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A COMPARISON OF FIXED-TERMINAL DIRECTION GUIDANCE
LAWS FOR SPACECRAFT RENDEZVOUS

Renato Zanetti∗ and Fred D. Clark†

This work examines and compares two fixed-terminal direction guidance laws to
rendezvous with a target in circular orbit. Both laws exactly satisfy the constraint.
The first algorithm is based on the optimization of a quadratic performance index.
The second algorithm has as many constraints as degrees of freedom and is the
guidance law utilized by the Space Shuttle. Similarities and differences between
the two approaches are discussed and numerical simulations are presented.

INTRODUCTION

Many space applications involve rendezvous with a vehicle in circular orbit. A subset of these
applications requires the visiting vehicle to approach with a constant direction as seen by the target.
This is the case for vehicles approaching the International Space Station (ISS), for example. By
approaching it in a straight line the crew onboard the station can easily monitor non-nominal situ-
ations. The Space Shuttle carries a rendezvous and proximity operations program (RPOP) [1] that
employs a straight-line guidance law called glideslope [2]. Vehicles visiting the ISS usually employ
a fixed direction terminal approach, including the H-II transfer vehicle (HTV) [3], the automated
transfer vehicle (ATV) [4], and Cygnus [5]. In this work an optimal constant direction guidance law
to rendezvous with a target in circular orbit is presented and compared to the RPOP guidance.

Much work exists in the general area of optimal space trajectories; an illustrative early work is that
by Lawden [6]. Carter studied minimum delta-v maneuvers to rendezvous with a vehicle in circular
orbit [7]. The approach used by Carter and by many authors after him is to optimize the system
subject to the linearized dynamics, the so-called Clohessy-Wiltshire equations [8]. The rendezvous
strategy by Lembeck and Prussing [9] is to add to an initial impulsive phase a low-thrust phase.
Since continuous thrust is necessary to guide on the glideslope, this work also assumes low-thrust
propulsion.

Various aspects of this problem were generalized. Carter and Humi study the impulsive ren-
dezvous in proximity of a general Keplerian orbit [10] while Carter studies the continuous thrust
case [11]. Power limitations and thrust bounds are also studied [12]. Guelman and Aleshin [13]
develop a two-stage solution for the fixed terminal-approach direction. The first stage consists of
an unconstrained optimization that puts the vehicle on the glideslope. The second stage is along the
glideslope. In this work only the terminal phase is considered, when the spacecraft is required to fly
on the glideslope.
∗Senior Member of the Technical Staff, Vehicle Dynamics and Controls, The Charles Stark Draper Laboratory, 17629 El
Camino Real, Suite 470, Houston, Texas, 77058. rzanetti@draper.com
†Principal Member of the Technical Staff, Vehicle Dynamics and Controls, The Charles Stark Draper Laboratory, 17629
El Camino Real, Suite 470, Houston, Texas, 77058. fclark@draper.com

1



The laws compared in this work differ considerably from the work of Guelman and Aleshin.
In their work the constraint is not enforced directly, but the squared distance to the glideslope is
added to the performance index with a weighting parameter. The bigger the parameter the closer
the constraint is to be satisfied. In this work the constraint is satisfied exactly. Another difference
between the two works is that Guelman and Aleshin solve their optimization numerically, while
closed-form solutions are used in this paper.

RPOP REFERENCE TRAJECTORY

The RPOP reference trajectory is recalculated by the guidance algorithm at each call. It is as-
sumed that the desired out-of-plane component is zero. Clohessy-Wiltshire (CW) equations are
used to express the dynamics of the chaser vehicle in proximity of a target in circular orbit. The
local vertical-local horizontal (LVLH) frame used in this derivation is centered at the target, has
the x-axis along the velocity vector and the z-axis along the radial direction pointing down. In this
coordinate system the linearized equations of relative motion are given by

ẍ = 2ωż + ux (1)

ÿ = −ω2y + uy (2)

z̈ = 3ω2z − 2ωẋ+ uz, (3)

these equations are valid when x, y, and z are CG-to-CG coordinates. The control acceleration is
given by u = [ux uy uz]

T, and ω is the orbital angular velocity of the target. Since the out-of-
plane component is assumed to be zero its corresponding equation is neglected in calculating the
reference trajectory.

