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Abstract—A novel adaptive nonlinear estimator is presented
to accurately incorporate nonlinear/non-Gaussian measurement
in a Bayesian framework. The underlying algorithm relies on a
Gaussian Mixture Model (GMM) to approximate the probability
density function (pdf) of the state conditioned on all current
and past measurement. Automatic mixture components refining
is performed to ensure that the posterior GMM approximation
of the pdf accurately represents the true distribution.

I. INTRODUCTION

Bayesian estimation is concerned with optimizing some
performance index of the posterior probability density func-
tion (pdf) of an unknown random vector x. The posterior
distribution is the distribution of x conditioned on the value
of all current and past available measurements y. A widely
used Bayesian estimator is the minimum mean square error
estimator, where the estimate is given by the conditional mean
of x given y. For linear systems with Gaussian distributions,
the posterior remains Gaussian with conditional mean and
covariance matrix obtained through the Kalman filter equa-
tions. An analytical solution for non-Gaussian distributions is
usually impossible to obtain, but Alspach and Sorenson [1]
show that for linear systems where the noise is not Gaussian
but exactly represented as a sum of Gaussians, a closed form
representation of the conditional pdf is possible. Distributions
are almost never exactly represented as sum of Gaussians and
systems of interest are almost never linear; however every pdf
can be approximated arbitrary well as Gaussian sum since the
Dirac delta function is equivalent to a Gaussian distribution
with zero variance; hence an arbitrary pdf px(x) over the
support S can be written as

px(x)=

∫
S
px(µ)δ(x− µ)dµ

= lim
M→∞

M∑
i=1

px(x) n(x;µi,P/M)

'
M∑
i=1

wi n(x;µi,Pi) (1)

where P/M goes to zero as M → ∞ and n(x;µ,P)
represents a Gaussian distribution with argument x, mean µ,
and covariance matrix P. The actual covariance matrices Pi of
the GMM components are chosen to best approximate px(x).
Expressing the pdf as the sum of many components with small
covariance matrices has two benefits; first it allows us to better

approximate it as in Eq. (1), secondly it divides the overall
space where x is likely to be into many small regions. In
a situation when these regions are small enough such that
in each of them the measurement and dynamic functions
are effectively linear, then the original algorithm of Alspach
and Sorenson [1] proves to be an excellent mean to perform
nonlinear filtering.

In practical situations, we often do not initially know where
the dynamics and the measurements will take the conditional
distribution. Therefore, it is often difficult or impossible
to approximate the initial distribution of x as GMM such
that the conditional distribution after a long time and many
measurements is adequately represented by the components
originally selected to represent the distribution at the initial
time. Reference [2] first introduces a method to adaptably
split GMM components in order to better represent the pdf
during the propagation phase. In [2] the refinement is obtained
by splitting components along the direction of maximum
uncertainty (i.e. along the eigenvector corresponding to the
largest eigenvalue of the component’s covariance matrix).
Other works that adopt the same philosophy are Refs. [3],
[4], and [5]. Ref. [6] determines the splitting direction based
on the second moment of a set of residual-weighted sigma
points. Ref. [7] and our prior work [8] use directional splitting
based on the second order contributions to a Taylor series
centered at the estimate. Another approach is Ref. [9] that
evaluates an integral cost over the eigendirections. In [10], the
need to split is based on the uncertainty and the direction is
chosen as the one that maximizes nonlinearity of the model
dynamics. Ref. [11] uses a second-order divided difference
term evaluated at a certain distance from the mean in order to
quantify nonlinearity. This nonlinearity index is evaluated for
a set of directions (including spectral directions for the prior
covariance as well as some that are specific to the underlying
dynamics model), and the direction for splitting is chosen as
the one that maximizes the nonlinearity out of the elements
of the finite set. In this work the direction to split is obtained
integrating the full nonlinearity but a new scheme is devised to
perform such an integration only once to obtain the maximum
direction of nonlinearity out of all possible directions. As
mentioned before, existing works perform calculations many
times along several predetermined directions and choose the
maximum nonlinearity out of this finite set.

