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Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center,
the Orion vehicle’s Exploration Flight Test-1 (EFT-1) successfully completed the objective
to test the prelaunch and entry components of the system. Orion’s pre-launch absolute
navigation design is presented, together with its EFT-1 performance.

I. Introduction

The Orion capsule, the successor of the Space Shuttle as NASA’s flagship human transportation vehicle,
is designed to take men back to the Moon and beyond. The first Exploration Mission (EM1) is scheduled for
2018, while its first flight test, EFT-1 (Exploration Flight Test-1), was successfully completed on December
5th, 2014. The main objective of the test was to demonstrate the capability to re-enter the Earth’s atmo-
sphere and achieve safe splash-down into the Pacific Ocean. This un-crewed mission completes two orbits
around Earth, the second of which was highly elliptical with an apogee of approximately 5908 km, higher
than any vehicle designed for humans since the Apollo program. The trajectory was designed in order to test
a high-energy re-entry similar to those crews will undergo during lunar missions. In order to have a good
navigation solution during entry, the navigation system operated during pre-flight operations, and during
the entire flight, even when Orion was not controlling itself but under the control of the launch vehicle or
the upper stage.

Reference ? describes the navigation design of Orion’s EFT-1 mission and the flight performance for
the post-lift phase. The objectives of this paper are to: i. introduce the pad align algorithm design of
the Orion vehicle, both the Exploration Flight Test 1 design and the changes made in preparation for
Exploration Missions 1 and 2, and ii. document the performance of the pre-launch navigation system during
EFT-1, which relies on the classic extended Kalman filter (EKF).2 Reference 3 introduced the preliminary
EFT-1 navigation design, while pre-mission simulation performance was shown in reference. 4. The UDU
factorization as introduced by Bierman is employed in the filter design,5 and measurements are included as
scalars employing the Carlson6 and Agee-Turner7 Rank-One updates. The possibility of considering only
some of the filter’s states (rather than estimating all of them8) is included in the design.9

Prior to launch the extended Kalman filter is initialized with the estimated vehicle’s attitude from gyro
compassing (coarse align algorithm) and an inertial position derived from the current time and the coordi-
nates of the pad. This pre-launch navigation phase is called fine align and the only measurement active in
this mode during EFT-1 was integrated velocity, which is a pseudo-measurement consisting of a zero change
of Earth-referenced position over a 1 second interval. The GPS receiver measurement are not available
during fine align because the vehicle, including the GPS antennas, are covered by the launch abort fairing.
The main purpose of fine align is to better estimate the attitude and the IMU error states.

II. Inertial Measurement Unit

II.A. The Gyro Model

The gyro is modeled in terms of the bias, scale factor, and non-orthogonality. The IMU case frame is
defined such that the x-axis of the gyro is the reference direction with the x − y plane being the reference
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plane; the y- and z-axes are not mounted perfectly orthogonal to it (this is why we don’t have a full
misalignment/nonorthogonality matrix as we will in the accelerometer model). The errors in determining
these misalignments are the so-called non-orthogonality errors, expressed as a matrix Γ, as

Γg =

 0 γg3 γg2
γg3 0 γg1
γg2 γg1 0


The gyro scale factor represents the error in conversion from raw sensor outputs (gyro digitizer pulses) to
useful units. In general we model the scale-factor error as a first-order Markov (or a Gauss-Markov) process
in terms of a diagonal matrix given as

Sg =

 sgx 0 0

0 sgy 0

0 0 sgz


Similarly, the gyro bias errors are modeled as as first-order vector Gauss-Markov processes as

bg =

 bgx
bgy
bgz


Finally, the gyro noise is represented by εg. Hence the model of the gyro measurement is given by

