series centered at the a priori state estimate. The EKF truncates the series to first
order, but second order filters also exist.4, 5 It is well known that in the presence of highly accurate
measurements the contribution of the second order terms is essential when the a priori estimation
error covariance is large.5, 6 Possible solutions include implementing a second order Gaussian fil-
ter4, 5 or an Unscented Kalman filter (UKF).7 The UKF is a nonlinear extension to the Kalman filter
capable of retaining the second moments (or higher) of the estimation error distribution. Histori-
cally, second order filters are not used because of their computational cost. The Space Shuttle, for
example, utilizes an ad hoc technique known as underweighting.8, 9

The Space Shuttle underweighting scheme by Bill Lear has the advantages of being simple, easily
tunable, and having a long history of flight. The Gaussian second order filter and the UKF have the
advantage of exactly retaining the second order moments; however, they are computationally more
expensive, and they are dependent on the error distribution. As the name suggests, the Gaussian
second order filter relies on the assumption that all noises are Gaussian. Optimally tuning the
UKF coefficients also depends on the distribution of the noises. Lear’s scheme uses a single scalar
coefficient and tuning is necessary in order to achieve good performance.

The commonly implemented method for the underweighting of measurements for human space
navigation was introduced by Lear10 for the Space Shuttle navigation system. While the use of
second-order filters for human spaceflight navigation was discussed as early as 1964, it was not
until 1971 in anticipation of Shuttle flights that the assumption and use of a linearized relationship
between the state estimate and the measurement was found to be inadequate.11 In response, Lear
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and others developed relationships which accounted for the second-order effects in the measure-
ments.8–10 It was noted that in situations involving large state errors and very precise measurements
application of the standard extended Kalman filter mechanization leads to conditions in which the
state estimation error covariance decreases more rapidly than the actual state errors. Consequently
the extended Kalman filter begins to ignore new measurements even when the measurement residual
is relatively large. Underweighting was introduced to slow down the convergence of the state estima-
tion error covariance thereby addressing the situation in which the error covariance becomes overly
optimistic with respect to the actual state errors. The original work on the application of second-
order correction terms led to the determination of the underweighting method by trial-and-error.10

More recently, Perea, et al. have studied the effects of nonlinearity in sensor fusion problems with
application to relative navigation.12 In doing so, they defined a so-called “bump-up” factor which is
exactly the underweighting factor introduced in Lear.10 However, the bump-up factor is allowed to
persistently affect the Kalman gain which directly influences the obtainable steady-state covariance.
Effectively, the ability to remove the underweighting factor was not introduced.

This work reviews the role of underweighting and its historical introduction. A new method for
determining the underweighting factor is also introduced, together with an automated method for
deciding when the underweighting factor should and should not be applied. By using the Gaussian
approximation and bounding the second order contributions, suggested values for the coefficient are
easily obtained. The proposed technique has the advantage of Lear’s scheme simplicity combined
with the theoretical foundation of the Gaussian second order filter. The result is a simple algorithm
to aid the design of the underweighted EKF.

NEED FOR UNDERWEIGHTING

The update equations used to incorporate measurements in the extended Kalman filter are given
by the state update as1, 13 and provide optimal blending of two quantities: the prior estimate x̂k, and
the measurement yk. These two quantities are combined to obtain the posterior estimate x̂+

k

x̂+
k = x̂k + Kk[yk − h(x̂k)] , (1)

and the state estimation error covariance update as

P+
k = [I−KkH(x̂k)]Pk[I−KkH(x̂k)]T + KkRkKT

k , (2)

where

H(x̂k) :=

[
∂h(xk)
∂xk

∣∣∣∣
xk=x̂k

]
.