Other approaches to solve a similar problem exist that rely



on studies of the validity of the Gaussian approximation [12].
Rather than looking at the direction of maximum non-linearity,
a split can occur in the direction of maximum non-Gaussianity.
Ref. [13] detects non-Gaussianity by checking if the absolute
value of the third central moment is above a predetermined
threshold, when this condition occurs, splitting occurs the
splitting direction is chosen as one of the elements of the state
vector, i.e. along one of the elements of the canonical base.
The idea is that a Gaussian distribution undergoing a nonlinear
transformation becomes non-Gaussian, and the non-Gaussian
posterior is best represented by refining components in the
direction of maximum non-Gaussianity. Another approach is
to resample the entire distribution (Refs. [14] and [15]) i.e. the
authors do not split individual components in one-dimensional
directions, rather they resample the entire space subject to a
matrix inequality constraint that insures the covariance of each
of the components stays below a desired tunable value.

II. PROBLEM FORMULATION

Assume a random vector x is distributed with a known
Gaussian prior x ∼ n(x; x̂−, P−), assume also that a non-
linear measurement y = h(x) + η is available where the
additive noise η is zero-man and Gaussian with covariance
matrix R. Using the properties of the Dirac delta function, the
prior can be expressed as

n(x; x̂−, P−)=∫
...

∫
n(ξ; x̂−, P−)δ(x1 − ξ1)...δ(xn − ξn)dξ1...dξn

(2)

which, with some abuse of notation, we rewrite as

n(x; x̂−, P−) =

∫
n(ξ; x̂−, P−)δ(x− ξ)dξ (3)

The posterior distribution px|y(x|y) can be calculated exactly
as [1]

px|y(x|y)=κ(y)
∫
n(y − h(ξ);0, R)n(ξ; x̂−, P−)δ(x− ξ)dξ

=

∫
w(ξ,y) n(ξ; x̂−, P−) δ(x− ξ)dξ (4)

where κ(y) is a normalizing constant and

w(ξ,y) = κ(y) n(y − h(ξ);0, R)

We have effectively expressed the prior as an infinite summa-
tion of infinitesimal Gaussians. Since they are infinitesimal,
the measurement linearization holds exactly, and therefore we
have an exact formula for the posterior distribution. The goal
of this paper is to approximate this exact posterior distribution
with a finite number of finite Gaussian components:

px|y(x|y) '
M∑
i=1

w+
i (y) n(x; x̂

+
i , P

+
i ) (5)

where the subscripts + refer to posterior quantities.
The strategy employed is to:

1) Detect when the spread of the prior is wide enough
such that the nonlinearities of the measurement function
are not negligible and regular extended Kalman filter
update does not provide a satisfactory approximation of
the posterior

2) Establish the direction where the nonlinearities are most
pronounced given the spread of the prior in that direction

3) Approximate the prior as a sum of Gaussians with means
placed along the direction of greatest nonlinearities

4) Utilize the Gaussian Mixture Model algorithm to obtain
the posterior

This paper presents new methodologies to solve the first two
points above, and utilizes existing techniques for the last two.
For item 3 we use the library developed in Ref. [16]. For item
4 we use extended Kalman filter (EKF) based Gaussian sum
filters. In the Gaussian, linear case the posterior distribution
is exactly calculated with the Kalman filter equation. In the
Gaussian, nonlinear measurement case, the EKF approximates
the posterior when the prior covariance matrix is “small”
enough such that the system is almost linear. Other linear
estimators for nonlinear systems such as the unscented Kalman
filter (UKF), the Quadrature Filter, the Gaussian Second
Order Filter (GSOF), etc., are approximations of the Linear
Minimum Mean Square Estimator, they are not approximations
of the posterior density. They become approximations of the
posterior density when the prior and posterior are almost
Gaussian and the measurement is almost linear, e.g. when the
prior covariance is “small”. One could use one of these non-
EKF algorithms in each of the Gaussian components, these
algorithms are generally more robust to nonlinearities than the
EKF and hence they would probably require less components.
However, the goal of this paper is to approximate the true
posterior; in order to do so we must calculate the posterior
of each of the components, not the LMMSE estimate, but the
actual conditional pdf. Given a Gaussian prior, a linear update
will provide a good approximation of the posterior when the
measurement is almost linear, e.g. when the covariance is
small enough, which are the conditions under which the EKF
performs well. In conditions under which the EKF would fail
and other algorithms such as the UKF or GSOF would not,
we know that the latter would produce a good approximation
of the LMMSE estimate, not of the posterior distribution.
Therefore, in this work there is no advantage in using any
linear update scheme for the individual components other than
the EKF, which we shall therefore use.

