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This work compares the performance of linear attitude estimators; in particular, the classic
multiplicative extened Kalman filter and unscented Kalman filter performances are compared
to a recently introduced novel spacecraft attitude estimation algorithm. The new algorithm
utilizes unit vector measurements and is also based on the unscented Kalman filter (UKF).
The UKF, like the extended Kalman filter, is an approximation of the linear minimum mean
square error estimator and employs a linear update with an additive residual. The standard
formulation of the residual is given by the difference between the measurement and its mean.
The recently proposed algorithm, on the other hand, utilizes a multiplicative residual, which
is more consistent with the nature of unit direction measurements. The recent algorithm
consistently defines attitude errors utilizing the Gibbs vector parameterization and computes
averages and deviations consistently with attitude composition rules.

I. Introduction
This work compares three different attitude-specific implementations of the extended Kalman filter (EKF) using the

quaternion-of-rotation [1, 2]. Attitude quaternions have a unit-norm constraint that can be enforced via the multiplicative
extended Kalman filter (MEKF) [3], the additive extended Kalman filter (AEKF) [4], projection techniques [5],
constrained Kalman filtering [6], or the unscented quaternion estimator [7] that is based on the unscented Kalman filter
(UKF) [8].

Both the EKF and the UKF are linear estimators as the measurement update is constructed as a linear function of
the measurement. Linear estimators necessitate knowledge of the first- and second-order moments of distributions, a
non-trivial task for nonlinear measurements. The EKF approximates these moments through linearization around the
mean, while the UKF utilizes statistical linearization [9]. The UKF approximates first-order moments (means) and
second-order moments (covariances) accurate to at least second order [10].

This paper compares three linear attitude estimators: the MEKF, the unscented quaternion estimator, and a recent
algorithm proposed in Ref. [11] in the presence of unit vector measurements. Usage of unit vectors as attitude
measurements is a widely adopted technique [4], and various measurement models have been proposed, such as the
QUEST model [12], the wide-field-of-view model [13], and the multiplicative measurement model [14]. This paper
builds on prior work by the authors in [11] and [15].

The MEKF is based on the assumption that small attitude errors are locally a vector space, and hence are treated as
vectors. The unscented quaternion estimator by Crassidis and Markley [7] uses an additive measurement model and
an additive residual for the measurement update and the algebraic average of three-dimensional attitude error for the
time propagation. Ref. [11] employs a multiplicative measurement model and a multiplicative residual [16, 17] for the
update phase and quaternion averaging [18], for propagation.

II. The Multiplicative Extended Kalman Filter
We work with a dynamical system of the form

x = f(xk−1,wk−1)

where xk−1 is the state at time tk−1, x is the state at time tk , and wk−1 is the zero-mean and white process noise with
covariance matrix Qk−1. The mean evolves as

x̂− = E {f(xk−1,wk−1)}
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The MEKF’s attitude state is a quaternio;, however, the attitude estimation error is not parameterized as a quaternion but
rather with a three-dimensional attitude representation. Errors are assumed to be small (which is consistent with the
linearization assumption above), and we take advantage of the fact that attitude is locally a vector space, leading to

q̄ = q̄(eθ ) ⊗ q̄ (1)

where q̄(eθ ) is the quaternion parameterization of the three-dimensional attitude error eθ . The MEKF propagates the
estimate x̂ trough linearization around the mean

x̂− ' E {f(x̂k−1, 0) + Fk−1ek−1 + Gk−1wk−1} = f(x̂k−1, 0) (2)

since the process noise and estimation error are assumed zero mean and where Fk−1 and Gk−1 are appropriate partials.
The estimation error covariance matrix P− is then propagated as

P− = Fk−1Pk−1FT
k−1 + Gk−1Qk−1GT

k−1 (3)

When a measurement y becomes available, its mean is given by

ŷ− = E {h(x, v)}

where v is the measurement noise and h is a nonlinear measurement function. A linear update that minimizes the mean
square estimation error is given by

ê+ = ê− + K (y − ŷ−)

P+ = P− − K PyyKT

Pyy = E
{
(y − ŷ−)(y − ŷ−)T

}

where the estimate of the prior estimation error ê− is zero by construction and K is the Kalman gain

K = PxyP−1
yy

Pxy = E
{
(y − ŷ−)eT

}

The MEKF approximates ŷ, Pyy and Pxy via linearization around the mean, i.e.

y − ŷ− ' H e + L v (4)

where H and L are appropriate partials.
In summary, the MEKF treats attitude errors and unit vector direction measurements as vectors (it adds and subtracts

them). Notice that for unit vector measurements, contingent upon the linearization assumption, the MEKF additive
residual approach is equivalent to the multiplicative residual approach [17], and the two are effectively identical to
processing the bearing angles directly[19].