The Kalman gain, Kk, is chosen so as to minimize the norm of the a posteriori estimation error,
and is given by

Kk = PkHT(x̂k)[H(x̂k)PkHT(x̂k) + Rk]−1 . (3)

If the gain given in Eq. (3) is applied to the state estimation error covariance of Eq. (2), then the
update equation can be rewritten after some manipulation as

P+
k = [I−KkH(x̂k)]Pk . (4)

This is also seen to be equivalent to

P+
k = Pk −Kk[H(x̂k)PkHT(x̂k) + Rk]KT

k . (5)
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From Eqs. (1) and (5), it is seen that lowering the Kalman gain leads to a smaller update in both the
state estimate and in the state estimation error covariance. Generally we will denote Hk := H(x̂k).

It is well known that the posterior error covariance P+
k is not “greater” than the prior error co-

variance Pk. This fact naturally arises from the fact that the Kalman filter is optimal, and that if
no better estimate was available the posterior estimate would match the prior estimate. When com-
paring two matrices it is not obvious what “greater” means. The Kalman filters optimizes the trace
of the covariance. The trace of the covariance is not a norm; however, in the subset of symmetric
positive and semi-positive definite matrices, it satisfies the three conditions of a generalized matrix
norm (the fourth property, the Schwarz inequality does not hold).

Mathematically the fact that P+
k is not greater than Pk follows immediately from the covariance

update of Eq. (5)
traceP+

k ≤ tracePk. (6)

It is also possible to show that the same property holds true for the spectral norm (the matrix 2 norm
‖ · ‖). The notation P+

k ≤ Pk indicates that P+
k −Pk is negative semi-definite. From the fact that

Kk[H(x̂k)PkHT(x̂k) + Rk]KT
k ≤ 0 (7)

it follows that
P+

k −Pk ≤ −αI, for some α ≤ 0 (8)

Therefore

P+
k ≤ Pk − αI → λ(P+

k ) ≤ λ(Pk)− α → ‖P+
k ‖ ≤ ‖Pk‖. (9)

Using the same arguments, it is possible to show that the posterior estimated-measurement error
covariance HkP+

k HT
k is not greater than the prior HkPkHT

k . Again, both the spectral norm and the
trace can be used, and the inequality easily follows from

HkP+
k HT

k = HkPkHT
k −HkPkHT

k (HkPkHT
k + Rk)−1HkPkHT

k . (10)

Manipulating the previous expression

HkP+
k HT

k = HkPkHT
k (HkPkHT

k + Rk)−1(HkPkHT
k + Rk) (11)

−HkPkHT
k (HkPkHT

k + Rk)−1HkPkHT
k

= HkPkHT
k (HkPkHT

k + Rk)−1Rk. (12)

If HkPkHT
k � Rk then

HkP+
k HT

k ' Rk. (13)

This last equation is of fundamental importance and is the motivation behind underweighting.

Second Order Update

The linear update is assumed to have the form

x̂+
k = x̂k + Kk(yk − ŷk) (14)

which gives the posterior estimation error to be

e+
k = ek + Kk(yk − ŷk) ' ek + Kk [h(x̂k) + Hkek + bk + ηk − ŷk] , (15)
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where bk = 1
2 H(hk, ekeT

k ) is the second order term of the Taylor series expansion of h. The ith

component of bk is given by

bi(tk) =
1
2

eT
k

∂hi(tk)
∂xk∂xk

ek =
1
2

trace(
∂hi(tk)
∂xk∂xk

ekeT
k ) =

1
2
Hi(hk, ekeT

k ), (16)

where hi(tk) is the ith component of hk. To keep the filter unbiased the measurement estimate is
chosen as ŷk = h(x̂k) + b̂k, where b̂k = 1/2H(hk,Pk).