ωcm = (I3 + Γg + ∆g) (ωc + bg + εg) = (I3 + ∆g) (ωc + bg + εg) (1)

where I3 is a 3 × 3 identity matrix, the superscript c indicates that this is an inertial measurement at the
‘box-level’ expressed in case-frame co-ordinates, and ωc is the ‘true’ angular velocity in the case frame.
Notice that since (I + ∆g)−1 ≈ I−∆g, we can express the actual angular velocity in terms of the measured
angular velocity as

ωc = (I3 −∆g)ωcm − bg − εg (2)

The actual measurement provided by gyros is the the accumulated angle:(
∆θckck−1

)
m

=

∫ tk

tk−1

ωcm(τ) +
1

2
φccref × ω

c
m(τ) dτ (3)

=

∫ tk

tk−1

ωcm(τ) +
1

2

[∫ τ

tk−1

φ̇
c

cref
(χ) dχ

]
× ωcm(τ) dτ (4)

=
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ωcm(τ) +
1
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[∫ τ

tk−1

(
ωcm(χ) +

1

2
φccref × ω

c
m(χ)

)
dχ

]
× ωcm(τ) dτ

Ignoring second-order terms, we get(
∆θckck−1

)
m

=

∫ tk

tk−1

[
ωcm(τ) +

1

2

∫ τ

tk−1

ωcm(χ) dχ× ωcm(τ)

]
dτ (5)

II.B. The Accelerometer Model

Similar to the gyros, the accelerometer scale factor represents the error in conversion from raw sensor outputs
(accelerometer digitizer pulses) to useful units. In general we model the scale-factor error as a first-order
(Gauss-) Markov process in terms of a diagonal matrix given as

Sa =

 sax 0 0

0 say 0

0 0 saz
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Similarly, the bias errors are modeled as as first-order Gauss-Markov processes as

ba =

 bax
bay
baz


So, the accelerometer measurements, acm are modeled as:

acm = (I3 + Sa) (ac + ba + υa) (6)

where I3 is a 3 × 3 identity matrix, the superscript c indicates that this is an inertial measurement at the
‘box-level’ expressed in case-frame co-ordinates, and ac is the ‘true’ non-gravitational acceleration in the
case frame. The quantity υa is the velocity random walk, a zero-mean white sequence on acceleration that
integrates into a velocity random walk, which is the ‘noise’ on the accelerometer output. We note that the
measured ∆v in the case frame, ∆vcm, is mapped to the end of it’s corresponding time interval by the sculling
algorithm within the IMU firmware, so that we can write

(∆vcm)k =

∫ tk

tk−1

Tck
c(t)a

c(t)
m dt (7)

where (∆vcm)k covers the time interval from tk−1 to tk (tk > tk−1) and c(t) is the instantaneous case framea.
We recall that a transformation matrix can be written in terms of the Euler axis/angle as

T (φ) = cos(φ)I − sinφ

φ
[φ×] +

1− cosφ

φ2
φφT (10)

= I − sinφ

φ
[φ×] +

1− cosφ

φ2
[φ×] [φ×] (11)

which, for φ ∼ 0 can be approximated as

T (φ) = I − [φ×] (12)

With this in mind, Tck
c(t) = I3 −

[
θckc(t)×

]
, and using Eq. (6),

(
∆vBm

)
k

becomes

(∆vcm)k =

∫ tk

tk−1

[
I3 −

[
θckc(t)×

]]
[(I3 + ∆a)ac + ba + υa] dt (13)

We can expand this equation, neglecting terms of second-order, as follows

(∆vcm)k =

∫ tk

tk−1

[
I3 −

[
θckc(t)×

]]
acdt+

∫ tk

tk−1

(ba + υa) dt

+

∫ tk

tk−1

∆aacdt (14)

The first term in the above equation (Eq. (14)) becomes∫ tk

tk−1

[
I3 −

[
θckc(t)×

]]
acdt = (∆vc)k (15)

aOr equivalently, (
∆vB

m

)
k

=

∫ tk

tk−1

T
Bk
B(t)

a
B(t)
m dt (8)

But since T
Bk
B(t)

≈ I3 −
[
φ

Bk
B(t)

