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Abstract—Filters relying on the Gaussian approximation typ-
ically incorporate the measurement linearly, i.e., the value of
the measurement is pre-multiplied by a matrix-valued gain
in the state update. Nonlinear filters that relax the Gaussian
assumption, on the other hand, typically approximate the dis-
tribution of the state with a finite sum of point masses or
Gaussian distributions. In this work, the distribution of the state
is approximated by a polynomial transformation of a Gaussian
distribution, allowing for all moments, central and raw, to be
rapidly computed in closed form. Knowledge of the higher-order
moments is then employed to perform a polynomial measurement
update, i.e., the value of the measurement enters the update
function as a polynomial of arbitrary order. A filter employing a
Gaussian approximation with linear update is, therefore, a special
case of the proposed algorithm when the order of the update is
set to one. At the cost of more computations, the new method-
ology guarantees performance better than the linear/Gaussian
approach for nonlinear systems. This work employs monomial
basis functions and Taylor series, but it is readily extendable to
an orthogonal polynomial basis.

Index Terms—Differential Algebra, Nonlinear filtering,
Lorenz96, Polynomial update

I. INTRODUCTION

The conditional mean is the optimal estimate to the se-
quential stochastic Minimum Mean Square Error (MMSE)
estimation problem. It is derived recursively thought Bayes’
rule. When the system is linear and Gaussian, the Kalman
filter [1] [2] exactly represents the conditional distribution.
However, when the dynamics of the system are nonlinear, the
conditional probability density function (PDF) is generally a
non-Gaussian distribution, and the optimal MMSE estimate is
not typically obtainable in closed form. Consequentially, many
algorithms have been developed that approximate the optimal
MMSE solution in the presence of nonlinearities. A simple
approach is to perform a linearization of the measurement and
dynamics functions around the current estimate, and apply the
Kalman filter equations as if the system were linear; the so-
called Extended Kalman Filter (EKF) [3]. However, simple
linearization fails to achieve convergence for highly nonlinear
systems [4].

The Unscented Kalman Filter (UKF) [5], [6] usually
achieves better results and is more robust to nonlinearities
than the EKF. Using deterministically placed sigma points, the
distribution of the state is approximated by applying the actual
nonlinear dynamics and nonlinear measurement function to
estimate the mean and covariance matrix via a weighted
average.

Several methods to better incorporate the nonlinear dynam-
ics during the time propagation phase of filtering algorithms
exist. Park and Sheeres [7] employ State Transition Tensors
(STT) to propagate mean and high order central moments.
Majji et al. [8] expand Park and Sheeres work to include the
high-order moments in the update. Valli et al. [9] reproduced
these results in the differential algebra (DA) framework.

All above-mentioned filters, including the EKF and UKF,
are linear estimators, i.e. the estimate is a linear function
of the measurements. The conditional mean, which is the
optimal MMSE solution, is generally some unknown nonlinear
function of the measurement whose exact form usually cannot
be calculated. A linear estimator, even when accounting for
the nonlinearities of the measurement function, is typically
outperformed by nonlinear estimators such as the Gaussian
Sum Filter (GSF) [10] [11] or particle filters [12].

In the GSF, the optimal nonlinear update is approximated by
approximating all distributions as Gaussian Mixture Models
(GMM). As long as each component of the GMM has a
covariance “small” enough, linearization of the measurement
and dynamic functions can accurately represent the uncertainty
in the component’s support, and linear update equations (EKF
or UKF) can be used for each component. The total update
is a weighted combination of the linear updates, where each
weight is obtained from the likelihood of the corresponding
Gaussian component.

De Santis et al. [13] developed a quadratic update by aug-
menting the state of the system with its square. The estimator
in [13] also augments the measurement with its square, by
doing so they are able to rewrite the quadratic update with
a linear update structure. A polynomial approximation of the
optimal nonlinear update also exists [14].

Servadio and Zanetti [15] implemented a quadratic update
(extendable to a polynomial update of any order) based on
Taylor series expansions. By carrying central moments up
to a desired order, the polynomial high-order coefficients
are evaluated to minimize the mean square estimation error.
The computational demand of calculating higher order central
moments grows quickly with the order of the series, the size
of the state vector, and the order of the polynomial update.

