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RE-EVALUATING ORION’S RELATIVE NAVIGATION FILTER
DESIGN FOR NASA’S FUTURE EXPLORATION MISSIONS

David Woffinden⇤, Renato Zanetti†, Kirsten Tuggle‡, Christopher D’Souza§,
Peter Spehar¶,

The vision of human exploration introduced by the Constellation Program over a decade ago
demanded extensive capability from the Orion spacecraft. One of the critical flight elements
included automated and piloted rendezvous and docking with multiple vehicles in Low Lunar
Orbit (LLO) and Low Earth Orbit (LEO). To support the necessary rendezvous, proximity
operations, and docking (RPOD) requirements, the design and development of the relative
navigation system began. Following the cancellation of the Constellation Program and sub-
sequent shifts in NASA’s near term exploration goals, the need for the crewed Orion vehi-
cle to perform RPOD was postponed along with the relative navigation filter development.
Recently, NASA has begun procuring docking hardware to support upcoming exploration
missions (EM) and the need to investigate Orion’s rendezvous and docking capability has
resurfaced. This paper revisits the relative navigation filter design and re-evaluates the se-
lected formulation in context of past and current space programs, analyzes the performance
and trades between different filter designs, and demonstrates the filter’s performance in con-
text of the proposed rendezvous and docking concept of operations (ConOps) envisioned for
establishing a deep space gateway (DSG) in a lunar near rectilinear halo orbit (NRHO).

INTRODUCTION

The ability to successfully perform rendezvous, proximity operations, and docking (RPOD) has been the
cornerstone of human space exploration since its inception. At the heart of the execution of RPOD has been
the ability to perform relative navigation with respect to the target vehicle. The first RPOD activities for the
Orion program are expected to occur during NASA’s Exploration Mission 3 (EM-3) with one of the target
vehicles scheduled to launch in advance on EM-2. Planning and design for the Orion relative navigation
filter has resumed since the last implementation in 2009 [1]. Given changes to both the Orion program
and future mission objectives, this effort focuses on re-evaluating the Orion relative navigation filter design
in context of lessons learned from past spaceflight programs while looking toward the future for Orion to
achieve unprecedented levels of automation and mission flexibility. The challenge is to understand and apply
best practices developed over the past several decades but strive to foresee unique challenges associated with
missions flown decades into the future.

This work focuses on the formulation of the relative navigation translational filter. Determining both the
number and type of states to most effectively support Orion RPOD activities becomes the central emphasis.
The first section outlines the relative navigation filter design assumptions with regards to the rendezvous
and docking concept of operations anticipated for the upcoming Orion exploration missions. The second
section presents various filter formulation design options and discusses the advantages and disadvantages of
each approach in context of past and current spaceflight programs along with their theoretical merit. The
third section derives the framework to systematically compare the performance of each design option in a
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qualitative manner. The fourth section evaluates and compares four different filter designs as applied to
Orion’s EM-3 rendezvous flight phases. The final section concludes with summarizing key trends and design
recommendations moving forward.

ORION RELATIVE NAVIGATION FILTER DESIGN ASSUMPTIONS

The relative navigation filter design encompasses several facets including the filter’s 1) architecture, 2)
formulation, 3) implementation, and 4) development environment. The filter architecture specifies the number
of filters, the different types of filters, and their interaction with one another, sensor hardware, other GN&C
subsystems, and flight software executive functions. The filter formulation determines the number and type
of states and determines the fundamental filter equations to ensure adequate integrated system performance.
The filter implementation selects the particular filtering techniques (Extended Kalman Filter, Square Root
Filter, UDU factorization, Unscented Kalman Filter, etc. ) for executing the fundamental filtering functions
and measurement processing to improve robustness, throughput constraints, and numerical stability. Lastly,
the filter development environment addresses the coding language and processes adopted for flight software
standards. The filter formulation design is the focus of this paper.

To begin identifying the proper filter formulation in context of upcoming Orion mission objectives, it
becomes helpful to define the basic assumptions and the scope of application in terms of 1) target vehicle
capabilities, 2) rendezvous domain and duration, 3) level of autonomy, and 4) rendezvous and docking op-
erations. These in turn influence the type of measurements and sensors required along with the necessary
guidance and targeting algorithms; both of which directly affect the filter formulation design. To provide
a perspective that helps bound the anticipated needs and capabilities of Orion’s relative navigation filter in
the coming years and decades, first the emerging rendezvous and docking concepts of operations for EM-3
are introduced along with anticipated objectives for missions beyond EM-3. Based on the rendezvous and
docking activities for EM3 and the speculated goals for subsequent missions, a summary is provided that
outlines the basic assumptions to the key factors driving the relative navigation filter formulation design.