×
]
, we find

(
∆vB

m
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and the third term becomes ∫ tk

tk−1

∆aacdt = ∆a

∫ tk

tk−1

acdt ≈∆a (∆vc)k (16)

Finally, the accelerometer noise, which is zero-mean process with spectral density Sa becomes∫ tk+1

tk

υadt = ua (17)

where ua is a random vector with covariance Sa(tk − tk−1). So, Eq. (14) becomes

(∆vcm)k = [I3 + ∆a] (∆vc)k + ba∆t+ υa∆t (18)

Since we have established that [I3 + ∆a]
−1 ≈ [I3 −∆a], and neglecting terms of second-order,

(∆vc)k = [I3 −∆a] (∆vcm)k − b
a∆t− υa∆t (19)

III. Coarse Align Design

The Coarse Align Computer Software Unit (CSU) main purpose is to compute an initial guess of the
attitude of the Orion vehicle while on the pad. The output attitude is based on a simple filtering of high
rate IMU data with the assumption that the vehicle is standing still.

Orion IMU sensor sampling is at 1600 Hz to accommodate high rate compensations such as coning,
sculling, size effect and accelerometer digitizer asymmetry compensation. The 1600 Hz data is used to form
compensated 200 Hz delta angles and delta velocities in the body frame. The 200 Hz data is organized in
buffers and passed to the VMC at a 40 Hz rate to ensure that no sample is lost.

Low pass second order filters are applied to the IMU measurements to remove noise and oscillatory
motion due to wind (twist and sway). The expected output of the Coarse Alignment, T be , is the attitude
of the vehicle body-fixed frame (b) with respect to the Earth-fixed frame (e, or International Terrestrial
Reference Frame, ITRF). An intermediate calculation is T bned, that represents the transformation matrix of
the vehicle attitude with respect to the North-East-Down (NED) frame.

The NED frame is derived from the filtered body frame vectors as follows:
“Up” is defined as the unit filtered delta-velocity vector in the body frame

Û =
∆vbib
|∆vbib|

“East” is defined as the unit filtered delta-angle (earth rate) vector crossed with “Up”

Ê =
∆θbib × Û

|∆θbib × Û|

“North” is defined as the cross product of “Up” and “East”

N̂ =
Û× Ê

|Û× Ê

T bned =

N̂x Êx −Ûx
N̂y Êy −Ûy
N̂z Êz −Ûz


T be = T bned × Tnede

The transformation matrix Tnede is determined from the surveyed coordinates of the pad.
Note that a potential singularity exists in this algorithm if the ∆vbib and ∆θbib vectors are co-linear.

Although this condition should not occur unless the alignment is done at the north or south pole, a check is
made to ensure the |∆θbib × Û| is of reasonable size prior to computing Ê. If this is not the case then T bned
should be set to the identity transform.
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IV. Navigation Algorithm Design

Measurements are incorporated in the navigation solution at 1Hz, which is a typical rate of GPS sensors.
However the attitude control algorithm necessitates estimates from the navigation solution at a higher rate,
furthermore the IMU measurement data is available at a higher rate. The delta velocity delta attitude accu-
mulator (DVDAAccum) CSU is the high-rate Inertial Measurement Unit (IMU) accumulator and attitude
propagator complement to filter CSUs in the 1 Hz rate group. The vehicle attitude is propagated forward
in time through the use of accumulated sensed ∆θ data. The CSU also accumulates ∆V measurements
which are used by the Position and Velocity Fast Propagator to compute high rate position and velocity for
downstream users. The attitude of DVDAAccum is re-synched to the 1 Hz rate group estimate each second.

DVDAAccum receives feedback data from the 1 Hz EKF CSUs and uses it to perform an update. During
the update phase DVDAAccum replaces the estimates of the IMU errors with the most current values,
transforms the values of the inertial accumulated delta velocity into the updated inertial frame, and updates
the inertial to Orion body attitude with the information from the filter.