The chaser CG-to-target CG distance, rccg/tcg, is written in terms of the target docking port to
Chaser docking port distance, rcdp/tdp, as

rccg/tcg = rcdp/tdp + rcdp/ccg − rtdp/tcg = rcdp/tdp + roffset. (4)

The glideslope angle θ is defined as the angle between the direction of the approach and the positive
x-axis, counted positive using the right-hand rule around the negative y-axis. The direction along the
line of approach is called radial r, and its in-plane perpendicular is called transversal t. Assuming a
constant relative attitude the derivative of roffset is zero and we have that

xccg/tcg = r cos θ − t sin θ + xoffset (5)

zccg/tcg = r sin θ + t cos θ + zoffset (6)

ux = cos θur − sin θut (7)

uz = cos θut + sin θur. (8)

Since the transversal distance between docking ports is constant and equal to zero, the CW equations
can be rewritten as

ut = 2ωṙ − 3ω2 cos θ(r sin θ + zoffset) (9)

ur = r̈ − 3ω2 sin θ(r sin θ − zoffset) (10)

A requirement of the Shuttle reference trajectory is that minimum or no plume impingement of the
target should occur. To meet this requirement the vehicle needs to thrust only along the transversal
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direction. The RPOP algorithm includes an additional parameter that represents the canting of the
Space Shuttle’s jet. This parameter is needed when the ∆v obtaned is biased with respect to the
commanded ∆v. For the purpose of this discussion the canting angle is unnecessary and assumed
to be zero.

Assuming no thrust in the radial direction Eq. (10) becomes

r̈ − 3ω2r sin2 θ = 3ω2zoffset sin θ. (11)

assuming sin θ 6= 0 the solution of Eq. (11) is given by

r = c1 cosh(mt) + c2 sinh(mt) + c3, (12)

where

m =
√

3(sin θ)ω (13)

c1 = r0 − c3 (14)

c2 =
ṙ0

m
(15)

c3 =
−zoffset

sin θ
. (16)

For a given initial range and range rate, the trajectory is completely determined. The initial range is
given while the initial rate is obtained by back-propagating from the desired final condition. At the
final time we have that

rf = c1 cosh(mtf ) +
ṙ0

m
sinh(mtf ) + c3 (17)

ṙf = c1m sinh(mtf ) + ṙ0 cosh(mtf ), (18)

therefore ṙ0 must satisfy

ṙ0 = m
rf − c3 − c1 cosh(mtf )

sinh(mtf )
(19)

and

ṙ0 =
ṙf −mc1 sinh(mtf )

cosh(mtf )
, (20)

or

(rf − c3) cosh(mtf ) =
ṙf
m

sinh(mtf ) + c1, (21)

the final time can be found solving for tf in Eq. (21). RPOP solves the non-zero canting angle
case of Eq. (21) using the Newton-Raphson method. For the zero canting angle case an analytical
solution exist and is given by

tf =


[sinh−1(−mr0 coshφ/ṙf )− φ]/m, φ = tanh−1(−mrf/ṙf ) if |mrf/ṙf | < 1

[cosh−1(r0/rf )]/m, rf 6= 0 if ṙf = 0

[cosh−1(−mr0 sinhφ/ṙf )− φ]/m, φ = tanh−1[−ṙf/(mṙf )] if |mrf/ṙf | > 1

(22)
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Substituting tf into either of Eqs. (19) or (20) the initial rate can be found.

For V-bar approaches sin θ = 0 and Eq. (11) reduces to

r̈ = 0 (23)

which is a constant relative velocity approach with solution

r = r0 + ṙf t, (24)

therefore a closing final rate is necessary for a solution to exist.

Since the Space Shuttle employs large thrusters and almost impulsive maneuvers the commanded
trajectory is not the nominal trajectory. Instead a targeting algorithm is called at fixed intervals,
typically one to three minutes. An impulsive maneuver is computed such that the vehicle is placed
on the nominal trajectory the next time the targeting algorithm is called.

OPTIMAL GUIDANCE

For a non-impulsive, power limited propulsion system, an appropriate performance index is (see
for example [14] and citations therein)

J =
1

2

∫ tf

0
uTu dt, (25)

subject to the linear dynamics governed by the CW equations and constrained to be on the glides-
lope. The performance index of Eq. (25) is particularly useful for continuous low-thrust systems; for
impulsive maneuvers a minimum delta-v solution is more appropriate. To remain on the glideslope
at all times it is necessary to continuously thrust in the direction perpendicular to the glideslope. For
electric propulsion systems Eq. (25) is also a minimum fuel solution. For any thruster the expelled
mass is given by

ṁe =
T

Isp g0
, (26)

where T is the desired thrust magnitude and g0 is constant. For an electric thruster the specific
impulse is given by

Isp =
2P

g0T
, (27)

where P is the output power. The input electrical power is greater than P and depends on the
efficiency of the thruster. While the output power is not always constant with a throttleable engine,
for the purpose of this work it is assumed it is. By combining the last two equations it results that
the total expelled mass is proportional to the square of the thrust

ṁe =
T 2

2P
. (28)

For low thrust vehicles when the expelled mass is negligible with respect to the total mass it follows
that the expelled mass is proportional to the square of the commanded acceleration.