III. The Quaternion Unscented Kalman Filter
This section presents the algorithm by Crassidis and Markley [7]. The general unscented background material

follows the presentation in [15].

A. The Unscented Transform
Starting from a nonlinear random vector transformation

z = g(x)

the unscented transform (UT) approximates the transformation of the mean mz and covariance Pzz of the output, z with
a deterministic set of points with discrete probability, the so-called sigma-points. The sigma-points are chosen such
that mx and Pxx are maintained exactly. The sigma-points are then applied as inputs to the nonlinear function to yield
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nonlinearly transformed sigma-points, which can then be used to approximate a nonlinear transformation of the output
mean and covariance, mz and Pzz .

The K sigma-points are denoted by Xi and their associated weights by wi , where i ∈ {1, . . . , K } and
∑K

i=1 wi = 1.
We then apply the transformation on each of the sigma points to obtain

Zi = g(Xi) ∀ i ∈ {1, . . . , K }

The transformed mean and covariance are then approximated from these transformed points, keeping the weights
unchanged, i.e.

mz =

K∑
i=1

wiZi

Pzz =

K∑
i=1

wi (Zi −mz )(Zi −mz )T

Additionally, the cross-covariance between the input and the output can be computed, if desired, as

Pxz =

K∑
i=1

wi (Xi −mx )(Zi −mz )T

Any selection of sigma-points that exactly describes the input mean and covariance guarantees that the transformed
mean and covariance is correctly calculated to second order [10].

One choice of sigma points is a set of K = 2n + 1 points that is chosen as

X0 = mx

Xi = mx +
√

n + κ sx,i
Xi+n = mx −

√
n + κ sx,i

with associated weights

w0 = κ/(n + κ)
wi = 1/2(n + κ)

wi+n = 1/2(n + κ)

for i ∈ {1, . . . , n}, where n is the dimension of the input x, sx,i is the ith column of Sx , Sx is a square-root factor of Pxx

such that Px = SxST
x , and κ is a tuning parameter of the UT. It is easily verified that this set of sigma-points matches the

mean and covariance of x; that is,

mx =

K∑
i=1

wiXi

Pxx =

K∑
i=1

wi (Xi −mx )(Xi −mx )T

B. Time Propagation
The UKF propagation step computes the a priori mean and covariance at time tk (denoted x̂−

k
and P−

k
, respectively)

given the a posteriori mean and covariance at time tk−1 (denoted x̂+
k−1 and P+

k−1, respectively). An augmented state zk is
defined as

zT
k−1 =

[
xT
k−1 wT

k−1

]

Let the set of sigma points for the augmented state be denoted by the N values ofZi,k−1 and the associated weights by
wi where i ∈ {1, . . . , N } and

∑N
i=1 wi = 1. These sigma points are generated from the augmented mean and covariance

given by

mk−1 =



x̂+
k−1
0


Paug
k−1 =



P+
k−1 O
O Qk−1
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and each of the sigma points is partitioned as

ZT
i,k−1 =

[
XT
i,k−1 WT

i,k−1

]

The propagated sigma points are obtained via application of the nonlinear dynamical system, which gives

Xi,k = f(Xi,k−1,Wi,k−1)

These transformed sigma-points are then used to approximate the nonlinear transformation of the mean and the
covariance via

x̂−k =
N∑
i=1

wiXi,k (5)

P−k =
N∑
i=1

wi (Xi,k − x̂−k )(Xi,k − x̂−k )T (6)

While the effect of the process noise does not appear directly in these equations, it is captured through the propagated
sigma points Xi,k .

The attitude unscented estimator slightly modifies this algorithm by
1) Replaces the 4-dimensional portion of the sigma-points associated with the quaternion with a three-dimensional

deviation between the ith sigma-point quaternion and the 0th sigma-point quaternion (hence X0 has a zero attitude
deviation by construction)

2) Performs the algebraic weighted mean of the three-dimensional attitude deviations as if they were vectors
3) Calculates the propagated quaternion composing the 0th sigma-point quaternionwith the average three-dimensional

deviation
While an advantage of the UT is that linearization is avoided by performing the algebraic average of three dimensional
deviations, Ref. [7] effectively assumes they are vectors; hence, it assumes they are “small” and reside on the tangent
space, which is an assumption consistent with the MEKF linearization.

