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A FRAMEWORK FOR SCALING IN FILTERING AND LINEAR
COVARIANCE ANALYSIS

Christopher D’Souza∗, Renato Zanetti†, and David Woffinden‡

Scaling is used extensively for numerical optimization and trajectory optimization.
Its use in the estimation community is almost nonexistent. This paper creates the
framework for practical scaling in space navigation, in general, and linear covari-
ance analysis, in particular.

INTRODUCTION

It has been known since Apollo that changing the units of elements of the state-space can have a
favorable affect on the accuracy of state estimates. Because of word-length limitations in the Apollo
era, the units of position was chosen to be ‘Earth-radii’. However, it was believed that with 32-bit
and 64-bit processors, the need for such techniques had vanished. In fact, it was believed that the
need for square-root filters had gone the way of slide-rules. However, recent analysis on the NASA
Orion Exploration Missions 1 and 2 (EM-1 and EM-2) trajectories have uncovered a need to revisit
scaling, at the very least for Linear Covariance (LinCov) analysis. It was observed that even with a
square-root implementation in LinCov, that numeric issues arose which introduced unexpected and
initially unexplained behavior in the covariance matrices. In light of this, we began an investigation
into whether these numeric issues could be avoided. We took a page from the optimization commu-
nity where scaling is routinely practiced to avoid numeric issues; in the optimization community the
Hessian is chosen as the focus and source of the scaling parameters.1, 2 We thus began developing
the mathematics of scaling as applied to navigation practice.

In Section 2, the motivation behind scaling is presented. Section 3 contains the mathematics of
scaling as applied to Kalman Filtering. Section 4 extends these mathematics to Linear Covariance
Analysis. Section 5 treats scaling in batch filtering. Section 6 addresses the question of how/what
scaling to choose. Section 7 contains a discussion of scaling philosophies. Section 8 contains an
example from the EM-1 trajectory and the results of scaling are compared with those when scaling
is not performed. Finally, Section 9 contains a few concluding comments.

THE MOTIVATION

One major source of numeric issues in Kalman filtering is ill-conditioning of the covariance
matrix, which is required to be at least positive semidefinite. This is particularly acute in LinCov
where a very large state space is used and the covariance matrices exhibit numerical issues and small
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negative eigenvalues. One measure of the ill-conditioning of the covariance matrix is the condition
number. The condition number of a matrix is defined as the ratio of the largest to the smallest
singular value. For a square, symmetric matrix P, this is equivalent to the ratio of largest to the
smallest eigenvalue, or

cond(P)
∆
=
|λmax(P)|
|λmin(P)|

(1)

A well conditioned covariance matrix has a small condition number and the absolute minimum a
condition number could be is 1.

A spacecraft navigation state usually contains elements such as position (thousands of kilometers)
and sensors scale factor errors (parts per million). As such, a spacecraft LinCov analysis routinely
exhibits covariance matrices with condition numbers approaching 1014, which are dangerously close
to the double float accuracy of 16 digits of accuracy. This results in a loss of precision (in the
benign case), or worse, in negative eigenvalues. Even the use of square root factorization methods
(P = SST ) does not solve this problem since

cond(S) =
√

cond(P) (2)

and if the condition number of the (full) covariance matrix is, say, on the order of 1014, the condition
number of the (square-root) factorized covariance matrix is merely 107, an improvement but still a
large number.

The UDU factorization doesn’t improve this situation at all because the D matrix has the same
condition number as the original. The situation with the UDU factorization is somewhat ameliorated
because the U matrix has a lower condition number; however the D matrix still retains a high
condition number.

This has exposed the need for a scaling methodology that improves the numeric issues associated
with the condition number of the covariance matrix by transforming the problem into one which has
better numerics.