The Orion fine alignment algorithm utilizes the same Extended Kalman Filter architecture and CSU as
that used for atmospheric navigation (ATMEKF, used during the fine align, ascent, and entry phases). This
paper presents the design of the fine align portion of the algorithm and trades between three different type
of fine align measurements: Integrated Velocity (IV), Zero Velocity (ZV), and Pad Position (Pos). All these
measurements are pseudomeasurents, no sensor exists that produces them, instead the measurements are
derived from the fact that the vehicle is not moving with respect to the pad. Hence the actual measurement
utilized from the filter is the theoretical value and the measurement noise is given by the variation from this
theoretical value due to twist and sway motion of the stack. This motion is forced by wind and is a function
of the bending modes of the launch system.

During EFT-1, the Orion EKF used an IV measurement, to precisely estimate the attitude of the IMU
on the launch pad during the fine align phase. For EM1 and beyond, three possible solutions are considered:

1. The IV measurement returns the change in Earth Centered Earth Fixed (ECEF) position over a
specified amount of time, typically the call rate of the EKF, which for EFT-1 is one second. This
is a “fake” measurement since no sensor exist and the processed measurement is always given by the
nominal value of zero. The measurement noise is therefore given by the true motion of the IMU due
to twist and sway of the stack.

2. The pad position (Pos) measurement returns the planet-fixed position of the IMU. This is also a “fake”
measurement always set to the nominal location. The measurement error is comprised not only to the
twist and sway motion, but also of the survey error of the pad location. Therefore the measurement
error has two distinct contributors, a varying component due to the stack oscillations and a repeatable
component due to the survey errors.

3. The zero velocity (ZV) measurement returns the instantaneous planet-fixed velocity of the IMU. This
is also a “fake” measurement always set to the nominal value of zero. The measurement noise is given
by the true motion of the IMU due to twist and sway of the stack.

IV.A. Integrated Velocity

Given the current inertial position ri at time t, the prior inertial position ri0, as well as the transformation
matrix between Earth-fixed and inertial (Ti

e), the IV measurement is given by

yIV = hIV (x,x0, t) =
(
Ti
e(t)
)T

ri −
(
Ti
e(t0)

)T
ri0 + ηIV = 0 (20)

where hIV (x,x0, t) is the measurement model (note the transpose on the transformation matrix) and ηIV
is the measurement noise which exactly cancels out the motion due to twist and sway. The estimated
measurement is given by

ŷIV = hIV (x̂, x̂0, t) =
(
Ti
e(t)
)T

r̂i −
(
Ti
e(t0)

)T
r̂i0 (21)

notice that this measurement is nonlinear, potentially highly-nonlinear, since in order to calculate the prior
inertial position is necessary to back-integrate the nonlinear equations of motion that also contain the
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estimates of the IMU error parameters. Therefore, the measurement residual is

εIV = yIV − ŷIV (22)

As a first order approximation (used to obtain the IV measurement partials or measurement mapping matrix
HIV )

εIV =
∂hIV
∂x

(x− x̂) +
∂hIV
∂x0

(x0 − x̂0) + ηIV (23)

=
∂hIV
∂x

x̂ +
∂hIV
∂x0

Φ(t, t0)x̂ + ηIV (24)

= HIV (x̂) (x− x̂) + ηIV (25)

where Φ(t, t0) is the state transition matrix. With this in mind, the partial derivative of the IV measurement
is as follows

∂hIV
∂r

(x̂) =
(
Ti
e(t)
)T − (Ti

e(t0)
)T

Φrr(t, t0) (26)

∂hIV
∂v

(x̂) = −
(
Ti
e(t0)

)T
Φrv(t, t0) (27)

∂hIV
∂φ

(x̂) = −
(
Ti
e(t0)

)T
Φrφ(t, t0) (28)

∂hIV
∂ba

(x̂) = −
(
Ti
e(t0)

)T
Φrba

(t, t0) (29)