In the glideslope frame the equations of motion are

r̈ = 2ωṫ+ 3ω2r sin2 θ + 3ω2t sin θ cos θ + ur (29)

ẗ = −2ωṙ + 3ω2r sin θ cos θ + 3ω2t cos2 θ + ut (30)

ÿ = −ω2y + uy, (31)
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where zero offset is assumed. In order to approach the target in a straight line it is necessary that
t = ṫ = ẗ = 0, hence

r̈ = 3ω2r sin2 θ + ur (32)

0 = −2ωṙ + 3ω2r sin θ cos θ + ut (33)

ÿ = −ω2y + uy, (34)

it follows that the optimal transversal acceleration is given by

u∗t = 2ωṙ − 3ω2r sin θ cos θ. (35)

It is assumed that the desired approach direction lies in the plane of motion of the target’s ve-
hicle. Most vehicles employ the strategy of eliminating the out-of-plane component early in the
rendezvous phase. Since the in and out-of-plane dynamics are decoupled from each other, the resid-
ual out-of-plane error can be controlled independently. The performance index to be minimized
becomes

J =
1

2

∫ tf

0
[u2
r + u2

t ]dt =
1

2

∫ tf

0
[u2
r + (2ωṙ − 3ω2r sin θ cos θ)2]dt (36)

subject to the kinematic constraint

ṙ = v (37)

v̇ = 3ω2r sin2 θ + ur, (38)

and the boundary conditions

r(0) = r0 r(tf ) = rf v(0) = v0 v(tf ) = vf . (39)

The Hamiltonian is given by

H =
1

2
[u2
r + (2ωṙ − 3ω2r sin θ cos θ)2] + λrv + λv(3ω

2r sin2 θ + ur), (40)

the costate equations are given by

λ̇r = −∂H
∂r

= −(2ωṙ − 3ω2r sin θ cos θ)(−3ω2 sin θ cos θ)− 3ω2 sin2 θλv (41)

λ̇v = −∂H
∂v

= −2ω(2ωṙ − 3ω2r sin θ cos θ)− λr (42)

and the control optimality condition is given by

∂H

∂ur
= 0 = ur + λv. (43)

Therefore the optimal control is given by ur = −λv and augmenting states and costates in a single
vector it follows that

d

dt


r
v
λr
λv

 =
d

dt
x = Ax, (44)
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where

A =


0 1 0 0

3ω2 sin2 θ 0 0 −1

−9ω4 sin2 θ cos2 θ 6ω3 sin θ cos θ 0 −3ω2 sin2 θ

6ω3 sin θ cos θ −4ω2 −1 0

 . (45)

Partitioning the state transition matrix of A in four 2-by-2 blocks

ΦA(τ, t0) = eA(τ−t0) =

[
Φrr(τ − t0) Φrλ(τ − t0)
Φλr(τ − t0) Φλλ(τ − t0)

]
(46)

the initial values of the costates are determined to be[
λr(t0)
λv(t0)

]
= Φ−1

rλ (tf − t0)

([
rf
vf

]
−Φrr(tf − t0)

[
r0

v0

])
, (47)

and the optimal control history is given by

u∗r(t) =
[
0 0 0 −1

]
ΦA(t, t0) x(t0). (48)

To show that the solution is a minimum the Weierstrass and Legendre-Clebsch conditions are
tested [15]. The Weierstrass condition requires that the Hamiltonian evaluated at any admissible
comparison control ur is larger than the Hamiltonian evaluated at the optimal control u∗r . From
Eq. (40)

H(ur)−H(u∗r) = [0.5u2
r + λvur − 0.5(u∗r)

2 − λvu∗r ], (49)

substituting λv = −u∗r
H(ur)−H(u∗r) =

1

2
(ur − u∗r)2 ≥ 0, (50)

therefore the Weierstrass condition is satisfied.