THE MATHEMATICS OF SCALING IN KALMAN FILTERING

Given a n× 1 state x, the scaled state, xs (which is also of dimension n) is defined as

xs = Ms x ⇐⇒ x = M−1
s xs ⇐⇒ ∂xs

∂x
= Ms (3)

where the non-singular n× n matrix Ms is the scaling matrix. The variation of x thus becomes

δx = M−1
s δxs (4)

and the covariance Ps is∗

P = M−1
s Ps M−T

s (5)

∗That this is the case can be seen as follows:

P = E[δxδxT ] = E[M−1
s δxsδx

T
s M

−T
s ] = M−1

s E[δxsδx
T
s ]M

−T
s = M−1

s Ps M
−T
s
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or

Ps = Ms P MT
s (6)

Given an affine nonlinear system of the form

ẋ = f(x, t) + B(t)w (7)

the perturbed system can be expressed as

δẋ = A(t)δx + B(t)w (8)

where A(t) and δx are

A(t) =
∂f(x, t)

∂x

∣∣∣∣
x=x̂

(9)

δx = x− x̂ (10)

In terms of δxs we find that Eq. (8) is

δẋs = MsA(t)M−1
s δxs + MsB(t)w (11)

so that we get

δẋs = As(t)δxs + Bs(t)w (12)

where As(t) and Bs(t) are

As(t) = Ms A(t) M−1
s (13)

Bs(t) = Ms B(t) (14)

Given Φ(t, t0) which satisfies

Φ̇(t, t0) = A(t)Φ(t0, t0), Φ(t, t0) = I (15)

we can surmise that there is a Φs(t, t0) which satisfies

Φ̇s(t, t0) = As(t)Φs(t, t0), Φs(t, t0) = I (16)

so that

Φs(t, t0) = MsΦ(t0, t0)M−1
s (17)

To see that this is the case, begin with the Taylor series approximation to Φ(t, t0) as

Φ(t, t0) = I + A(t)(t− t0) +
1

2!
A2(t)(t− t0)2 +

1

3!
A3(t)(t− t0)3 + · · · (18)
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and premultiply the above by Ms and postmultiply by M−1
s to get

MsΦ(t, t0)M−1
s = I + MsA(t)M−1

s · (t− t0) +
1

2!
MsA(t) ·A(t)M−1

s · (t− t0)2

+
1

3!
MsA(t) ·A(t) ·A(t)M−1

s · (t− t0)3 + · · ·

= I + MsA(t)M−1
s · (t− t0) +

1

2!
MsA(t)M−1

s MsA(t)M−1
s · (t− t0)2

+
1

3!
MsA(t)M−1

s MsA(t)M−1
s MsA(t)M−1

s · (t− t0)3 + · · ·

= I + As(t)(t− t0) +
1

2!
A2

s(t)(t− t0)2 +
1

3!
A3

s(t)(t− t0)3 + · · ·

= Φs(t, t0) (19)

Recall that the covariance propagation equations are

Ṗ(t) = A(t)P(t) + P(t)AT (t) + B(t)Q BT (t) (20)

whose solution is

P(t) = Φ(t, t0)P(t0)ΦT (t, t0) + Q(t) (21)

where Q(t) is

Q(t) =

∫ t

t0

Φ(τ, t)B(τ)Q BT (τ)ΦT (τ, t) dτ (22)

With this in hand, differentiate Eq. (6) to get

Ṗs(t) = Ms Ṗ(t) MT
s

= MsA(t)P(t)MT
s + MsP(t)AT (t)MT

s + MsB(t)Q BT (t)MT
s

= MsA(t)M−1
s MsP(t)MT

s + MsP(t)MT
s M−T

s AT (t)MT
s

+MsB(t)Q BT (t)MT
s

= As(t)Ps(t) + Ps(t)A
T
s (t) + Bs(t)Q BT

s (t) (23)

The solution of the above equation is

Ps(t) = Φs(t, t0)Ps(t0)ΦT
s (t, t0) + Qs(t) (24)

where Qs(t) is

Qs(t) =

∫ t

t0

Φs(τ, t)Bs(τ)Q BT
s (τ)ΦT

s (τ, t) dτ (25)

which can be further expressed as

Qs(t) =

∫ t

t0

MsΦ(τ, t)M−1
s MsB(τ)Q BT (τ)M−T

s MT
s ΦT (τ, t)MT

s dτ

= Ms

(∫ t

t0

Φ(τ, t)B(τ)Q BT (τ)ΦT (τ, t) dτ

)
MT

s

= MsQ(t)MT
s (26)
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which is consistent with Eq. (6). Thus, the scaled covariance propagation (time update) equation
takes the form