∂hIV
∂sa

(x̂) = −
(
Ti
e(t0)

)T
Φrsa(t, t0) (30)

∂hIV
∂ξa

(x̂) = −
(
Ti
e(t0)

)T
Φrξa

(t, t0) (31)

∂hIV
∂bg

(x̂) = −
(
Ti
e(t0)

)T
Φrbg (t, t0) (32)

∂hIV
∂sg

(x̂) = −
(
Ti
e(t0)

)T
Φrsg (t, t0) (33)

∂hIV
∂γg

(x̂) = −
(
Ti
e(t0)

)T
Φrγg

(t, t0) (34)

The measurement noise is given by the change in position due to sway over one second. Notice that because
of the back-propagation, this measurement is nonlinear in nature. Due to the oscillatory motion due to the
flex modes of the stack, this nonlinearity could be potentially severe, although severe nonlinearities are not
expected over one second intervals nor were they experience during EFT-1.

IV.B. Pad Position Measurement

The position measurement is expressed as follows:

yPos = hPos(x, t) =
(
Ti
e(t)
)T

ri + bpad + ηPos (35)

where bpad is the launch pad location survey error and ηPos is the measurement noise which exactly cancels
out the motion due to twist and sway. The estimated measurement is given by

ŷPos = hPos(x̂, t) =
(
Ti
e(t)
)T

r̂i + b̂pad (36)

The measurement residual is

εPos = yPos − ŷPos = HPos(x̂) x̂ + ηPos (37)
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With this in mind, the partial derivative of the position measurement is as follows

∂hPos
∂r

(x̂) =
(
Ti
e(t)
)T

(38)

∂hPos
∂bse

(x̂) = I3×3 (39)

Notice that this is a linear measurement and the measurement noise is given by the displacement due to
sway.

IV.C. Zero Velocity

The zero velocity measurement is expressed as follows:

yZV = hZV (x, t) =
(
Ti
e(t)
)T (

vi − ωiE × ri
)

+ ηZV = 0 (40)

where ωiE is the Earth angular velocity vector and ηZV is the measurement noise which exactly cancels out
the motion due to twist and sway. The estimated measurement is given by

ŷZV = hZV (x̂, t) =
(
Ti
e(t)
)T (

v̂i − ωiE × r̂i
)

(41)

The measurement residual is

εZV = yZV − ŷZV = HZV (x̂) x̂ + ηZV (42)

With this in mind, the partial derivative of the zero velocity measurement is as follows

∂hZV
∂r

(x̂) =
(
Ti
e(t)
)T

[ωiE×] (43)

∂hZV
∂bse

(x̂) =
(
Ti
e(t)
)T

(44)

Notice that this is a linear measurement and the measurement noise is given by the velocity of the oscillation
due to sway.

IV.D. Fine Align Measurement Trade

During factor of safety performed prior to EFT-1, the analysis showed that the IV measurement is subject to
divergence under some higher-than-expected frequency cases. These cases were deemed extremely unlikely
and since the performance was monitored from the ground which could scrub the launch if the atmospheric
conditions created excessive motion of the stack. While robustness to the amplitude of the oscillations can
be achieved via tuning of the value of the IV measurement noise variance, increasing robustness to very large
frequency variations presents a less obvious solution. The issue is that high frequency of oscillation make
the IV measurement nonlinearities more pronounced.

The IV measurement is inherently a measurement of velocity, or at least average velocity, since it measures
the change in position. Therefore this measurement type provides very little information on the position of
the vehicle, which can be seen by the gradual increase of the position estimation error covariance returned by
the filter during fine align. Very long ground operations can cause the position estimation error to become
excessively large, forcing the ground to send a position re-anchoring command prior to launch, as routinely
done in the Space Shuttle. Two options are possible, overwriting the state only, hence having a good state
estimate but a large, over conservative estimation error covariance. Or to re-initialize the position error
covariance as well, hence loosing the correlations with all the remaining states built during fine align.