The Legendre-Clebsch condition requires that the second order partial of the Hamiltonian with
respect to the optimal control is positive definite. From Eq. (40)

∂2H

∂u2
r

= 1, (51)

hence the Legendre-Clebsch condition is also satisfied and the solution is indeed a minimum.

IMPLEMENTATION CONSIDERATIONS

The most computationally demanding part of the algorithm is the computation of the matrix
exponential in order to obtain the state transition matrix. However, applying the Cayley-Hamilton
theorem vastly reduces the complexity. The matrix exponential of the 4-by-4 matrix A can be
computed as

eA∆t =
3∑

k=0

αkA
k, (52)

where the coefficients αk are calculated solving

eλi∆t =
3∑

k=0

αkλ
k
i , (53)
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where λi is the ith eigenvalue of A.

Since A is constant, so are its four eigenvalues, which can be computed a priori and are given by

λi = ±
(

3 sin2 θ + 2±
√

9 sin4 θ + 3 sin2 θ + 4
)1/2

ω. (54)

Using vector notation

λ =
[
λ1 λ2 λ3 λ4

]T
α =

[
α0 α1 α2 α3

]T (55)

it follows that

α = Λ−1eλ∆t, (56)

where ew represents a vector whose components are the exponentials of the components of vector
w. The four columns of Λ are given by the eigenvalues elevated to the zeroeth, first, second, and
third power, respectively. The inverse of Λ needs to be computed only once and can be a parameter
uploaded from the ground.

A practical implementation should not assume that t, z and their derivatives are always zero but
dispersions should be corrected. An inner loop controller needs to be implemented to cancel the
out-of-plane and transversal components. Alternatively the control thrust can be chosen using a
simple PD controller

ur = u∗r − 2ωṫ− 3ω2 sin θ cos θt (57)

ut = u∗t − 3ω2 cos2 θt− kpt− kdṫ (58)

uy = −kyẏ. (59)

where the asterisk represents the previously defined values from the guidance law. The positive
coefficients kp, kd, and ky are design parameters to dampen the dispersions.

THREE SPECIAL CASES

Three scenarios deserve special attention, these cases are the common glideslope angles that
possess an analytic solution. These cases are the V-bar approach (θ = 0) in which the chaser starts
directly in front of the target, the minus V-bar approach (θ = π) in which the chaser starts directly
behind the target, and the R-bar approach (θ = π/2) in which the chaser starts directly below the
target. A minus R-bar approach also possesses an analytical solution, but in practice this kind of
approach is not used very often.

The V-bar approach is the most common Space Shuttle rendezvous strategy. Eq. (54) shows that
A has repeated eigenvalues only when sin θ = 0. Under this circumstance the repeated eigenvalues
are equal to zero and the other two are given by ±2ω. The system of Eq. (53) is not solvable in this
situation, the equation relative to the repeated eigenvalue needs to be replaced by its derivative

λi e
λi∆t =

3∑
k=1

αkλ
k−1
i . (60)
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Solving this modified set of equations results in

α0 = 1 (61)

α1 = ∆t (62)

α2 =
cosh(2ω∆t)− 1

4ω2
(63)

α3 =
sinh(2ω∆t)− 2ω∆t

8ω3
. (64)

Matrix A is given by

A =


0 1 0 0
0 0 0 −1
0 0 0 0

0 −4ω2 −1 0

 (65)

and its state transition matrix is given by

Φ(∆t) =


1 ∆t+ 4ω2α3 α3 −α2

0 1 + 4ω2α2 α2 −∆t− 4ω2α3

0 0 1 0

0 −4ω2∆t− 16ω4α3 −∆t− 4ω2α3 1 + 4ω2α2

 . (66)

The state transition matrix for the minus V-bar approach (which is used by ATV and some Rus-
sian vehicles) is also given by Eq. (66). To implement the algorithm the inverse of the top-right
component of Φ(∆t) is also needed, for the V-bar approach this inverse is given by

Φ−1
rλ (∆t) =

1

−α3(∆t+ 4ω2α3) + α2
2

[
−∆t− 4ω2α3 α2

−α2 α3

]
. (67)

The R-bar approach consists in going to the ISS from below and it is used by HTV and Cygnus.
Matrix A is given by

A =


0 1 0 0

3ω2 0 0 −1

0 0 0 −3ω2

0 −4ω2 −1 0

 , (68)

its eigenvalues are ±ω and ±3ω, the coefficients are given by

α0 =
− cosh(3ωt) + 9 cosh(ωt)