P−ks = Φs(tk, tk−1)P+
k−1s

ΦT
s (tk, tk−1) + Qks (27)

where

Qks = Qs(tk) (28)

For the case of square-root filters (and covariance matrices), the scaled square-root covariance
propagation (time update) equation takes the form

S−ks = qr
([

Φs(tk, tk−1)S+
k−1s

... MsQ
1/2
k

])
(29)

The (nonlinear) measurement equation, which is affine in the measurement noise, can be ex-
pressed as

z(t) = h(x, t) + ν(t) (30)

whose linearized counterpart is

δz(t) = H(t)δx + ν(t) (31)

Proceeding as before we find

δz(t) = H(t) M−1
s δxs + ν(t) (32)

so that the linearized measurement equation becomes

δz(t) = Hs(t)δxs + ν(t) (33)

where

Hs(t)
∆
= H(t)M−1

s (34)

The Kalman Gain at time tk is defined as

Kk
∆
= P−k HT

k

(
HkP

−
k HT

k + Rk

)−1
(35)

which can be expressed in terms of the scaled quantities as

Kk = M−1
s P−skH

T
sk

(
HskP

−
sk

HT
sk

+ Rk

)−1
(36)

so that upon defining Kks as

Kks
∆
= MsKk (37)

Kks = P−ksH
T
ks

(
HksP

−
ks

HT
ks + Rk

)−1
(38)
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and recalling that covariance update is

P+
k = (I−KkHk) P−k (I−KkHk)T + KkRkK

T
k (39)

Upon substituting for Pk from Eq. (5), for Hk from Eq. (34) and Kk from Eq. (37) and simplifying,
the scaled covariance update is

P+
ks

= (I−KksHks) P−ks (I−KksHks)
T + KksRkK

T
ks (40)

Finally, for the scaled state update we begin with the Kalman state update as

δx+
k = δx−k + Kk

(
δzk −Hkδx

−
k

)
(41)

Substituting for δx from Eq. (4), for Hk from Eq. (34) and Kk from Eq. (37), we get

δx+
ks

= δx−ks + Kks

(
δzk −Hksδx

−
ks

)
(42)

Scaling and the Square Root Filter

We define the square root of the covariance matrix as

P
∆
= S ST and Ps

∆
= Ss ST

s (43)

so that the relationship between the scaled and unscaled (square-root) covariance as

S = M−1
s Ss (44)

or

Ss = Ms S (45)

As was stated in Section 2, the condition number of S is

cond(S) =
√

cond(P) (46)

and therefore

cond(Ss) =
√

cond(Ps) (47)

Thus, whereas the very act of formulating the navigation filter in terms of the square root reduces
the condition number by the square root of the condition number of the (full) covariance, scaling
the square root of the covariance matrix further reduces the condition number of the square root of
the covariance matrix.

To demonstrate this, given a covariance matrix (obtained from a LinCov analysis EM-1 radiometric-
based onboard covariance at Mission Elapsed Time = 170 hours) whose condition number

cond(P) = 2.009× 1020 (48)

the condition number of the square root of the covariance matrix is

cond(S) = 1.417× 1010 (49)

If ‘powers-of-10’ scaling is performed,

cond(Ps) = 1.327× 106 (50)

and the condition number of the scaled square root covariance is

cond(Ss) = 1.152× 103 (51)
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Scaling and the UDUT Filter

From Eq. (6) we recall that

Ps = Ms P MT
s

and substituting for P = U D UT we get

Ps = Us Ds UT
s = Ms U D UT MT

s (52)

Now, inserting M−1
s Ms (and it’s transpose) in the middle of the above equation we get

Us Ds UT
s = Ms U

(
M−1

s Ms

)
D
(
MT

s M−T
s

)
UT MT

s (53)

so that we find that

Us
∆
= Ms U M−1

s (54)

Ds
∆
= Ms D MT

s (55)

If Ms is diagonal, we retain the structure of the UDUT factorization, particularly the upper trian-
gular nature of the U matrix (with 1’s on the main diagonal) and the diagonal structure of the D
matrix. This is the heart of scaling in the UDUT filter.