The residual is given by

εk = yk − ŷk = Hkek + 1/2H(hk, ekeT
k )− 1/2H(hk,Pk) + ηk, (17)

where ηk is zero-mean measurement noise with covariance Rk. The second order residual covari-
ance is given by

Wk = HkPkHT
k + Bk + Rk (18)

where
Bk , 1/4 E

{
H(hk, ekeT

k )H(hk, ekeT
k )T

}
− 1/4H(hk,Pk)H(hk,Pk)T. (19)

Under the Gaussian approximation, the ijth component of Bk is given by

Bij =
1
2

trace(H′jPk H′iPk). (20)

If the contribution of the prior estimation error HkPkHT
k to the residuals covariance is much

larger than the contribution of the measurement error Rk, from Eq. (13) the EKF algorithm will pro-
duce HkP+

k HT
k ' Rk. But if Bk is of comparable magnitude of Rk then HkP+

k HT
k ' Rk + Bk.

Therefore a large underestimation of the posterior covariance can occur in the presence of nonlinear-
ities when the estimated-measurement error covariance is much larger than the measurement error
covariance.

UNDERWEIGHT

Underweighting is the process of modifying the residual covariance to reduce the update and
compensate the second order effects. The most straight forward underweighting scheme is to add
an underweighting factor Uk as

Kk = PkHT
k [HkPkHT

k + Rk + Uk]−1 . (21)

A symmetric, positive-definite underweighting factor will therefore increase the “denominator” of
the Kalman gain, thus lowering the applied gain. the obvious choice is to select Uk = Bk, which
is, for example, the current design for the Orion vehicle.14 The advantage of this procedure is
its theoretical foundation. The disadvantages include higher computational costs to calculate the
second order partials, and the hypothesis of Gaussianity of the estimation error. While measurement
noise is usually well represented as Gaussian, process noise usually is very much not Gaussian.
Therefore in practical applications, the estimation error is not always easily represented as Gaussian,
hence matrix Bk needs to be “tuned” to compensate for the Gaussian approximation. The process
of tuning a positive definite matrix is less obvious than tuning a single scalar parameter.
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Scaling the measurement error covariance

Another possible underweighting scheme is to scale the measurement noise, i.e., choosing

Uk = kRk, (22)

where k is positive. This approach has been successfully used;15 however, it is not recommended
from both a conceptual and a practical reason. Underweighting is necessary because of the second
order terms of the Taylor series expansion of the measurement function. This expansion is in terms
of the prior estimation error. Therefore it seems much more natural to express underweighting as
a function of the prior estimation error covariance. It is reasonable to express the second order
contribution as a percentage of the first order contribution. On the other hand the second order
terms are not correlated at all to the measurement error covariance; therefore, choosing a constant
coefficient to scale Rk seems less practical and will probably lead to a more complicated tuning
procedure.

Lear’s Method

The purpose of the underweighting matrix Uk is to account for the higher order terms of the
Taylor series expansion of the nonlinear measurement function. A logical choice is to make Uk a
percentage of the first order term

Uk = kHkPkHT
k . (23)

The Space Shuttle employs underweighting when
√

tracePk > α, where only the position states
are included in the trace. The positive scalar α is a design parameter. For the Space Shuttle, k is
selected to be 0.2 and α is selected to be 1000 meters.10

TUNING AIDS

In this section a technique to aid the tuning of the underweighting coefficient is presented. Al-
though the Gaussian assumption does not necessarily hold, it can still be used as an aid to tune the
coefficient k. On one side there is the second order residual covariance Ws

Ws = HPHT + B + R (24)

on the other the underweighed residual covariance

Wu = (1 + k)HPHT + R, (25)

where all subscripts k were dropped for ease of notation.

Since all the quantities are symmetric semi-positive definite, the Kalman filter metric can be used,
and the desired effect is to have

traceWu ≥ traceWs, (26)

from which we obtain immediately that

k traceHPHT ≥ traceB. (27)

Therefore a practical choice for the underweighting coefficient k is

k = traceB/ traceHPHT. (28)
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Clearly this approach does not have great advantages over choosing U = B, since the second order
matrix B needs to be calculated. However this approach is a valuable design aid, since it can be
used in aiding the choice of a constant k. Underweighting should be applied when the second order
contributions are comparable to the measurement noise, i.e. when

k traceHPHT ≥ z traceR ⇒ traceHPHT ≥ (z/k) traceR (29)

were 0 < z < 1 is a coefficient to be specified.