C. Measurement Update
Using the propagated mean and covariance at time tk , a new set of sigma points is created. Again, the first step is to

define an augmented state
z̃T
k =

[
xT
k

vT
k

]

and generate sigma points, along with their associated weights w̃i , with the mean and covariance

m̃k =



x̂+
k

0


P̃aug
k
=



P−
k

O
O Rk



In this case, the set of sigma points for the augmented state is denoted by the Ñ values of Z̃i,k where there is no
restriction that N = Ñ ; that is, the update step may employ a different number of sigma points than the propagation step.
Similarly, there is no requirement that the weights of the sigma points in the update step are the same as the weights of
the sigma points in the propagation step. Each of the sigma points is partitioned as

Z̃T
i,k =

[
XT
i,k
VT

i,k

]

and the measurement-transformed sigma points are given by

Yi,k = h(Xi,k,Vi,k )
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The expected value of the measurement, the measurement covariance, and the cross-covariance are found in terms of the
transformed sigma-points as

ŷ−k =
Ñ∑
i=1

w̃iYi,k (7)

Pyy,k =

Ñ∑
i=1

w̃i (Yi,k − ŷ−k )(Yi,k − ŷ−)T (8)

Pxy,k =

Ñ∑
i=1

w̃i (Xi,k − x̂−k )(Yi,k − ŷ−)T (9)

The Kalman gain is Kk = Pxy,k P−1
yy,k

, and the associated updated state estimate and covariance are

x̂+k = x̂−k + Kk (yk − ŷ−k ) (10)
P+k = P−k − Kk Pyy,k KT

k (11)

Ref. [7] modifies the above algorithm by once again estimating three dimensional attitude deviations. Ref. [7] uses
unit vector direction measurements and the classic additive measurement model:

y = T r + v (12)

The additive measurement model relies on linearization (for example, the large field-of-view model from Cheng et al.
[13] linearizes around the actual measurement). Therefore, for coarse sensors, a multiplicative measurement model is
more accurate in representing the actual error. Since both the measurement y and the reference vector r are of unit
length, it follows from Eq. (12) that

yTy = 1 = rTTTTr + 2vTTr + vTv = 1 + 2vTTr + vTv (13)

Taking expected values in Eq. (13) and using the fact that r is deterministic,

2rT T E {v} = − trace E
{
vvT

}
(14)

Eq. (14) implies that, for the classic additive measurement model of Eq. (12), the measurement noise is either zero mean
with zero covariance or not zero mean, i.e. the measurement is biased.

The quaternion unscented estimator utilizes an additive residual yk − ŷ−
k
, subtracting directions as if they were

vectors. While this approach is shown to be optimal, contingent on the linearization assumption (i.e. it attains the
Cramér-Rao lower bound [19]), no such guarantees exist when linearization is avoided with the UT.

D. Summary
Let’s summarize a few remarks regarding the nature of the UKF algorithm. Firstly, the process of computing the

propagated mean and covariance, Eqs. (5) and (6), relies on an averaging step and subtraction steps. Secondly, when
considering the update stage of the UKF, vector subtraction is again utilized in Eq. (10). For situations in which unit
vector measurements are to be processed, subtracting unit vectors will not yield a measurement residual that is also a
unit vector. Therefore, when considering unit vector observations, the measurement update process of the UKF needs to
be modified as well as the sample expectation calculations of Eqs. (7)–(9). All of these needed modifications may be
grouped together as the removal of additivity within the UKF in favor of multiplicative steps.

IV. Alternative Attitude Filter
This section repeats the derivation of a fully multiplicative unscented quaternion estimator first presented in [11].

The filter uses twice the Gibbs vector to represent the attitude error (denoted as δg). The attitude covariance is obtained
from this three-dimensional quantity. In developing the filtering equations, the nature of rotations is preserved by never
adding or subtracting three-dimensional attitude parameterizations nor unit-vector direction measurements. The linear
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minimum mean square error (LMMSE) estimate for nonlinear systems, of which the UKF is an approximation, seeks
the estimate that minimizes the average of the square of the estimation error, which is usually defined as the Euclidean
distance. The additive nature of the UKF described above is a direct result of the choice of the Euclidean distance. This
algorithm minimizes the error (defined as twice the Gibbs vector), obtaining the minimum mean-square Gibbs error
attitude estimate rather than minimum Euclidean error estimate.