In this work all non-Gaussian distributions are approximated
as a polynomial transformation of Gaussian random variables.
In doing so, all high order central moments are easily and
efficiently calculated in close form with Isserlis formula [16].
As a consequence, polynomial updates can be performed more
efficiently than in prior works.
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The paper is structured as follows: Section II presents the
mathematics and fundamentals for the newly proposed poly-
nomial estimator; Section III describes the filtering algorithm
and its implementation in the DA framework; then, Section IV
applies the new filtering techniques to a challenging simulation
of a Lorenz96 application [17], [18]; lastly, Section V draws
conclusions.

II. POLYNOMIAL ESTIMATOR

Our previous work presented a nonlinear update using
polynomial residuals [15]. While the polynomial approach can
be extended to arbitrary order, the quadratic update is shown
here. Let x be the state of the system we wish to estimate,
modeled as a random vector, and y another, related, random
vector that is sampleable. We will use the known outcome
of y to estimate the unknown outcome of x. Let g(y) be
a family of quadratic estimators of x from y, defined by
constants a, which is a vector, and K1,K2 which are matrices
of appropriate dimensions.

g(y) = a + K1y + K2y
[2] (1)

where y[2] = y ⊗ y and the symbol ⊗ indicates the Kro-
necker product between two vectors, but with the redundant
components of y ⊗ y eliminated, e.g., only one y1y2 or
y2y1 is present in y[2]. It is often convenient to work with
deviation vectors of the variables from their mean instead of
the vectors themselves. Therefore let us define the quantity
dy = y − E {y}, which indicates the measurement residual,
and similarly, the state deviation as dx = x−E {x}. Ref. [15]
defines the quadratic estimator in terms of dy[2] = dy ⊗ dy,
but, in this work, a different quantity is used:

dy{2} = y ⊗ y − E {y ⊗ y} = y[2] − E
{

y[2]
}

The two formulations are equivalent, but the latter is con-
venient because it has zero mean. Thus, we work with the
deviation of the square instead of the square of the deviation.
Without any loss of generality, we can redefine a, K1, and
K2 by adding and subtracting constants in order to obtain a
different, but equivalent, family of quadratic estimators

g(y) = a+E {x}+K1(y−E {y})+K2

(
y[2]−E

{
y[2]
})
(2)

It is known that the optimal values of the estimator’s coef-
ficients (denoted with an asterisk) satisfy the orthogonality
principle

E
{(

dx− a∗ −K∗1dy −K∗2dy
{2}
)
·

·
(
a+E {x}+ K1dy + K2dy

{2}
)T}

= O

(3)

which is valid ∀a,K1,K2. Therefore the optimal coefficients
can be found solving the linear system

a∗ = 0 (4)
K∗1Pdydy + K∗2Pdy{2}dy = Pdxdy (5)

K∗1Pdydy{2} + K∗2Pdy{2}dy{2} = Pdxdy{2} (6)

where the following notation is used:

Pxy = E
{
(x− E {x}) (y − E {y})T

}
(7)

Since y[2] and dy{2} only differ by a constant, they share the
same covariance matrix.

The optimal solution is given by

a∗ = 0 (8)[
K∗1 K∗2

]
=

[
PT
dxdy

PT
dxdy{2}

]T [
Pdydy Pdydy{2}

Pdy{2}dy Pdy{2}dy{2}

]−1
(9)

The optimal estimator is

x̂ = E {x}+ K∗1dy + K∗2 dy
{2} (10)

and the posterior estimation error is

e = x− x̂ = x− g(y) = (11)

= x−
(
E {x}+ K∗1dy + K∗2dy

{2}
)

(12)

= dx−K∗1dy −K∗2dy
{2} (13)

A. Generalization to Higher Orders

It is possible to generalize the results of the previous section
to higher orders of the polynomial update. Let us expand
Equation (1) to an arbitrary order

g(y) = a + K1y + K2y
[2] + K3y

[3] + K4y
[4] + . . . (14)

where each Ki is a matrix of appropriate dimensions and
each y[i] is calculated using the Kronecker product with the
repeated elements deleted. The measurements and its powers
can be stacked, defining the augmented measurement vector

Y =
[
yT y[2]T y[3]T . . .