One method of scaling that emerges directly from the UDUT factorization paradigm is to use the
D matrix itself to determine the scaling factors so that the entries of the diagonal Ms matrix are

Msii =
1√
Dii

(56)

If this is done the condition number of Ds is precisely 1. The condition number of the Us matrix is
similarly reduced.

In order to demonstrate the efficacy of scaling in theUDUT filter, as in the square root filter, given
a covariance matrix (obtained from a LinCov analysis EM-1 radiometric-based onboard covariance
at MET = 170 hours) whose condition number is

cond(P) = 2.009× 1020 (57)

the condition number of the U and D factors of the covariance matrix is

cond(U) = 7.697× 1016 (58)

cond(D) = 1.992× 1016 (59)

With the same (diagonal, ‘powers-of-ten’) scaling as in the previous section, the scaled U and D
factors of the covariance matrix are

cond(Us) = 8.761× 101 (60)

cond(Ds) = 2.919× 104 (61)

At the very least, this demonstrates that scaling significantly reduces the condition number of the
U and D factors of the covariance matrix.
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THE APPLICATION TO LINEAR COVARIANCE ANALYSIS

With the above in hand, we can use the same machinery as is already available in the LinCov
framework to recast the covariance equations in scaled form without affecting the computation of
the partials and process noise matrix. In the current LinCov framework, we compute Φ(t, t0),
Q(t), and H(t). We now recast the scaled analogs (Φs(t, t0), Qs(t), and Hs(t)), in terms of the
aforementioned quantities (Φ(t, t0), Q(t), and H(t)) as

Φs(t, t0) = MsΦ(t, t0)M−1
s (62)

Qs(t) = MsQ(t)MT
s (63)

Hs(t) = H(t) M−1
s (64)

with

Ps(t0) = MsP(t0)MT
s (65)

and

P(t) = M−1
s Ps(t)M

−T
s (66)

The augmented and onboard covariance measurement updates (dropping the k subscript) require
careful consideration. Begin with the onboard measurement Kalman Gain matrix

Konb = P−onbH
T
onb

(
HonbP

−
onbH

T
onb + Ronb

)−1
(67)

so that the scaled onboard measurement Kalman Gain matrix (in terms of the prior development) is

Konbs = P−onbsH
T
onbs

(
HonbsP

−
onbs

HT
onbs + Ronb

)−1
(68)

where Konbs , Ponbs , and Honbs are defined in terms of the onboard scaling matrix, Monbs , as

Ponbs
∆
= MonbsPonbM

T
onbs (69)

Konbs
∆
= MonbsKonb (70)

Honbs
∆
= HonbM

−1
onbs

(71)

With this in hand, the scaled onboard covariance matrix measurement update is

P+
onbs

= (I−KonbsHonbs) P−onbs (I−KonbsHonbs)
T + KonbsRonbK

T
onbs (72)

and defining the square-root of the covariance matrix as

P−onbs
∆
= S−onbs (S−onbs)

T (73)

P+
onbs

∆
= S+

onbs
(S+

onbs
)T (74)

the scaled onboard square-root covariance matrix measurement update is

S+
onbs

= qr
([

(I−KonbsHonbs) S−onbs
... KonbsR

1/2
onb

])
(75)
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The augmented covariance matrix measurement update is

P+
aug =

[
I 0

KonbHenv (I−KonbHnav)

]
P−aug

[
I 0

KonbHenv (I−KonbHnav)

]T
+

[
0

Konb

]
Ronb

[
0

Konb

]T
(76)

and the scaled augmented covariance matrix measurement update is

P+
augs = Maug

[
I 0

M−1
onbs

KonbsHenv

(
I−M−1

onbs
KonbsHnav

) ]M−1
augP

−
augsM

−T
aug

×
[

I 0

M−1
onbs

KonbsHenv

(
I−M−1

onbs
KonbsHnav

) ]T MT
aug

+Maug

[
0

M−1
onbs

Konbs

]
Ronb

[
0

M−1
onbs

Konbs

]T
MT

aug (77)

where we note that the unscaled Henv and Hnav appear in the above equation.