The development that follows only includes the attitude in the state vector; adding other estimated quantities, such as
a gyro bias, follows from a simple extension of the resulting equations.

A. Time Propagation
This portion of the algorithm calculates a propagated quaternion ˆ̄q and a propagated attitude error covariance matrix

P− that represent the estimates of how the attitude and its uncertainty evolve with time between measurement updates.
During the propagation phase, a set of propagated sigma-point quaternions, ˆ̄qj , j = 1, 2, . . . , K , is obtained following
the same procedure of [7]; however, a different scheme is used to obtain the estimate. The desired estimate is the
minimum mean-square error (MMSE) estimate. For a discrete random vector X with possible outcomes denoted by xj

and probability mass function pj , the MMSE estimate x̂ minimizes

x̂ = min
x

∑
j

pj ‖xj − x‖2 (15)

The solution of Eq. (15) is the mean of the random vector; that is,

x̂ =
∑
j

pjxj (16)

Prior attitude UKF implementations took the three-dimensional attitude parameterizations of the propagated sigma-point
quaternions and performed their algebraic mean, effectively providing an estimate that minimizes the Euclidean distance
between three-dimensional attitude errors. While this approach undoubtedly performs in a more than satisfactory
fashion, it is more desirable to minimize an error defined as an attitude parameterization itself.

In this algorithm, the attitude estimation error is defined as twice the Gibbs vector (δg, also known as Rodrigues
parameters). The goal is to obtain the attitude MMSE estimate, which means minimizing the performance index

ˆ̄q = min
ˆ̄q

K∑
j=1

w j ‖δĝ−j ‖
2 (17)

where
q̄(δĝ−j ) = δq̄ = ˆ̄qj ⊗ ˆ̄q∗ (18)

The asterisk represents the quaternion conjugate and the quaternion multiplication, represented by ⊗, composes
quaternions in the same order as attitude matrices. Any other choice of attitude error representation will require
a different performance index to be minimized and will produce a different estimate. Besides the aforementioned
Euclidean distance, the easiest choice of attitude error would be to minimize the vector part of the quaternion error.
Such a choice would produce an estimated quaternion with a known analytical solution obtained from solving a 4 × 4
eigenvalue problem [18]. The vector part of the quaternion is not a complete attitude parameterization; hence this
algorithm minimizes an error that is physically a representation of attitude. Furthermore, the choice of the vector part
of the quaternion as an error metric would produce undesirable effects during the measurement update phase of the
algorithm, as detailed in the corresponding section of this paper.

The scaled Gibbs vector is given by
δg = 2δqv/δqs (19)

where the subscripts v and s indicate the vector and scalar parts of the quaternion, respectively. The propagated
quaternion estimate ˆ̄q is obtained by solving Eq. (17) numerically with a simple recursion. In all numerical simulations,
a Newton-Raphson method is used and it always converges in very few iterations. The initial guess is chosen as the
average quaternion in terms of minimizing the vector part of the quaternion error rather than the Gibbs vector, which is
obtained by calculating the unit eigenvector corresponding to the maximum eigenvalue of

M = 4
K∑
j=1

(
w j ˆ̄qj ˆ̄qT

j

)
− I4×4
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as shown in Ref. [18].
Particular care is also taken in computing the propagated attitude covariance. Once the estimated quaternion ˆ̄q is

obtained from solving the eigenvalue problem, attitude deviations from the average quaternion are calculated for each
sigma-point with Eq. (18), and the three-dimensional deviations δĝ−j are then calculated with Eq. (19); no algebraic
mean is ever performed. The propagated covariance is given by

P− =
K∑
j=1

w j δĝ−j (δĝ−j )T (20)

Remark In order to reduce computations, it is possible to utilize the quaternion average proposed in [18] directly, as
first done in [15], effectively producing the MMSE estimate where the error is defined as twice the vector part of the
quaternion. In this work, however, we consistently define the error as the scaled Gibbs vector, which is a complete
attitude parameterization.

B. Measurement Update
This proposed measurement update uses a multiplicative measurement model given by

y = T (η) T r (21)

where η is a three-dimensional representation of the attitude error, for example a rotation vector, T (η) represents the
direction cosine matrix parameterization of η, T is the inertial-to-body coordinate transformation matrix, and r is the
true direction in the inertial frame.