]T
(15)

Once again, the estimator family is redefined in order to work
with deviations. Since deviations have zero mean by con-
struction, the identities Py[i]y[j] = Pdy{i}dy{j} and Pxy[j] =
Pdxdy{j} are valid ∀i, j ∈ N0. Therefore, it is possible to
evaluate the augmented measurement covariance matrix as

PYY =


Pyy Pyy[2] Pyy[3] . . .

Py[2]y Py[2]y[2] Py[2]y[2] . . .
Py[3]y Py[3]y[2] Py[3]y[3] . . .

...
...

...
. . .

 (16)

and the augmented state-measurement cross-covariance matrix
as

PxY =
[
Pxy Pxy[2] Pxy[3] . . .

]
(17)

The deviations can be stacked as well, creating an aug-
mented deviation vector.

dY =
[
dyT dy{2}T dy{3}T . . .

]T
(18)

The optimal polynomial update estimator becomes

x̂ = E {x}+ PxYP−1YYdY (19)

where the product PxYP−1YY is similar to the Kalman gain
but realized with knowledge of the central moments of the
distribution up to a selected order, improving accuracy.
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III. THE HIGH-ORDER POLYNOMIAL UPDATE FILTER -
HOPUF-`-c

The new filtering technique has been developed in the
Differential Algebra (DA) framework, using an algebra based
on Taylor series expansion. An introduction to DA techniques
and the Differential Algebra Core Engine (DACE2.0) software
is omitted due to the large availability of references, such
as [9], [19]–[21]. The High-Order Polynomial Update Filter
(HOPUF-`-c) algorithm is composed of three main parts:
the prediction, the polynomial update, and the polynomial
reduction. The two integers ` and c in HOPUF-`-c refer to
the order of the polynomial update and of the Taylor series
expansion, respectively. Hence, HOPUF-1-1 is the extended
Kalman filter and HOPUF-2-3 is a quadratic estimator with
nonlinear functions approximated by their third order Taylor
series expansion.

A. Prediction

Consider the following equations of motion and measure-
ment equations describing a generic dynamic system:

xk+1 = f(xk) + vk (20)
yk+1 = h(xk+1) + wk+1 (21)

where f(·) is the dynamics function, xk is the n-dimensional
state of the system at time-step k, yk+1 is the m-dimensional
measurement vector at time-step k + 1, and h(·) is the
measurement function. The process noise and the measurement
noise are assumed to be zero mean and uncorrelated, i.e.,
E
{
viw

T
j

}
= 0 ∀i, j, with the autocovariance functions

E
{
viv

T
j

}
= Qiδij , and E

{
wiw

T
j

}
= Riδij for all discrete

time indexes i and j. It is assumed that the initial condition x0

and the noises are Gaussian, however, the nonlinear functions
will make the distribution of xk non-Gaussian for all k > 0.
series expansion up to an arbitrary order. The state is initialized
in the DA framework with a first order polynomial.

x0 = x0(δx0) = x̂0 + S0δx0 (22)

where x0 ∼ N (x̂0,P0), S0S
T
0 = P0, and the DA variable

δx0 = x0 − x̂0 is therefore interpreted as Gaussian with zero
mean and identity covariance matrix.

The propagation function is applied directly to the state
polynomials xk, thus, the ith component of the predicted state
vector is

x−i,k+1 = x−i,k+1(δxk) = fi(xk(δxk)) =

= fi(x̂k) +

c∑
r=1

1

r!

∑ ∂rfi(xk)

∂xγ11 . . . ∂xγrn
δxγ11,k . . . δx

γr
n,k

(23)

where the integer c indicates the user-defined order of the
Taylor expansion (the same numerical value specified in
HOPUF-`-c); the second summation is over all permutations
of γi ∈ {1, . . . , n} with i ∈ {1, . . . , r}. Therefore x−k+1(δxk)
is a vector of polynomial functions that map the deviations
(δxk) into the distribution of the state at time k+1. The final
step of the propagation is to add the process noise contribution.