Defining Aaug and Baug as

Aaug
∆
= Maug

[
I 0

M−1
onbs

KonbsHenv

(
I−M−1

onbs
KonbsHnav

) ]M−1
aug (78)

Baug
∆
= Maug

[
0

M−1
onbs

Konbs

]
(79)

the scaled augmented covariance matrix measurement update becomes

P+
augs = AaugP

−
augsA

T
aug + BaugRonbBTaug (80)

and defining the square-root of the augmented covariance matrix as

P−augs
∆
= S−augs (S−augs)

T (81)

P+
augs

∆
= S+

augs (S+
augs)

T (82)

the scaled augmented square-root covariance matrix measurement update becomes

S+
augs = qr

([
AaugS

−
augs

... BaugR1/2
onb

])
(83)

THE APPLICATION TO BATCH FILTERING

A similar process can be carried out for the case of batch filtering. To this end, begin with the
normal equation (with a priori information at an epoch t0) after processing m measurements is

x̂0 =

(
P
−1
0 +

m∑
i=1

HT
i R−1

i Hi

)−1
 m∑

j=1

HT
j R−1

j + P
−1
0 x̄0

 (84)
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As before we recall the relationship between the scaled and unscaled quantities as

xs = Ms x

Ps = Ms P MT
s

Hs = H M−1
s

so the normal equation becomes

x̂s0 = Ms

[
MT

s P
−1
s0 Ms +

m∑
i=1

MT
s HT

siR
−1
i HsiMs

]−1
 m∑

j=1

MT
s HT

sjR
−1
j + MT

s P
−1
s0 MsM

−1
s x̄s0

 (85)

which, after factoring the MT
s and Ms out of the square bracket and cancelling, leads to

x̂s0 =

(
P
−1
s0 +

m∑
i=1

HT
siR

−1
i Hsi

)−1
 m∑

j=1

HT
sjR

−1
j + P

−1
s0 x̄s0

 (86)

CHOICE OF THE SCALING MATRIX, MS

So far we haven’t said anything about how to choose the scaling matrix, Ms. It turns out that
there is no limit to the choice of the scaling matrix, so long as it is is invertible. Whereas in Apollo,
they scaled by the so-called ‘canonical’ units (Earth radii for distance and earth rotation rate for
time), there is no need to restrict ourselves to this. Wouldn’t it better to let the problem itself dictate
the scaling parameters instead of imposing it a priori? To this end, each component of, say, position
would be allowed to have a different scaling if the problem dictates it. These have been recently
called ‘designer units’.2 In fact, there is no requirement that the scaling matrix needs to be diagonal
– it can be a full matrix if needed. We ought to allow the covariance matrix to dictate the scaling
parameters. But how to choose a proper scaling matrix?

Three choices rise to the forefront for consideration: ‘Powers of 10’ scaling, eigenvalue decom-
position scaling, and Cholesky scaling. Each will be considered in turn.