Using the multiplicative measurement model in the UKF overcomes the bias in the measurement error and allows an
unbiased estimator to be obtained. Furthermore, one of the strengths of the UKF is that it avoids linearization around
the mean; it is, therefore, more consistent to utilize a measurement model that also does not rely on linearization around
a zero error as the QUEST measurement model or around the actual measurement as the large field-of-view model.

The second feature of the proposed update methodology is a multiplicative residual; unit vectors representing
directions are not subtracted as if they were vectors in<3. The attitude update is given by

δĝ+ = δĝ− +Kε (22)

where ε is the multiplicative residual and, once again, the attitude error δg is twice the Gibbs vector defined as

q̄(δg) = q̄ ⊗ ˆ̄q∗ (23)

where q̄ is the true (unknown) inertial-to-body quaternion. From Eq. (23) it follows immediately that δĝ− = 0; therefore,
in fact, attitudes are never added together.

The residual expresses the “distance” between the actual measurement and the expected measurement; the greater
this distance, the greater the update. To be consistent with our approach, we define the residual ε as the scaled Gibbs
vector that expresses the rotation to take ŷ into y. There are infinite such rotations, so the minimum one is chosen, which
is to say that we choose the Gibbs vector to be perpendicular to both ŷ and y, which yields

ε = 2
ŷ × y

1 + ŷ · y
(24)

where y is the unit vector measurement, which is one realization of the random vector Y, and ŷ is the “average”
measurement. Using the same logic employed before, the “average” measurement is the unit vector ŷ that minimizes the
distance to all possible realizations of Y. The distance is defined in terms of the Gibbs vector. Assuming a discrete
distribution with possible outcomes denoted by yj and probability mass function pj

ŷ = min
ŷ

∑
j

pj ‖ε j ‖
2 = min

ŷ

∑
j

pj

‖ŷ × yj ‖
2

(1 + ŷ · yj )2 subject to ‖ŷ‖ = 1

The minimizing value of ŷ is obtained numerically with a simple recursion.
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Notice that Eq. (22) can be re-written as

δĝ+ = δĝ− +K(z − ẑ) (25)

where the auxiliary variable z is defined as z = 2(ŷ × y)/(1 + ŷ · y) and has zero mean, ẑ = 0. Therefore this approach
effectively seeks the MMSE estimate of x given the measurement z. The proposed update is rewritten in the standard
UKF form utilizing the auxiliary variable z and all the UKF properties still hold.

The sigma-points are obtained from the augmented covariance

Paug =



P− O
O R


(26)

where P− is the a priori estimation error covariance and R is the measurement noise (η) covariance. Because of the
multiplicative measurement model of Eq. (21), R is chosen full-rank without any approximation. Linearized additive
measurement models, on the other hand, possess a rank-deficient measurement error covariance. With the n × n matrix
Paug defined above, the 2n + 1 sigma points are given by

X0 = 0 (27)

Xi =

√
(n + κ) Paug

i (28)

Xi+n = −

√
(n + κ) Paug

i (29)

where i = 1, . . . , n and
√

Ai is the ith column of the matrix square root of A. Along with the sigma-points, weights are
chosen as

w0 = κ/(n + κ) wi = 0.5/(n + κ) (30)

where κ is a design parameter of the UKF. Once the sigma points are obtained, they are transformed through the
nonlinear measurement function as

Yi = h(Xi, r, ˆ̄q) (31)

where

h(Xi, r, ˆ̄q) = T (Ni) T (δGi) T ( ˆ̄q) r (32)

In Eq. (32), δGi and Ni are the elements that compose the input sigma points; that is,

XT
i =

[
δGT

i N T
i

]

The mean and covariance of the transformed variables are found via

ŷ = min
ξ

2n∑
i=0

wi
ξ × Yi

1 + ξ · Yi
, ‖ξ ‖ = 1 Zi = 2

ŷ × Yi
1 + ŷ · Yi

(33)

Pzz =

2n∑
i=0

wi Zi Z
T
i Pxz =

2n∑
i=0

wi δGi Z
T
i (34)

The updated state and covariance are obtained from Eq. (22) and

K = PxzP†zz (35)
P+ = P− − K Pzz KT (36)

where the pseudoinverse † provides the optimal estimate given the singular covariance Pzz . Finally, the quaternion is
updated as