TABLE I
ISSERLIS’ MOMENTS OF GAUSSIAN N (0, 1)

exponent 0 1 2 3 4 5 6 7 8 . . .
coefficient 1 0 1 0 3 0 15 0 105 . . .

The process noise is introduced as a DA variable δvk, which
once again is interpreted as a standard normal random vector

x−k+1(δxk, δvk) := x−k+1(δxk) + Tkδvk (24)

where vk = Tkδvk and TkT
T
k = Qk.

The predicted measurements are evaluated similarly and the
jth component is given by:

yj,k+1 = yj,k+1(δxk, δvk) = hj(f(x
−
k+1)) =

= hj(f(x̂k+1)) +

c∑
r=1

1

r!

∑ ∂rhj(x
−
k+1)

∂xγ11 . . . ∂xγrn ∂v
γ1
1 . . . ∂vγrn

·

· δxγ11,k . . . δx
γr
n,kδv

γ1
1,k . . . δv

γr
n,k (25)

where, again, the second summation is over all permutations
of γi ∈ {1, . . . , n} with i ∈ {1, . . . , r}. Note that the Taylor
series expansion is now in terms of both δxk and δvk. The
measurement noise is also introduced as a DA variable δwk+1,
which is interpreted as a standard normal random vector

yk+1(δxk, δvk, δwk+1) := yk+1(δxk, δvk) + Ukδwk+1

(26)
where wk = Ukδwk and UkU

T
k = Rk.

The total number of DA variables is 2n+m: n are used to
map the state behavior (δxk), n map the process noise (δvk),
and the remaining m map the measurement noise (δwk+1). All
quantities of interest are represented by polynomial functions
of standard normal random vectors. Therefore all expectations
can be easily computed using Isserlis’ formula to calculate
central moments of standard normals [16].

B. Quadratic Update

Once the predicted state and measurement polynomials have
been calculated, the next step in performing the quadratic
update is evaluating the augmented Kalman gain with Equation
(9). We start by calculating

y
[2]
k+1 = yk+1 ⊗ yk+1 (27)

where, once again, all the redundant components are elimi-
nated.

The mean of each component of the predicted state is

x̂−i,k+1 = E
{
x−i,k+1

}
(28)

= fi(x̂k) +

c∑
r=1

1

r!

∑ ∂rfi(xk)

∂xγ11 . . . ∂xγrn
E
{
δxγ11,k . . . δx

γr
n,k

}
(29)

where the expectations are applied directly on the monomials
of the series. Since the deviations have a Gaussian distribution
with zero mean and identity covariance, the expected value
operator just substitutes to each monomial the relative Isserlis’
moment, according to Table I. As an illustrative example:



4

E
{
aiδx

2
1δx

6
2δx

4
4

}
= 45ai. Similar to Equation (28), the

predicted means of the measurements are evaluated as:

ŷk+1 = E {yk+1} (30)

ŷ
[2]
k+1 = E

{
y
[2]
k+1

}
(31)

The augmented measurement covariance matrix is calcu-
lated blockwise:

PYY =

[
Pyy Pyy[2]

Py[2]y Py[2]y[2]

]
(32)

where, having removed the redundant components from the
square of the measurements, the matrix is guaranteed to
avoid any singularities. The matrix is symmetric and the three
different blocks are calculated as:

Pyy = E
{
(yk+1 − ŷk+1)(yk+1 − ŷk+1)

T
}

(33)

Pyy[2] = E
{
(yk+1 − ŷk+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}

(34)

Py[2]y[2] = E
{
(y

[2]
k+1 − ŷ

[2]
k+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}

(35)

The augmented cross-covariance matrix between the state and
measurement is evaluated blockwise as well:

PxY =
[
Pxy Pxy[2]

]
(36)

where each block is calculated in a similar way:

Pxy = E
{
(x−k+1 − x̂−k+1)(yk+1 − ŷk+1)

T
}

(37)