In fact, during very long pad alignment times, the position covariance eventually ceases to increase and
asymptotically settles to a large value. The reason is that some information is extracted from the gravity
model and the measurement of gravity. Since the position of the pad is known with a certain uncertainty,
a desirable design is one in which the position estimate and its uncertainty are constant (in Earth-fixed
coordinates) while all other states are estimated. This can be achieved by the pad position measurement.

These two facts have lead to a trade study of possible solutions to alleviate the issues and create a better
design.
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The most important aspect of the trade is whether or not a position re-anchoring is necessary. Ground
commands not only increase the complexity of the code, but, more importantly, require controllers to spend
considerable time developing and studying flight rules to handle various scenarios. A position re-anchoring
can be automatically forced immediately prior to launch, however this has the unwanted side effect of either
a largely conservative position covariance, or cancelling all the correlation between position and other states,
which in turn are used to estimate the other states from pseudo range measurements during ascent. The pad
position measurement keeps the estimated position error covariance constant during ground align operations,
and never necessitates of a re-anchoring. Both IV and ZV measurement have very weak position observability,
which comes from either the fact that gravity is a function of position or from ω× r due to Earth’s rotation;
goth have a very low sensitivity to position changes.

In all aspects of flight software design, it is also very important to keep the algorithm as simple as possible
while meeting requirements. ZV and Pos measurements are both linear, do not require back propagation of
the state, and hence are significantly simpler to implement than IV. Of the two, ZV is the simpler because
it does not require the addition of any other state. The need of pad position bias states is imperative
in processing pad measurement. The survey error is done only once, therefore processing the measurement
every second results in a constant error, furthermore this survey value is used to initialize the filter, hence the
initial error is correlated to the measurement error. The need for extra states, and hence a larger covariance
matrix and more computations, is highly mitigated by the fact that GPSR measurement are not processed
while on the pad and they also necessitate extra states. Therefore the GPS clock bias and drift states for
the two receivers are recycled as pad position bias states. As a result the pad position measurement does
not require any increase on the size of the EKF state vector.

While filter divergence is a very serious issue that must be taken into consideration, the situations in which
IV measurement caused divergence of the filter were extreme and deemed very unlikely to occur. Even if
they did occur, it would probably be due to bad weather and monitored by the ground which would postpone
the launch. Therefore divergence issues are the lowest weighted element of the trade. Pad position and ZV
are linear measurements, therefore they cannot cause divergence during a measurement update (divergence
can occur during propagation, but that is completely independent from the choice of measurement update).

Given these three aspects of the trade, pad position measurements were deemed the best solution for
Orion going forward and replaced IV for Exploration Mission 1 and beyond. Table 1 shows the matrix of
the trade.

Table 1. Fine Align Measurements Trade Matrix

Trade Factor Trade Weight IV Pos ZV

Avoid position re-anchor High NO YES NO

Lower algorithm complexity Medium NO NO YES

Avoid potential divergence Low NO YES NO

IV.E. Exploration Mission I Design

The Orion atmospheric extended Kalman filter (ATMEKF) processes all available observations each cycle to
estimate position, velocity, and alignment, along with the measurement error parameters. All inertial sensor
error estimates are fed back as corrections each cycle during the INS state correction process. The U-D-U
algorithm is used in the ATMEKF processing to avoid any possible numerical instability.

From the trade study discussed above, the pad position measurement is processed by the filter. The
observation is based on the fact that, during ground alignment, the navigation base is not moving with respect
to Earth, other than twist and sway. The surveyed position of the stack is therefore used as an external
measurement and it is compared to the propagated position using gravity and IMU data. This observation
can be mapped directly into the integrated position state via the Earth-Fixed to Inertial transformation
matrix. Two errors affect the measurement. The first is due to oscillations because of twist and sway, this
error source is aleatory in nature and modeled as white noise. The second source of error is repeatable, and
is given by the survey error of the pad location together with the error in establishing the position of the
IMUs with respect to the pad. This error is accounted for as a state in the filter.