ˆ̄q← q̄(δĝ+) ⊗ ˆ̄q (37)
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Remark Once again, the system designer could choose to represent the error as twice the vector part of the quaternion
rather than the scaled Gibbs vector, effectively minimizing sin2 θ/2 rather than tan2 θ/2, where θ is the Euler angle. For
most, if not all, spacecraft applications, this alternative approach will work very well. However, the inherent constraint
that each element of the vector part of the quaternion must be less than one can create problems in the presence of large
attitude errors. A portion of the attitude sigma points are obtained as

Xi =

√
(n + κ)Paug

i

and there is no guarantee that for very uncertain systems
√

(n + κ) will not scale the components of the attitude sigma
points beyond unity. By choosing to represent attitude errors as Gibbs vectors, not only do we employ a full attitude
parameterization, but we take advantage that the Gibbs attitude error is (almost) a one-to-one parameterization of
attitude with the only exception/singularity being the 180 degree error. In the context of generating sigma points,
that singularity is actually very helpful, because it prevents attitude sigma-points from wrapping around, allowing an
extremely robust UKF design even for extremely large attitude uncertainties.

V. Numerical Comparison
The prior sections introduced the three algorithms to be compared and made clear some conceptual differences

between the three:
1) The MEKF fully relies on linearization and the fact that small attitude is locally a vector space
2) The quaternion unscented estimator mixes features of the UT (which avoids linearization) with some assumptions

that are valid only for vector spaces (attitude sigma-points are averaged, an additive unit vector measurement
model is used, and an additive residual is used)

3) The multiplicative unscented Kalman filter removes all linearization and additivity assumptions for attitude states
This section numerically compares the performance of the three algorithms.

To demonstrate the validity of the proposed approach, we consider a satellite attitude tracking problem in which the
orbit is perfectly known, but the attitude is not. The satellite is taken to be in near-geosynchronous orbit with Keplerian
elements as shown in Table 1.

Table 1 Satellite Orbit

Type Value Units
Semi-Major axis 43000 km
Eccentricity 0.03 nd
Inclination 3 deg
RAAN 0 deg
Argument of Periapsis 0 deg
Mean Anomaly 0 deg

To generate a true attitude profile, we take the rotational dynamics to be

˙̄q =
1
2
ω̄ ⊗ q̄

ω̇ = J−1
(∑

m − ω × Jω
)

where ω̄ is the pure quaternion formed from the angular velocity vector ω, J is the moment of inertia of the spacecraft,
and

∑
m represents the summation of all active moments in the body frame. The active moments are assumed to be zero

in this work. The computation of the moment of inertia depends upon the mass distribution of the object. In this work,
the object is assumed to be a hexagonal prism, as shown in Figure 1. This is an 8-plate model with the body-frame unit
vectors defined by the unit vector triad {b1, b2, b3}. Additionally, the plate normal, denoted for the k th plate by ub

n,k
,

is depicted in Figure 1. The area, Ak , and position from the object center, rb
p,k

, of each plate are fully determined by
specifying the side length, a, and the prism height, h. The distance of the side from the center, d, can be determined
from the length of the side, a. The size parameters are chosen so as to represent a typical spacecraft size; the values
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(a) 3D view (b) End view

Fig. 1 Satellite hexagonal prism flat plate model.

used, along with the total mass of the object, are presented in Table 2. Based upon the mass, side length, prism height,
and the distance from the center to the side, the moment of inertia can be found to be a diagonal matrix of the form

J =



Ixx 0 0
0 Iyy 0
0 0 Izz


where the elements of J are given by

Ixx = Iyy = m
(

a2

6
+

d2

3
+

h2

12

)
Izz = m

(
a2

6
+

d2

3

)
The resulting inertia values are also summarized in Table 2.

Table 2 Satellite Geometry and Characteristics

Type Value Units
Length of side 2 m
Height of side 4 m
Distance of side from center 1.7 m
Mass 2688 kg
Ixx and Iyy Inertia 8100 kg m2

Izz Inertia 4500 kg m2

A. Nominal Test Case
We first present a nominal case for which we know the MEKF and the unscented quaternion estimator work properly.

In this example, it is assumed that the initial attitude has a mean orientation given by the identity quaternion; that is, the
mean quaternion represents a body frame that is exactly aligned to the inertial frame. Additionally, the initial mean
angular velocity is taken to be zero. True values are generated by sampling a Gaussian error distribution with a standard
deviation of 10◦ in attitude and 0.1 rev/day in angular velocity. The equations of motion specified previously are then
applied to generate a true attitude and angular velocity profile.