8
(69)

α1 =
−(1/3) sinh(3ωt) + 9 sinh(ωt)

8ω
(70)

α2 =
cosh(3ωt)− cosh(ωt)

8ω2
(71)

α3 =
sinh(3ωt)− 3 sinh(ωt)

24ω3
(72)

and the state transition matrix is

Φ(∆t) =


α0 + 3ω2α2 α1 + 7ω2α3 α3 −α2

3ω2α1 + 21ω4α3 α0 + 7ω2α2 α2 −α1 − 10ω2α3

36ω6α3 12ω4α2 α0 + 3ω2α2 −3ω2α1 − 21ω4α3

−12ω4α2 −4ω2α1 − 40ω4α3 −α1 − 7ω2α3 α0 + 7ω2α2

 .
(73)

8



Finally the inverse of the top right component of the state transition matrix is given by

Φ−1
rλ (∆t) =

1

−α3(∆t+ 10ω2α3) + α2
2

[
−α1 − 10ω2α3 α2

−α2 α3

]
. (74)

GUIDANCE LAWS COMPARISON

The first question we want to answer is whether the Space Shuttle V-bar approach is optimal
under some condition. Once again, for the purpose of this discussion we ignore the canting of the
orbiter’s jets. The Shuttle’s approach starts around 300 ft on the V-bar with a prescribed range rate
at docking of 0.1 ft/s. Therefore glideslope’s nominal trajectory is a constant-rate approach at 0.1
ft/s lasting 3000 seconds. Fig. 1 shows a comparison of the range profile of a vehicle being guided
by glideslope and by the optimal guidance law. The figure shows that while for glideslope the range
changes linearly, the optimal solution aquires In both cases the guidance law is called each second
and is driven by perfect navigation. In all the examples the simulation uses nonlinear dynamics as-
suming central gravity only. The total integrated acceleration for the glideslope trajectory is 0.9433
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Figure 1. Comparison of V-bar Approaches

mm/s2 and 0.0168 mm/s2 for the optimal solution. However the Shuttle does not use low-thrust,
therefore total delta-V is a more appropriate performance index. The total delta-V required to fly
the glideslope trajectory is 0.2372 m/s, while the optimal solution requires 0.2235 m/s, a 5.78%
improvement. The above scenario assumes the vehicle is placed on the V-bar with zero relative ve-
locity. In the situation in which the vehicle is placed there with an initial 0.1 ft/s closing velocity the
solutions of the two guidance laws coincide. While the Space Shuttle could be placed on the V-bar
with a specefied velocity, the same strategy cannot be applied to other vehicles. The Cygnus vehicle
[16], for example, needs to come to a stop at 250 m on the R-bar, and wait there until it obtains
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authority to proceed from the ground. Therefore the approach starts from a zero relative velocity
state. When this type of R-bar approach is simulated (with 15 m final range and zero final range
rate) the total integrated velocity is 0.24 m/s2 for glideslope and 0.0012 m/s2 for the optimal solu-
tion. However this fact does not translate into better performance when high-thrust is used, since
the optimal solution requires a total delta-V of 1.187 m/s while glideslope requires only 1.021 m/s.
That comparison is done using a transfer time of 1791 s for the optimal solution, which coincides
with the glideslope transfer time (which is not specifiable).

CONCLUSIONS

A common approach for the final phase of spacecraft rendezvous is to approach the target along
a straight line, the so-called glideslope. In this paper a new fixed terminal direction guidance law
to rendezvous with a target vehicle in circular orbit is introduced. The guidance law is derived by
minimizing a commonly employed performance index that assumes finite thrust and is particularly
adapt for electric thrusters. The guidance law is provided in closed-form assuming the vehicle
starts from the glideslope. Calculation of a matrix exponential is required to compute the optimal
acceleration. By performing some of the calculations a priori the total computational cost can be
greatly reduced. For some commonly-employed glideslope angles the matrix exponential can be
written analytically which allows for further reduction of the onboard computations.

The guidance law is obtained in closed-form by employing linearized dynamics, numerical ex-
amples demonstrate the validity of this assumption. A fixed direction approach requires continuous
thrust and is less efficient than other approach strategies. For this reason this kind of guidance law
is only used at the very end of the rendezvous phase when the vehicles are in close proximities and
the linearization assumptions provide a very good approximation.

The proposed guidance law is compared to the another fixed-direction guidance law called glides-
lope.
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