III. PROPOSED SOLUTION

In the prior section we described the steps that form the
proposed solution to the problem. We detailed the reasons
why for Step 4 above we use an EKF-based GMM filter. For
step 3 we utilize the 3-component split library proposed in
[16] and detailed in Table I. Finally, steps 2 and 1 of the
proposed algorithms are novel contributions of this work and
are presented in the next two subsections.



A. Splitting Direction

Given a nonlinear function h(x) ∈ <m of a vector x ∈ <n

and its Jacobian H(x) ∈ <m×n, the goal is to find the
direction u ∈ <n that most diverges from the linear approxi-
mation of h(x) centered at x = m at distance of N standard
deviations (σ’s) from m (N ∈ <+). That is, we want to find
the maximum of

max
u

1

2

∥∥h(Nu+m)− h(m)−H(m) Nu
∥∥2 (6)

subject to the contraint that u must lie on the unit-standard
deviation ellipse described by covariance matrix P ; that is u
must satisfy

uTP−1u = 1 (7)

Hence, the augmented performance index is given by

J (u, N) = max
u

[ 1

2

∥∥h(Nu+m)− h(m)−H(m) N u
∥∥2

+ λ
(
uTP−1u− 1

)]
(8)

The optimal solution is obtained starting from the known
optimal value of u for N = 0 and integrating an ordinary
differential equation of u with N as the independent variable.

# Weight Mean Std Dev
0 0.676659600665207 0 0.784394767127563
1 0.161670199667396 1.09080001170817 0.784394767127563
2 0.161670199667396 -1.09080001170817 0.784394767127563

TABLE I
UNIVARIATE STANDARD NORMAL SPLIT LIBRARY

Define

v(u, N) = h(Nu+m)− h(m)−H(m) Nu (9)

the first order condition is given by

J ′(u, N)=
d

du
J (u, N)=v(u, N)TA(u, N) + λ uTP−1=0

(10)
where

A(u, N) =
dv(u, N)

du
= [H(Nu+m)−H(m)] N (11)

Post-multiplying Eq. (10) by u we obtain

v(u, N)TA(u, N) u+ λ uTP−1u = 0 (12)

substituting the constrain, we obtain

λ = −v(u, N)TA(u, N) u (13)

and the first order condition reduces to

J ′(u, N) = w(u, N)T
(
I − uuTP−1

)
= 0 (14)

where
w(u, N)T = v(u, N)TA(u, N) (15)

We can now take variations of this equation in the form

dJ ′(u, N) =
dJ ′(u, N)

du
du+

dJ ′(u, N)

dN
dN = 0 (16)

where

dJ ′(u, N)

du
=
(
I − P−1uuT

) dw(u, N)

du
− (w(u, N)Tu) P−1 − P−1 u w(u, N)T

(17)
dw(u, N)

du
= A(u, N)T

dv(u, N)

du

+N2
m∑
i=1

Di(Nu+m) v(u, N) (18)

dv(u, N)

du
= A(u, N) (19)

Di(x) =
d2hi(x)

dx dxT
(20)

where hi is the i-th component of vector h and Di is the
Hessian of hi.

Similarly

dJ ′(u, N)

dN
=
(
I − P−1uuT

) dw(u, N)

dN
(21)

dw(u, N)

dN
= A(u, N)T

dv(u, N)

dN
+
dA(u, N)T

dN
v(u, N)

(22)
dv(u, N)

dN
= H(Nu+m) u−H(m) u (23)

dA(u, N)

dN
= [H(Nu+m)−H(m)] +NuT

m∑
i=1

Di(Nu+m)

(24)

and we finally have that

du(N)

dN
= −

(
dJ ′(u, N)

du

)−1
dJ ′(u, N)

dN
(25)

This differential equation can be integrated in the domain
[0, N ] initializing u(0) as the eigenvector corresponding to
the maximum eigenvalue of

∑m
i=1Di(m) scaled to satisfy

u(0)T P−1u(0) = 1. For infinitesimal values N = dN , the
function hi(Nu + m) can be expressed as its second order
Taylor series, therefore

hi(dNu+m) = hi(m) +Hi(m) u dN +
1

2
uTDi(m) u dN2

(26)