Pxy[2] = E
{
(x−k+1 − x̂−k+1)(y

[2]
k+1 − ŷ

[2]
k+1)

T
}

(38)

From these quantities it is now possible to use Equation (9)
to calculate the Kalman gain associated with the augmented
system:

K =
[
K1 K2

]
= PxYP−1YY (39)

Denote ỹk as the outcome of random vector yk, i.e., the
numerical value of the measurement from the sensors, and
its square as

ỹ
[2]
k = ỹk ⊗ ỹk (40)

The updated distribution of the state and the posterior estimate
are given by

x+
k+1(δxk, δvk, δwk+1) = (41)

= x−k+1(δxk, δvk) + K

[
ỹ − y−k+1(δxk, δvk, δwk+1)

ỹ[2] − y
[2]−
k+1(δxk, δvk, δwk+1)

]

x̂+
k+1 = E

{
x+
k+1

}
= x̂−k+1 + K

[
ỹk+1 − ŷk+1

ỹ
[2]
k+1 − ŷ

[2]
k+1

]
(42)

Note that the updated polynomials are a function of the state
deviations, the process noise and the measurement noise.
Moreover, since the order of x−k+1(δxk, δvk) is c, then,
because of the quadratic update, x+

k+1(δxk, δvk, δwk+1) is a
polynomial of order 2c. The higher the polynomial order, the
higher the number of moments to be calculated with Table I.
The covariance matrix is obtained as

Pxx,k+1 = E
{
(x+
k+1 − x̂+

k+1)(x
+
k+1 − x̂+

k+1)
T
}

(43)

Thus, starting form a polynomial of order c at the beginning
of each filter’s iteration, equation (43) employs a polynomial

of order 4c in order to calculate the state covariance matrix.
Equations (42) and (43) are outputs calculated for downstream
users; the recursive algorithm does not employ the actual value
of the state estimate and its uncertainties to start the next
iteration; the coefficients of the Taylor series representation
updated polynomial x+

k+1 are stored and contain all the
information needed for the recursion.

C. Polynomial Least Squares Reduction
The updated state x+

k+1(δxk, δvk, δwk+1) is a 2cth order
polynomial in 2n+m variables and it describes the (typically
non-Gaussian) posterior probability density function of the
state. Without taking any further action and starting the next
filter iteration from x+

k+1 to calculate x+
k+2, the order of

the series will double to 4c and the number of independent
variables will increase by two: the process noise associated
with the subsequent propagation and the measurement noise
associated with the next measurement.

To keep the recursive algorithm tractable, it is therefore
desirable to: i. reduce the polynomial order back to c, and ii.
reduce the number of variables back to n. In this section we
introduce a new methodology to achieve these two objectives.

The proposed approach preserves the non Gaussian nature
of the posterior distribution. The idea is to exactly match the
zeroth and first order components of the series representation
of x+

k+1 and to approximate the higher order elements with
least squares.

The posterior is a nonlinear (polynomial) function of three
Gaussian random vectors (δxk, δvk, δwk+1), and the goal
is to accurately approximate it as a polynomial function of a
single Gaussian random vector of size n. The linear part of the
Taylor series (zeroth and first order) is a linear combination
of Gaussian random vectors and it is represented exactly as
a single Gaussian; while higher than first order contributions
are approximated by minimizing a least-squares approximation
error.

We start by dividing the polynomials into their linear part
(constant plus first order) and the remaining higher order
terms. Thus at time tk+1

x+
k+1 = xL,k+1 + xH,k+1 (44)

where xL,k+1 indicates the linear part of the Taylor series and
xH,k+1 represents the nonlinearities. For linear and Gaussian
systems, xH,k+1 is identically zero and xL,k+1 is the posterior
distribution found with the Kalman filter equations. For nonlin-
ear systems, xH,k+1 is non-zero and xL,k+1 is not the Kalman
filter posterior, however xL,k+1 is still Gaussian because it
is the linear combination of three Gaussian random vectors.
The mean and covariance matrix of the linear polynomials are
readily found in the DA framework

x̂L,k+1 = E {xL,k+1} (45)

PL,k+1 = E
{
(xL,k+1 − x̂L,k+1)(xL,k+1 − x̂L,k+1)

T
}

(46)

Sk+1S
T
k+1 = PL,k+1 (47)

Defining δxk+1 ∼ N (0, I) we can represent xL,k+1 exactly:

xL,k+1 = Sk+1δxk+1 + x̂L,k+1 (48)
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The goal is to create a new series approximation of x+
k+1,

which is only a function of δxk+1 rather than the three
variables (δxk, δvk, δwk+1). To calculate the coefficients of
the series, we solve a least-squares problem to best fit samples.