The normalized squared measurement residuals values for each of the three components of the position
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observation are calculated prior to processing any observations. If any of the three values values exceeds the
limit, all observation components are discarded for this cycle.

The state vector components are divided in dynamic-states and parameter-states. Parameter-states differ
from the other states in that they are modeled as first order Markov processes, therefore their time evolution
is known analytically and does not necessitate numerical integration. In addition, their state transition
matrix is also known analytically and it is very sparse, making their covariance matrix propagation extremely
numerically efficient.

The states are partitioned into vehicle dynamic states, X , and the parameter-states (IMU errors, GPS
PR errors), B, so that

X =
[
X T BT

]T
(45)

We explicitly include the attitude as a state in order to properly model the coupling inherent in a strap-
down IMU (particularly during accelerated flight). As stated earlier the parameter-states are modeled as
first-order Gauss-Markov processes and use a much more efficient computational algorithm for the update
of the covariance matrix. Tables 2 and 3 list the states and parameters within the Atmospheric EKF.

Table 2. Atmospheric Navigation States

State Number of Description

elements

Position 3 Position vector in inertial coordinates

Velocity 3 Velocity vector in inertial coordinate

Attitude 3 Multiplicative attitude deviation state

Clock Bias and Drift 4 One pair per receiver, three of these states are used as

pad position bias states during fine align

Table 3. Atmospheric Navigation Parameters

Parameter Number of

elements

gyro bias 3

gyro scale factor 3

accel bias 3

accel scale factor 3

pseudorange bias 12

Position, velocity, and attitude states and their covariance are initialized as appropriate directly from
data provided to the CSU. During Pad initialization scenarios, states 10 to 12 are initialized as pad bias
states. The pad position measurement is expressed in the ITRF and is modeled as

ypad = re + bepad + ηpad

where re is the ITRF position vector, bepad is the survey error of the pad position, and ηpad is the non-
repeatable error of the measurement (e.g. due to twist and sway motion). The filter is initialized with the
pad surveyed position coordinated in the inertial frame, that is, the initial position estimate is given by

r̂(t0) = Ti
e(t0) ypad

where Ti
e is the DCM transforming inertial coordinates into ICRF coordinates, therefore the initial position

estimation error er(t0) is given by

er(t0) = r(t0)− r̂(t0) = Ti
e(t0)re −Ti

e(t0)(re + bepad + ηpad) (46)

= −Ti
e(t0)bepad −Ti

e(t0)ηpad = −Ti
e(t0)eebpad

−Ti
e(t0)ηpad (47)
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The last equality holds because the initial estimated pad survey error is zero (otherwise the estimate error
would be subtracted from the estimated position resulting in a new estimated position with zero estimated
error). Equation (47) shows the correlation between the initial position and the survey error state, from it
we deduce the values for the following elements of the initial covariance matrix

P0(bpad, bpad) = Te
i (t0) P0(r, r) Ti

e(t0) (48)

P0(X, bpad) = P0(X, r) Ti
e(t0) (49)

P0(bpad, X) = Te
i (t0) P0(r,X) (50)

where P0(bpad, bpad) is the 3×3 covariance of the pad survey error state, P0(r, r) is the 3×3 initial covariance
of the position state, P0(X, bpad) is the cross covariance between any state X and the pad survey error
state. The resulting 12x12 position, velocity, attitude, and pad survey error covariance matrix is generally
non-diagonal and is converted to its UDU factorization for the filter to use. During non-pad initialization
cases, states 10 to 12 are left unitialized; they will be initialized, together with state 13, once valid GPS
measurements are received by the filter.