J (u, dN) = max
u

1

2

[ 1

2
uT
( m∑

i=1

Di(m)
)
u dN2+

+ λ
(
uTP−1u− 1

)]
(27)

therefore the optimizing value of J (u, dN) is the
maximum eigenvalue of

∑m
i=1Di(m) scaled to satisfy

u(dN)T P−1 u(dN) = 1.
Notice that it is necessary to check for the case where both

dJ ′
du and dJ ′

dN are zero, which is a situation where the first
order condition is stationary and du

dN is zero.



As an example, consider the case when

h(x) = aT x+ xTT (x)TB T (x) x (28)

B =

[
2 0
0 1

]
(29)

T (x) =

[
cos(xTx) sin(xTx)
− sin(xTx) cos(xTx)

]
(30)

the center of the series is taken as m = 0 and P = I , hence
to satisfy uT P−1u we have that u must be of unit length.
The partials are given by

H(x) = aT + 2xTT (x)TB
(
T (x) + 2T ′(x) xxT

)
(31)

T ′(x) =

[
− sin(xTx) cos(xTx)
− cos(xTx) − sin(xTx)

]
(32)

H(0) = aT (33)

D(x) = 2
(
T (x) + 2T ′(x) xxT

)T
B
(
T (x) + 2T ′(x)xxT

)
+ 4

[
xTT ′(x)TB T (x)x

]
I + 4T ′(x)TB T (x)xxT

+ 4xxTT (x)TBTT ′(x)− 8xxTT (x)TB T (x)xxT

D(0) = 2 B (34)

u(0) =

[
1
0

]
(35)

so that,

h(Nu)− h(0)−H(0)Nu = N2 uTT (Nu)TB T (Nu) u

(36)

T (Nu) =

[
cos(N2 uTu) sin(N2 uTu)
− sin(N2 uTu) cos(N2 uTu)

]
(37)

The maximum is attained when u is equal to[
cos(N2) sin(N2)

]T
.

Choosing N = 3, the optimal value is given by uM =
[−0.9111 0.4121]T and numerical integration using the ap-
proach proposed here gives [−0.9113 0.4118]T.

B. Splitting Criteria

Consider a Kalman update from a linear measurement

y = H x+ η (38)

where the prior state estimate and error covariance are denoted
by x̂− and P− while the posteriors are denoted with the
superscript +. The measurement residual ε and its covariance
matrix W are given by

ε = y −Hx̂− (39)

W = HP−HT +R (40)

where R is the estimation error covariance matrix. The poste-
rior residual and covariance are

ε+ = y −Hx̂+ (41)

W+ = RW−1R (42)

it is easy to show that in this linear scenario

εTW−1ε = (ε+)T(W+)−1ε+ (43)

Assume that the prior is split into several components with
weights, mean, and covariance given by wi, x̂−i and P−i ,
respectively. The split is such that wi and x̂−i are symmetric
about x̂−, i.e. ∀i ∃j : wi = wj ∧ x̂−i − x̂− = x̂− − x̂−j . The
split is also assumed to be covariance preserving

P− + x̂− (x̂−)T =
∑
i

wi (P
−
i + x̂−i (x̂−i )

T) (44)

furthermore define di = x̂i− x̂ and assume all P−i are equal,
hence

P− = P−i +
∑
i

wi d
−
i (d−i )

T (45)

Because the measurement is linear, the posterior will be
approximately the same whether the prior is processed directly
with the Kalman update or as a Gaussian sum.

As an example, consider a Gaussian prior with mean and
covariance given by

x̂− =
[
−10 0

]T
(46)

P− =

[
1 0
0 4

]
(47)

and a linear measurement given by

yL = HLx+ η (48)

HL =
[
−1 0

]
(49)

η ' n(ξ; 0, .01) (50)

assume a measurement value of yL = 8.5 and that the
prior is split in three along the y-axis, using DeMars’ library
values [2]. Fig. 1 shows the prior distributions (dashed lines),
both the overall distribution and the three components of
the GMM approximation are shown. The figure depicts 1σ
ellipses, in the GMM case they are scaled by their component
weight. Because the system is linear and Gaussian, the Kalman
update is adequate and its posterior closely matches the GMM
posterior. The top GMM component has a posterior mean of
[−8.5149 2.1150].