We draw N independent and identically distributed samples
from a 2n + m Gaussian distribution with zero mean and
identity covariance matrix in order to have N independent
samples of δxk, δvk, δwk+1. Samples are denoted with a su-
perscript (j), j ∈ [1, N ]. The polynomials are then evaluated
at the samples, resulting in N independent realizations of
the posterior. We calculate N samples of x+

k+1, xL,k+1 and
δxk+1:

x
+(j)
k+1 = x+

k+1(δx
(j)
k , δv

(j)
k , δw

(j)
k+1) (49)

x
(j)
L,k+1 = xL,k+1(δx

(j)
k , δv

(j)
k , δw

(j)
k+1) (50)

δx
(j)
k+1 = S−1k+1

(
x
(j)
L,k+1 − x̂L,k+1

)
(51)

where Equation (51) scales and centers the realizations from
the linear polynomials, such that their distribution is a standard
Gaussian. The ith component of the new series is

x+i,k+1 = x+i,k+1(δxk+1) =

= ai,0 +

c∑
r=1

1

r!

∑
`

ai,r` δx
γ1
1,k+1 . . . δx

γr
n,k+1 (52)

where the second summation is over all permutations of
γi ∈ {1, . . . , n} with i ∈ {1, . . . , r}, describing each possible
monomial through combinatorial mathematics.

The above equation is linear in the coefficients, therefore it
can be rewritten as

x+i,k+1 = ∆k+1ai (53)

where vector ai contains the coefficients of the series we are
solving for. We can now use the samples of x+

i,k+1 and δxk+1

to compute a least square estimate of ai.
The algorithm is now ready to start the next iteration with

a new polynomial propagation.

IV. NUMERICAL EXAMPLE

The performance of the proposed filter is tested in a
Lorenz96 example [17] [18]. The dynamic of the system is

dxi(t)

dt
= xi−1(t)(xi+1(t)−xi−2(t))−xi(t)+F+νi(t) (54)

where xi(t), i = 1...4, are the four components of the state
vector x(t) is used. The following conventions are used:
x−1(t) = xn−1(t), x0(t) = xn(t), and x1(t) = xn+1(t).
The term F is a constant external force and it is chosen
equal to eight in order to introduce a chaotic behavior in the
system. The initial condition is assumed to be Gaussian, with
mean x̂ =

[
F F F + 0.01 F

]T
and diagonal covariance

matrix, with the same standard deviation for each component
of the state: σx = 10−3. The process noise is assumed to be
Gaussian and uncorrelated among states, with known standard
deviation σν = 10−3.

Measurements are acquired each time-step according to the
following model:

yk = Hi,jxk + µk, H =

{
1 j = 2i− 1

0 otherwise
(55)

with i = {1, 2} and j = {1, 2, 3, 4}. In other words, the
measurements are linear and the components of the state
vector with odd indexes measured. The measurement noises,
uncorrelated from the process noise and between each other,
are assumed to be Gaussian as well with standard deviation
σµ = 10−2. The dynamics are propagated at 2 Hz with a
Runge-Kutta 7-8 integrator.