The satellite is equipped with a three-axis rate-integrating gyro that provides incremental angular changes at 100 Hz.
The gyro measurements are generated by integrating the true angular velocity signal at the 100 Hz frequency and then
subjecting the true integrated signal to a zero-mean bias and a zero-mean white-noise sequence. The statistics of the
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gyro bias and noise are given in Table 3. In addition to the gyro, the satellite is equipped with a sun sensor and an Earth
sensor operating at 1 Hz, which provide unit vector measurements that point to the sun and Earth, respectively. The
pointing vectors are generated based on the specified (known) orbit and the uncertain attitude and then subjected to
zero-mean white-noise sequences with standard deviations specified in Table 3.

Table 3 Sensor Specifications, Low-Noise Case

Type 1σ Error Units
Gyro Noise 0.1 deg/

√
s

Initial Gyro Bias 1 deg/s
Sun Sensor Error 2 deg
Earth Sensor Error 5 deg

The attitude filter proposed in this work is then applied with a starting estimated quaternion equal to the identity
quaternion and the estimated bias equal to zero. The initial attitude uncertainty and bias uncertainty that describe the
elements of the initial covariance matrix are take to be 10◦ and 1◦, 1σ, respectively. The UKF parameter is set to
κ = 3 − n, and the filter’s performance is shown in Figures 2 and 3. The gray line shows the estimation error while the
black lines show the predicted 3σ error standard deviation.

Fig. 2 Attitude estimation error for the low-noise test case.

Looking at Figures 2 and 3, it is clear that, in this single run of the proposed attitude filter, both the attitude and
gyro bias are well-estimated. The attitude error converges to a steady-state value relatively quickly because the attitude
is measured directly. The gyro bias, on the other hand, is estimated through its correlation with the attitude that is
built during the propagation phase of the filter. It can be deduced from the figure that the gyro bias is estimated quite
accurately, from the initial value of one degree (1σ), it reaches steady-state in about 150 seconds of simulation time and
converges to less than 0.1 degrees (also a 1σ value). This example is to verify that the proposed algorithm works in a
standard spacecraft scenario, a case for which we know other schemes, such as the MEKF and the UKF of Ref. [7],
work well.
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Fig. 3 Gyro bias estimation error for the low-noise test case.

B. High-Noise Test Case
In this example, we compare the algorithms when subjected to huge amounts of errors, much more than any existing

and realistic sensor. It is assumed that the initial attitude has a mean orientation given by the identity quaternion and that
the initial mean angular velocity is taken to be zero. True values are generated by sampling a Gaussian error distribution
with a standard deviation of 50◦ in attitude and 0.1◦/s in angular velocity. The sensors’ error specifications are given in
Table 4.

Table 4 Sensor Specifications

Type 1σ Error Units
Gyro Noise 1 deg/

√
s

Gyro Bias 1 deg/s
Sun Sensor Error 50 deg
Earth Sensor Error 50 deg

All filters are initialized with a starting estimated quaternion equal to the identity quaternion and the estimated bias
equal to zero and all three schemes use measurement and process noise variances equal to their true values in Table 4.
The attitude estimation performance of the MEKF is established with 100 Monte Carlo runs and shown in Figure 4,
where the blue line shows the 100 time histories of the estimation error while the red lines show the average of the 100
filter’s predicted 3σ error standard deviation. It can be seen that the attitude error in the body-y and body-z directions is
drifting and considerably outside of the filter’s predictions. Figure 5 shows the performance of gyro bias estimation; this
filter is not able to estimate the gyro bias.

The unscented quaternion estimator (UQE) is operated with κ = 0 to avoid any issues with a lack of positive
definiteness in the filter’s covariance matrix that sometimes plague UKF designs that choose κ = 3 − n when n > 3 and
large covariances. The resulting attitude estimation performance is summarized for 100 Monte Carlo runs in Figure 6,
where the blue line shows the 100 time histories of the estimation error while the red lines show the average of the
100 filter’s predicted 3σ error standard deviation. It can be seen that the filter is “smug,” it under-represents the actual
estimation error; the actual error remains outside the 3σ predicted uncertainty for long times. Figure 7 shows the
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Fig. 4 Attitude estimation error (MEKF) - 100 MC runs

Fig. 5 Bias estimation error (MEKF) - 100 MC runs
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performance of gyro bias estimation.