Fig. 1. Splitting Criteria Example for Linear Update



Going back to the theoretical development, under the sym-
metry and equal covariance assumptions, all components have
the same residuals covariance Wi = HP−i H

T + R and we
have that for each component of the GMM

(ε+i )
T(W+

i )−1ε+i = (ε−Hdi)
TW−1i (ε−Hdi) (51)

In the numerical example

ε = yL −HLx̂ = −1.5 (52)

P−i =

[
1 0
0 1.804

]
(53)

x̂−0 = x̂ = [−10 0]T x̂−1,2 = [−10 ± 2.115]T (54)

ε0,1,2 = ε = −1.5 (55)

The ratio of the square residual with its variance is 2.2277 =
1.49262, about at the 1.5σ level.

Let’s now assume a nonlinear measurement

y = h(x) + η (56)

the EKF performs an update assuming the Jacobian H can be
approximated as constant in the domain of interest; its value
evaluated at the prior mean is used

H(x̂−) =
∂h

∂x

∣∣∣∣
x=x̂−

(57)

To check the validity of the EKF assumption one could look
at the difference in posterior estimates for a given component
i when the Kalman gain is calculated with H(x̂−) and with
H(x̂−i ), i.e. the mean of the prior and the center of the compo-
nent. Let x̂+

i be the posterior estimate of the i-th component
obtained calculating the Kalman gain with H(x̂−i ), when the
linearization assumption holds, the following quantities should
be approximately the same

(y−h(x̂+
i ))

TR−1
(
H(x̂−i )P

−
i H(x̂−i )

T+R
)
R−1(y−h(x̂+

i ))

≈ (y−h(x̂−)−H(x̂−)d)T
(
H(x̂−)P−i H(x̂−)T+R

)−1
(y−h(x̂−)−H(x̂−)d) (58)

If these two quantities are significantly different, we conclude
that the EKF approximation is not valid and a split should
occur. A threshold is used to determine if the split should
occur. For a scalar measurement the ratio is simply the square
of the residual divided by its variance which provides an easy
and intuitive meaning of the threshold for tuning purposes.
When the measurement is an m-dimensional vector, the ratio
is simply the sum of m scalar ratios.

Expanding on the numerical example, assume the same prior
as before but consider now the nonlinear measurement case
when

yN = h(x) + η =
√
xTx+ η (59)

HN (x) = xT/‖x‖ (60)

HN (x̂−) =
[
−1 0

]
(61)

Fig. 2. Splitting Criteria Example for Non-Linear Update

once again yN = 8.5, an EKF gives an update identical to the
linear case shown in Fig. 1. Fig. 2 compares the EKF update
with the GMM update.

Let’s look at the component on the top and let’s identify it
as component 1. We have that

x̂−1 =
[
−10 2.115

]T
(62)

P−1 =

[
1 0
0 1.804

]
(63)

w1 = 0.2252 (64)

ε1 = yN − ‖x̂−1 ‖ = −1.7212 (65)

W1 = H(x̂−1 )PiH(x̂−1 )
T +R = 1.0444 (66)

ε21/W1 = 2.8366 = 1.68422 (67)

ε = yN − ‖x̂−‖ = −1.5 (68)

W = H(x̂−)PiH(x̂−)T +R = 1.01 (69)(
ε2 −H(x̂−)(x̂−1 − x̂−)

)
/W = 2.1543 = 1.46782 (70)

The posterior values are

x̂+
1 =

[
−8.3877 1.4998

]T
(71)

P+
1 =

[
0.0835 0.3497
0.3497 1.6706

]
(72)

w+
1 = 0.1884 (73)

ε+1 = yN − ‖x̂+
1 ‖ = −0.0207 (74)

(ε+1 )
2/(RW−11 R) = 4.4768 = 2.11582 (75)

The linearization assumption puts the posterior residual at
1.4678σ, while re-evaluating the Jacobian puts it at 2.1158σ
an increase of more than 33% indicating the linearization
assumption is not adequate in this situation.