Figure 1 shows the Monte Carlo analysis performed with
HOPUF-2-2 on the presented problem. Once again the notation
HOPUF-`-c indicates the selected truncation order of the
Taylor series expansion c and the order of the update `. The
value N = 1000 samples is chosen for the least squares
problem and the number of Monte Carlo runs is also 1000.
Figure 1 shows the 1000 realizations of the estimation error
(gray lines), evaluated as distance between the estimate and
the true state, for each one of the four state components. The
algorithms’ predicted estimation error standard deviation of
each state is reported in green lines (3σ values), calculated
as the square roots of the diagonal terms of Pxx in Equation
(43). The actual performance of the system is assessed by
the sample standard deviation of the Monte Carlo estimation
errors, represented in the figure as blue lines (3σ values). The
consistency of HOPUF-2-2 is established by the close values
of the estimated and effective standard deviations, as shown
by the overlapping of the green and blue lines. Finally, the
black lines are the sample means of the estimation errors at
each time-step and they demonstrate the unbiased nature of
the filter, as expected from the theory of MMSE estimation.

The benefits of the quadratic update can be appreciated
when comparing HOPUF-2-2 with linear estimators, such as
the EKF, the UKF [6], [22] and the DAHO-k [9]. DAHO-k
is a linear estimator that approximates the nonlinear functions
with their kth order Taylor series representation. The EKF
performs a simple linearization of the equation of motion and,
in the presence of high nonlinearities such as in the Lorenz96
problem, fails to estimate the state of the system (therefore it
is not reported in the figures). The UKF and the DAHO-k, on
the other hand, are linear estimators that better account for the
system’s nonlinearities and achieve better performance than
the EKF [19]. Figure 2 compares HOPUF-2-2, with DAHO-2
and the UKF. DAHO-k is a well suited test bench for higher-
order linear estimators [15], [20].

Figure 2 has six lines. The three continuous lines represent
the filter’s own estimate of accuracy in terms of the predicted
estimation error standard deviation, calculated from the co-
variance matrix as the square root of its trace: σ̄ =

√
tr(Pxx).

The three dashed lines represent the effective error standard
deviation derived from the Monte Carlo analysis (1000 runs).
The filter is consistent when it predicts its own uncertainty,
i.e., when the continuous and dashed lines coincide. The
figure shows how the quadratic update (blue lines) reduces
the system uncertainties, improving accuracy especially in the
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Fig. 1. 1000 runs Monte Carlo performance test for the HOPUF-2-2, N =
1000.

first steps of the simulation, during the transient behavior.
HOPUF-2-2 reaches steady state quickly and the filter avoids
overconfidence. The linear update of DAHO-2 (red lines), on
the other hand, has a much slower and less accurate transient
response but it is consistent and eventually converges. Once
steady-state is reached, the nonlinearities cease to dominate
and the quadratic update no longer significantly outperforms
the linear update. The UKF (green lines) is inconsistent as the
filter’s prediction of its own estimation error does not match

Fig. 2. Covariance comparison: quadratic vs. linear estimator. Solid lines
are the filters own predictions, dashed lines represent the sample standard
deviation from Monte Carlo.

the actual behavior, which, as shown by the dashed green line,
does not settle to the same accuracy level as HOPUF-2-2 and
DAHO-2.

For the Lorenz96 example considered, the new quadratic
estimator exhibits more robustness than the linear estimators
tested. Increasing the measurement noise levels or decreasing
the measurement frequency causes divergence of the UKF
and DAHO-2 as tested, while the consistency of HOPUF-2-
2 is not affected by those changes (the estimation accuracy
on the other hand degrades, because of fewer or less precise
measurements).

V. CONCLUSIONS

A new estimator with quadratic update has been presented.
Unlike prior techniques, the proposed approach does not
require storing higher order central moments of the state’s
distribution. The new technique accounts for the nonlinearities
of the system both in the prediction and in the update step
by approximating the distributions resulting from nonlinear
transformations as polynomial functions of Gaussian random
vectors. The new approach is easily expandable to any order
of the polynomial update. For systems other than linear and
Gaussian (where a linear update is globally optimal) the higher
the order of the polynomial update, the more precise the
resulting state estimate.

The proposed algorithm can be interpreted as an expansion
of Gaussian filters. Gaussian filters approximate uncertainties
as Gaussian. By representing the state uncertainty with an
arbitrary polynomial function of a Gaussian random vector,
it is possible to better approximate the shape of distributions
undergoing nonlinear dynamics and measurements.
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