‘Powers of 10’ Scaling

This rather straightforward scaling constructs a diagonal matrix whose elements are scaled by the
power of the diagonal elements of the covariance matrix as

msii = 10−floor(log10(
√
Pii) (87)

m−1
sii = 10floor(log10(

√
Pii) (88)

In the above equation,m−1
sii populates the (diagonal) elements of the diagonal matrix M−1

s . Whereas
this type of scaling is simple, it does not take into account the correlations of the covariance matrix.
As well, while it does reduce the condition number of the transformed covariance matrix, it does not,
in general, reduce it to anywhere near 1. However, it does provide a great deal of insight/intuition
in scaling the covariance matrix by only scaling by powers of 10 (essentially changing units from,
say, meters to kilometers).
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Eigenvalue Decomposition Scaling

This type of scaling is an eigenvalue decomposition of the covariance matrix and takes into ac-
count the correlations of the covariance matrix. Thus, if the eigenvalues and eigenvectors of P are
placed in D and V (P = VDVT , with VVT = I), respectively, with D being a diagonal matrix
whose entries are the eigenvalues (usually sorted from smallest to largest), the scaling matrix in this
paradigm is

Ms = D−1/2VT (89)

and

M−1
s = V

√
D (90)

This has the benefit of reducing the condition number of the scaled covariance matrix to 1 at the
cost of a loss of intuition as to the elements of the full scaling matrix. That the condition number of
the transformed matrix is 1 is seen because

Ps = Ms P MT
s = D−1/2 VT

(
V D VT

)
V D−1/2 = D−1/2 D D−1/2 = I (91)

and the condition number of the identity matrix is 1. As well, the transformed covariance matrix at
the time of the conditioning is the identity matrix, a rather intriguing result and something we were
after. So this is an ‘optimal’ scaling matrix if we are seeking the optimal condition number of the
covariance matrix.

Cholesky Scaling

This scaling is a Cholesky decomposition of the covariance matrix. Recall that the Cholesky
decomposition of the covariance matrix is

P = S ST (92)

where S is the square-root of the covariance matrix, so that were we to choose the scaling matrix as

Ms = S−1 (93)

the scaled covariance matrix becomes

Ps = Ms P MT
s = S−1S STS−T = I (94)

whose condition number is 1. Generally this scaling matrix is a triangular (upper or lower) matrix,
but it doesn’t have to be, for there are an infinite number of square root factorizations of a square
matrix.

SCALING PHILOSOPHIES

A myriad of scaling methodologies can be brought to bear on conditioning the covariance matri-
ces. A short list includes: initial scaling, continuous scaling, scaling at the time of measurements,
and occasional scaling.

Initial scaling is just as it sounds: scale the onboard and the augmented covariance matrices once
at the initial time. Continuous scaling denotes computing and applying the scaling matrices at every
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time step. Alternatively, the scaling can be calculated and applied only at the time of measurements.
Finally, the scaling matrices can be computed and applied at discrete/isolated epochs. These epochs
may include (but are not limited to) times of the maneuvers. Any or all of these methodologies can
be utilized.

We note that the goal is to have a well-conditioned covariance matrix (i.e. close to 1). Limited
experience to date has demonstrated that keeping the condition number of the covariance matrices
to be under 105 is the sweet spot. Heroic efforts to reduce the condition number below this are not
worth the sweat.

As well, our limited experience with scaling a system with a large state-space indicates that eigen-
value scaling, while it may be intuitive to our sensibilities, actually does not work well because of
the condition number of the matrices at hand – ironically the very issue we were trying to remedy.
Our experience has shown that if the condition number of the covariance matrix is large, the compu-
tation of the eigenvalues and eigenvectors could themselves introduce errors to the scaling matrices.
In light of this, it is not recommended that eigenvalue scaling be utilized, as much as one may want
to use it.

THE EFFECT OF SCALING ON EM-1 LINEAR COVARIANCE ANALYSIS

To demonstrate the efficacy of this methodology, an EM-1 Trajectory (with optical navigation)
was analyzed. In this case, scaling was performed for Paug and Ponboard at the initial time and
after that it was performed only on Ponboard. To this end, periodic scaling was performed whenever
a measurement was taken and whenever a maneuver was performed. The scaling chosen was the
‘Powers of 10’ paradigm.

Figure 1 shows the effect of scaling on Ponb; the left panel contains the condition number of
the unscaled onboard covariance matrix while the right panel contains the condition number of the
scaled onboard covariance matrix. Note that the condition number for the scaled Paug is 5 orders
of magnitude less than for the unscaled Paug. Nevertheless, the magnitude of the condition number
for either is still troublesome. Likewise Figure 2 contains the condition number for the Unscaled
(left) and Scaled Ponboard. Here we note that the condition number for the scaled Ponboard is 10
orders of magnitude less than that of the unscaled Ponboard.