Fig. 6 Attitude estimation error (UQE) - 100 MC runs

Fig. 7 Bias estimation error (UQE) - 100 MC runs

The fully multiplicative UKF (MUKF) has κ = 0 and the resulting attitude estimation performance is summarized
for 100 Monte Carlo runs in Figure 8, where the blue line shows the 100 time histories of the estimation error while
the red lines show the average of the 100 filter’s predicted 3σ error standard deviation. It can be seen that the filter is
capable of providing a consistent estimate. Figure 9 shows the performance of gyro bias estimation.

Discussion It is known that, in the presence of large initial uncertainties and accurate measurements, the EKF can
diverge; this is due to the fact that the linearization of the nonlinear measurement function might not hold in the large
domain of possible realizations of the state vector. In these situations, the EKF usually decreases its covariance too
fast, and the actual estimation error lags behind and is not able to converge to its filter-predicted value. It is therefore
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Fig. 8 Attitude estimation error (MUKF) - 100 MC runs

Fig. 9 Bias estimation error (MUKF) - 100 MC runs
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known that the UKF can yield significantly better convergence and performance when starting with large uncertainty
and utilizing precise measurements. Many EKF vs. UKF comparisons explore this type of scenario and conclude the
superiority of the UKF.

Ref. [20] compares the attitude MEKF and UKF in another, quite unique, situation. They set the filter’s value for the
initial uncertainty of the gyro bias large (20 deg/hr, 1σ), but they make the actual initial error much smaller (5 deg/hr,
1σ). In this situation, the MEKF converges much faster than the UKF, and the authors conclude the MEKF is more
robust to initial covariance discrepancies than the UKF is. If the actual initial bias error was also set to 20 deg/hr, 1σ,
the MEKF covariance might shrink much faster than the actual error and provide a non-consistent estimate.

In this paper, we analyze a different scenario. Unlike [20], the covariances given to the filters match the true values
and the filters are not tuned, i.e. the actual initial error covariance, process noise covariance, and measurement noise
covariance are used by the algorithms without modifications. The initial error covariances are set to a large value, but
unlike other comparisons that favor the UKF, the measurement error covariance is also kept large; otherwise, we know
that the EKF could diverge. This approach gives a very fair comparison where none of the three algorithms are doomed
to fail.

Under this high error situation we notice that:
1) The MEKF predicted covariance shrinks the fastest, and for the most part, the error initially follows it; however,

the MEKF is not able to effectively estimate the gyro bias, which causes the attitude estimation error to drift away.
2) The unscented quaternion estimator, where additive residuals are used, produces an estimated covariance that is

not consistent with the estimation error; the sample standard deviation obtained from 100 attitude error time
series Monte Carlo runs is approximately twice the filter’s prediction.

3) The recently proposed multiplicative unscented estimator produces an actual attitude estimator error similar to
that of the unscented quaternion estimator (it seems a little less erratic towards the beginning of the simulation,
but overall quite similar), but it has the advantage of producing a consistent covariance estimate. The sample
error standard deviation from the Monte Carlo runs is slightly less than the filter’s predicted standard deviation.
The two UKF formulations estimate the gyro bias almost identically.

VI. Conclusions
This work analyzes the performance of two commonly used linear attitude filters, the multiplicative extended

Kalman filter and the unscented quaternion estimator, with respect to a recently developed, fully multiplicative unscented
Kalman filter for attitude estimation. The recently developed algorithms operates completely with multiplicative error,
measurement, and residual models, enabling a consistent treatment of attitude and unit vectors throughout the filter.
Simulations carried out on a nominal attitude estimation problem where line-of-sight measurements are processed
demonstrate that the fully multiplicative unscented Kalman filter is capable of properly tracking the attitude and gyro
bias when the uncertainties associate with the initial conditions and measurements are reasonable small. In a further
test, it is shown that the new method also successfully tracks attitude and the gyro bias in high initial uncertainty and
high measurement noise cases. The standard approach of the multiplicative extended Kalman filter, however, fails to
estimate the gyro bias, leading to accumulation of attitude error. The unscented quaternion estimator produced good
gyro bias estimates, but overly confident attitude estimates. Amongst the linear attitude estimators considered, the fully
multiplicative unscented Kalman filter provided the most consistent estimates.
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