Often a bound on the Hessian of the measurement function exists, therefore it is not necessary to
compute the second order term of the Taylor series expansion. It is known that the jth term on the
diagonal of B is bounded by16

Bjj ≤
1
2
(‖H′j‖ traceP)2, (30)

therefore
traceB ≤ 1

2
(traceP)2

∑
j

‖H′j‖2 ≤
c

2
(traceP)2, (31)

where c is an upper bound of
∑

j ‖H′j‖2. It follows immediately that the value of k is related to

k =
c

2
(traceP)2

traceHPHT
. (32)

A good rule of thumbs in determining when underweighting should be applied is

c

2
(traceP)2 > z traceR, (33)

were 0 < z < 1 is a coefficient to be specified. Since P is positive semi-definite, the previous
condition is equivalent to

traceP > (
2z
c

traceR)
1
2 . (34)

Notice that Eq. (34) is very similar to Lear’s rule on when to apply underweight.

Equation (32) is derived using upper bounds. These upper bound could be artificially loose if
some precautions are not taken. An artificially loose upper bound could negate the contribution of
this analysis, which is to obtain a good estimate of what k should be in a single run. The most
obvious precaution is to only include in the trace of P the states that actually contribute to the
measurement. If the partial of the measurement with respect to a state is zero that state should not
be included when the trace is calculated. In a spacecraft rendezvous scenario, relative measurements
are often very precise, while the inertial knowledge of the two vehicles is less accurate. Therefore
taking the trace of the absolute uncertainties would lead to a very loose bound, while the trace of
the relative position covariance should be taken.

Simple Lidar Example

Consider a two-spacecraft system with a relative position rrel and relative velocity vrel. The state
is given by rrel, vrel, and the attitude of the chaser vehicle

x =
[
rT
rel vT

rel

]T
.
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The range measurement is given by the range between the two vehicles ρ = ‖rrel‖. The Jacobian
(with respect to position only) is given by

H =
1
ρ
rT
rel.

The Hessian (with respect to position only) is given by

H′ =
1
ρ

(
I− rrelrT

rel/ρ
2
)

= − 1
ρ3

[rrel×]2.

Assume that the standard deviation of the range measurement error is 0.1m, that the lidar turns
on when the two vehicles are 1 kilometer apart, and that the filter is initialized with GPS position
estimate of the chaser and a ground update of the target’s position. The GPS accuracy is assumed
10 meters per axis 1σ, the ground update is assumed to have accuracy 20 meters per axis 1σ, the
two quantities are assumed uncorrelated and the relative position covariance is given by

Prr = 102I3×3 + 202I3×3 = 500I3×3 m
2. (35)

Using the second order filter we obtain

B =
1
2

(500)2 trace(H′H′) =
1
2
250, 000

2
ρ2

= 0.25 m2. (36)

since R = 0.01 m2 it is clear that the second order effects are quite important. Also

HPHT = 500 m2

The second order residual covariance is

Ws = HPHT +B +R = 500.26.

Using the second order filter, the estimate of the posterior relative position uncertainty along the
direction connecting the two vehicles is

HP+HT = HPHT − (HPHT)2/W−1
s = 1.008 m2.

Using the EKF and its first order residual covariance one obtains

HP+HT ' 0.01 m2,

which could create problems to the filter by underestimating the posterior error covariance.

The norm of the Hessian does not need to be bounded because is known analytically ‖H′‖ = 2/ρ.
(Matrix H′ is symmetric with a zero eigenvalue and a repeated eigenvalue at −1/ρ.) A good choice
for the underweighting coefficient is

k =
1

2ρ2

(traceP )2

HPHT
=

0.5
106

[3 (500)]2

500
' 0.00225.

The underweighted residual covariance is

Wu = (1 + k)HPHT +R = 501.135.