C. Algorithm Summary

In summary, our proposed algorithm executes the following
steps. First the direction of maximum uncertainty is deter-
mined integrating Eq. (25). The integration is performed from



N = 0 to N = 1.0908, which is the number of standard
deviations at which the mean of a Gaussian component is
placed after the split, as shown in Table I. The rationale is that
after determining where the components will be (in terms of
number of standard deviations), the goal is to find the direction
with the most nonlinearity at that given distance. Once the
direction of maximum nonlinearity is established, we perform
the candidate split in that direction; if the EKF update of the
outer component is within a pre-established threshold from
the update performed with the linearized assumption, i.e. the
almost equal sign in Eq. (58) holds, no split occurs. Otherwise
a split occurs. These steps are taken recursively.

IV. NUMERICAL EXAMPLE

A set of simulations was performed utilizing the algo-
rithm outlined above. For each, a single range measurement
was processed, and splitting of the prior was implemented
automatically until the splitting criterion function for every
component in the approximated prior was less than a threshold.
The criterion used was that in Eq. (58) but weighted by the
squared weight of the component in question. Such weighting
is efficient in that it prevents splitting of components irrelevant
to the overall mixture, and it was seen to improve performance.
In automation, every split was taken into 3 components at a
time.

A. Example I.

Example I. corresponds to a range measurement of 1,
measurement noise variance of 0.01, and single Gaussian prior
with the following moments:

x̂−i =

[
−3
0

]
, P− =

[
1 −0.1
−0.1 0.4

]
(76)

A correlated prior covariance was used to avoid the specific
case where the second direction maximizing the performance
index is already known to be the one 180◦ from the first. Fig.
3 shows contours for the given prior and measurement where
points along a contour of the same color correspond to equal
values of the pdf and likelihood function respectively. Fig. 4
shows contours of the true posterior distribution that the GMM
approximating solution seeks to replicate.

Fig. 3. Prior and Measurement Distribution for Example I.

The EKF and GMM solutions are provided in Fig. 5. Since
the true posterior clearly cannot be well described by its first

Fig. 4. True Posterior for Example I.

two moments, the EKF solution fails to capture the necessary
curvature. However, the GMM solution is found to more
accurately adapt to nonlinearities and therefore provides a
better estimate of the truth. 67 components were used for this
solution.

Fig. 5. EKF and GMM Posteriors for Example I.

B. Example II.

Example II. involves a larger range measurement of 4 with
the same measurement noise variance but prior moments of:

x̂−i =

[
0.2
0.1

]
, P− =

[
0.5 0.2
0.2 4

]
(77)

Contour plots for this new prior and measurement are provided
in Fig. 6. The multiplicative treatment of the prior and likeli-
hood in Bayesian updating produces here the different shape
shown in Fig. 7.

Fig. 6. Prior and Measurement Distribution for Example II.



Fig. 7. True Posterior for Example II.

It is one for which the EKF solution is even less equipped
to match, as seen in Fig. 8. The GMM solution, with 99 com-
ponents, drastically better approximated the truth in this case.
Doing so provides not only improved filtering of the current
measurement but also a much better basis for prediction due
to a fuller representation of the posterior pdf.

Fig. 8. EKF and GMM Posteriors for Example II.

V. CONCLUSIONS

In this work, a method was developed for Bayesian filtering
of a nonlinear measurement using Gaussian mixture model
representations of the prior. Adding component to a prior
Gaussian distribution can be accomplished by the process of
splitting, or placing new components along certain directions
or dimensions of the state space. The splitting direction was
found by examining differences betweens linear approximation
(centered at the prior mean) of the measurement function
and full nonlinear values. Knowing that the splitting library
utilized places the highest weighted components (apart from
the mean) at a certain number of standard deviations from the
mean, the splitting direction was found to be the one along
that particular covariance contour whose linear approximation
error is greatest. This direction was found by integrating an
equation describing evolution of the maximizing direction
from 0 to the number of standard deviations prescribed by the
splitting library. In contrast to other schemes, integration was
performed only once per direction decision as opposed to over
a set of candidates. The splitting scheme was implemented
automatically, meaning all components of the prior are split
until the linear approximation was acceptable enough to stop.

This algorithm was simulated for a pair of range examples
to demonstrate the effectiveness of GMM solutions in general
and to illustrate the ability of this specific method in mitigating
effects of linearization errors.
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