Figure 3 shows the effect of scaling on Saug; the left panel contains the condition number of
the unscaled onboard square-root covariance matrix, while the right panel contains the condition
number of the scaled onboard square-root covariance matrix. Note that the condition number for
the scaled Saug is about 5 orders of magnitude less than for the unscaled Saug.

Figure 4 shows the effect of scaling on Sonboard; the left panel contains the condition number of
the unscaled onboard square-root covariance matrix, while the right panel contains the condition
number of the scaled onboard square-root covariance matrix. Note that the condition number for
the scaled Sonboard is about 7 orders of magnitude less than for the unscaled Sonboard. In particular,
since we have particularly focused on the condition number of Sonboard with respect to scaling, the
condition number of the scaled Sonboard remains below 10!

We now investigate the effects of scaling on the EI parameters, particularly the four EI constraints.
Figure 5 shows the comparison of the downrange versus flight path angle delivery statistics. There
is a very noticeable difference between the two, indicating that scaling does significantly affect
the performance of the solution. Figure 6 contains the comparison between effect on the entry
interface velocity magnitude versus downrange position delivery ellipses the unscaled and scaled
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Figure 1. Condition Number for Unscaled and Scaled Paug
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Figure 2. Condition Number for Unscaled and Scaled Ponboard
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Figure 3. Condition Number for Unscaled and Scaled Saug
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Figure 4. Condition Number for Unscaled and Scaled Sonboard

Figure 5. Comparison of Entry Interface Downrange Position Vs Flight Path Angle
Delivery Ellipses for Unscaled and Scaled Covariance Matrix
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Figure 6. Comparison of Entry Interface Velocity Magnitude Vs Downrange Position
Delivery Ellipses for Unscaled and Scaled Covariance Matrix

covariance formulations Figure 7 contains the comparison between effect on the entry interface
velocity magnitude versus flight path angle delivery ellipses the unscaled and scaled covariance
formulations Figure 8 contains the comparison between effect on the entry interface out-of-plane
delivery ellipses the unscaled and scaled covariance formulations

We note that in Figures 6-8, the scaled and unscaled formulations show no discernible difference;
that is most definitely not the case in Figure 5 where there is a noticeable difference. To further drive
home the point, the Downrange Position Vs Flight Path Angle delivery constraint is the driving
constraint and any improvement in the conditioning is significant. As well the delivery ellipse for
the scaled formulation is ‘ellipse-like’ in contrast to its unscaled counterpart whose ellipse is rather
linear. How do we know that the scaled formulation is the correct one? Simply because the condition
numbers of the scaled Saug and Sonboard are substantially smaller than their unscaled counterparts.

This also introduces a new metric which ought to be considered: the time-history of the condition
number of the covariance matrix along the trajectory. Usually, navigators are just interested in
ensuring that the covariance matrix stays positive definite. Now we may have a need to look at
the condition number of the covariance matrix as well!!! This is most certainly the case for linear
covariance analysis.

CONCLUSIONS

This paper presents a development of scaling for Kalman filtering and linear covariance analysis
(as well as for batch filtering). It is recommended that ‘Powers of 10’ or ‘Cholesky’ scaling (or a
combination of the two) be used as a matter of course whenever the condition numbers rise above,
say, 108 in order to preclude numerical errors in representing the covariance and hence the state up-
date. Significant improvements in the analysis of the NASA Orion Exploration Mission 1 trajectory
are observed.
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Figure 7. Comparison of Entry Interface Velocity Magnitude Vs Downrange Position
Delivery Ellipses for Unscaled and Scaled Covariance Matrix

Figure 8. Comparison of Entry Out-of-Plane Position Vs Out-of-Plane Velocity De-
livery Ellipses for Unscaled and Scaled Covariance Matrix
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