V. Pre-Launch EFT-1 Performance

Process noise is used to tune the filter. For the Orion Absolute Navigation Filter, the process noise enters
the covariance update via the dynamic states and the parameter states. For the position and velocity, the
process noise enters via the velocity state; the process noise represents the uncertainty in the dynamics,
chiefly caused by mis-modeled (or unmodeled) accelerations. Since the accelerometers only measure non-
inertial forces, gravity is modeled via a high-order gravity model. For the Orion Absolute Navigation filter,
Earth’s gravity is modeled by an 8 × 8 gravity field; higher-order spherical harmonics are neglected and
hence are captured by the velocity process noise. Additionally, since the attitude rate states are not part
of the filter, the attitude process noise enters via the gyro angle random walk. The velocity and attitude
process noises are obtained from the IMU Velocity Random Walk and Angular Random Walk performance,
respectively. Conservative values of 0.96741 ft2/s and 0.0096741ft2/s3 are used for the clock bias and drift
process noise, respectively.

The IMU states are modeled as first-order Gauss-Markov processes and carry with them corresponding
process noise parameters which are used in the tuning of the filter. Since the IMU errors were expected to
be quite constant during the 4.5 hour flight, the time constant of these parameters was chosen as 4 hours,
and the process noise was chosen such that the steady-state value of the Markov processes was equal to the
vendor’s specification.

During fine align the navigation filter process integrated velocity (IV) measurements. Figure 1 shows
the performance of the filter processing this measurement by means of the measurement residual (actual
measurement minus estimated measurement, blue lines) and their predicted covariance (red lines). It can be
seen that the residuals are well within their predicted variance, all of the measurements are accepted (green
line) and zero rejections occur (red line). The residuals are extremely small with respect to their predicted
standard deviation, this suggests the filter is overly conservative. This fact was expected and a design choice
to add robustness to large twist and sway motion of the launch vehicle. During the day of flight little to no
twist and sway was observed. Figure 1 shows the results from Channel 1. A zoomed in plot of the residuals
from Channel 2 is shown in Figure 2. Throughout the flight the performance of the two channels is nearly
identical, therefore only results from Channel 1 are shown for the remainder of this paper.

Figure 3 shows the filter’s position, velocity, and attitude covariance. Figures 4 and 5 show the ac-
celerometer and gyro error states covariance, respectively. Figures 6 and 7 show the filter’s estimates of the
accelerometer and gyro errors, respectively. The performance is as expected.

Finally, Figures 8 to 10 show the position, velocity, and attitude estimates from the user parameters
processor (UPP) which provided the outputs from channel 1.

VI. Conclusions

This paper documents the design of the Orion ground navigation system and presents its performance
during Exploration Flight Test 1 (EFT-1). Characteristics of the EFT-1 design were introduced, and data
from the flight is shown to validate the design choices. This data illustrates a flight in which the absolute
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navigation system performed as expected and produced a good state to guidance and control. No Integrated
Velocity measurement rejections occurred in the filter and the measurement residuals were very low with
respect to their predicted standard deviations. This fact is due to a combination of conservative tuning
of this measurement and perfect weather during the day of launch. Design trades are also presented to
justify the transition from the EFT-1 IV measurement to the use of Pad Position measurement during future
Exploration Mission flights. The design of the EM1 ground alignment phase is presented in detail.
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Figure 1. FCM1-CH1 IV Measurements

Figure 2. FCM1-CH2 IV Measurements
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Figure 3. FCM1-CH1 Position, Velocity, and Attitude 3σ Covariance

Figure 4. FCM1-CH1 Accelerometer Bias, Scale Factor, and Misalignment 3σ Covariance
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Figure 5. FCM1-CH1 Gyro Bias, Scale Factor, and Non-Orthogonality 3σ Covariance

Figure 6. FCM1-CH1 Accelerometer Bias, Scale Factor, and Misalignment Estimate
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Figure 7. FCM1-CH1 Gyro Bias, Scale Factor, and Non-Orthogonality Estimate

Figure 8. FCM1-CH1 Position Estimate
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Figure 9. FCM1-CH1 Velocity Estimate

Figure 10. FCM1-CH1 Attitude Estimate
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