Using the underweighted EKF, the estimate of the posterior uncertainty in relative position along
the direction connecting the two vehicles is

HP+HT = HPHT − (HPHT)2/W−1
u ' 1.13 m2.
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NUMERICAL RESULTS

This section presents results from a numerical simulation. For this example the filter is initialized
with the same quantities as those of the previous section. Besides relative position and velocity, the
filter’s state includes the absolute position and velocity of the target, accelerometer bias, chaser’s
attitude, and lidar bias states. The lidar’s range noise and bias are assumed to be range dependent,
varying linearly from 0.01 meters at docking to 0.1 meters at a relative distance of 100 meters. For
any range grater than 100 meters the noise and bias are fixed to the maximum value of 0.1 meters.
Azimuth and elevation bias and noise are both set to 0.1 degrees 1σ. At a relative distance of 50
meters the lidar loses track of the reflector. It is assumed that the lidar takes 2 minutes to scan its
entire field of view (FOV), it is also assumed that the lidar scans its FOV twice before reacquiring.
Therefore for 4 minutes the lidar stops providing measurements. After 4 minutes the lidar resumes
providing measurements. Figures 1 and 2 show the performance of the filter without underweight for
a set of 100 Monte Carlo runs. The blue lines are the 100 samples of the estimation error, the black
lines are the 100 instances of the 3σ filter’s standard deviation. Figure 3 zooms in the position error
after loss of track. It can be seen that when the filter reacquires the uncertainty rapidly decreases.
However the error does not decrease fast enough to follow the covariance. Therefore when the
next measurement becomes available the predicted covariance of the residual is very small, and
the measurement is rejected because the the residual is more than 5 times its predicted standard
deviation. In the absence of residual editing, i.e. if the measurements are accepted regardless of
how big the residuals are, it is likely that the filter would diverge all together. When measurement
are rejected, the filter propagates only and the uncertainty increases.
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Figure 1. Relative Position Performance without Underweight

8



0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.4

−0.2

0

0.2

0.4

0.6

X
 (

m
/s

)

Relative Velocity Inertial Estimation Error

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

0

0.2

0.4

0.6

Y
 (

m
/s

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.4

−0.2

0

0.2

Z
 (

m
/s

)

time (hrs)

Figure 2. Relative Velocity Performance without Underweight
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Figure 3. Relative Position Performance without Underweight

Figures 4 and 5 show the results when underweight is applied. The underweight coefficient in
chosen using Eq. (32) and it is apply when the condition of Eq. (33) are met. Constant z in Eq. (33)
is chosen as 0.1. The underweight coefficient is calculated for the range measurement which is the
measurement that needs underweighting the most. All three components of the lidar measurement
are processed together with the same underweighting coefficient. It can be seen that the proposed
method allows the filter to re-converge after the lidar returns to provide measurements.

0 0.5 1 1.5
−100

0

100

X
 (

m
)

Relative Position Inertial Estimation Error

0 0.5 1 1.5
−100

0

100

Y
 (

m
)

0 0.5 1 1.5
−100

0

100

Z
 (

m
)

time (hrs)

Figure 4. Relative Position Performance with Underweight

10



0 0.5 1 1.5
−0.5

0

0.5

X
 (

m
/s

)

Relative Velocity Inertial Estimation Error

0 0.5 1 1.5
−0.5

0

0.5

Y
 (

m
/s

)

0 0.5 1 1.5
−0.5

0

0.5

Z
 (

m
/s

)

time (hrs)

Figure 5. Relative Velocity Performance with Underweight

CONCLUSIONS

In this work the purpose of underweighting is reviewed. The original underweighting scheme by
Lear is introduced. Other existing schemes are discussed. Techniques to aid the choice of the tuning
parameters of Lear’s underweighting schemes are introduced. A numerical example showing the
need for underweighting and the performance of the proposed method is illustrated. The numerical
results suggest that the proposed solution is a viable method to tune the underweighted extended
Kalman filter in the presence of lidar measurements.
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