Rendezvous and Docking Concept of Operations for EM-3

The second crewed Orion mission is schedule for the third exploration mission. The current concept for
EM-3 entails the delivery of a habitation module to the Deep Space Gateway (DSG) [2] in an Earth-Moon
Near Rectilinear Halo Orbit (NRHO) [3, 4]. Initially, DSG consists only of the power propulsion element
(PPE) [5] launched previously with the EM-2 mission. Subsequent missions such as EM-4 and EM-5, would
deliver other modules and elements. The vision for DSG is a crew-tended cislunar gateway that would be
used as a staging point for both robotic and crewed lunar surface missions and for enabling travel to Mars.
The NRHO trajectories maintained by DSG is a subset of the halo orbit families and is characterized by
a close passage over one of the lunar poles. As depicted in Figure 1, the NRHO proposed for EM-3 is a
southern NRHO which reaches the furthest distance from the Moon over the lunar south pole. The period of
this particular NRHO is approximately seven days.

The rendezvous, proximity operations, docking, and undocking (RPODU) events are rather extensive for
EM-3. There are two primary segments during the mission that require Orion to perform various rendezvous
and proximity operations. Following the trans-lunar injection (TLI) burn highlighted in Figure 1(a), the first
major RPODU sequence begins where Orion extracts the CPL (the habitation module) from the launch vehi-
cle’s Exploration Upper Stage (EUS) while enroute to the moon. Although the separation distance between
Orion and the various targets are not significant, this segment poses several unique challenges.

Upon arrival at the moon, Orion executes the outbound power flyby (OPF) maneuver to strategically enter
the NRHO near DSG with the NRHO insertion (NRI) maneuver shown in Figure 1(b). Once Orion has suc-
cessfully entered the NRHO, it initiates a series of maneuvers to rendezvous and dock with DSG representing
the second major RPODU activites. The nominal departure point for Orion to leave the NRHO is designated
as the NRHO departure (NRD) maneuver which occurs approximately 10 days after NRI. When the time for
the crew to return to Earth arrives, Orion undocks from DSG, separates itself, and performs the NRD burn.
The NRD maneuver puts Orion on a trajectory to pass around the moon to execute the returned power flyby
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(a) Earth-to-Moon View (b) Moon-to-Earth View

Figure 1. The proposed Orion Exploration Mission-3 trajectory utilizing a southern
Near Rectilinear Halo Orbit (NRHO).

(RPF) maneuver which places Orion on a five day return trajectory to Earth. To begin understanding the
performance required by the relative navigation filter to support these various RPODU activities, additional
details are provided about the concept of operations for both extracting the CPL after TLI and docking with
DSG in the NRHO.

Orion Post-TLI Proximity Operations, Docking, and Undocking The event sequence for Orion’s prox-
imity operations following TLI cutoff is summarized in Figure 2. After the TLI burn as depicted in Figure
2(a), Orion and EUS orient into a predetermined docking attitude shown in Figure 2(b) to accommodate ther-
mal and power constraints. Once in the designated docking orientation, Orion separates from EUS, rotates
180 degrees, and station-keeps at a safe distance illustrated in Figure 2(c). Prior to station-keeping, it is as-
sumed no relative measurements are available. Once Orion is at a safe holding distance, the EUS maneuvers
to the Universal Stage Adapter (USA) separation attitude highlighted in Figure 2(d) and then releases the
USA. Figure 2(e) emphasizes that the separation imparts a delta-v on the EUS which Orion responds to in
order to maintain the desired relative station-keeping location on the designated docking axis.

Providing an accurate relative state estimate to the crew and automated system when EUS is in a non-
docking orientation, while simultaneously estimating the relative motion with a maneuvering target that has
separated into two elements, poses a variety of challenges that the relative navigation system must properly
handle. As illustrated in Figure 2(k), the external surface of EUS contains reflective targets arranged in
a pattern to optimize detectability given an assortment of relative EUS attitudes during the transposition
sequence. A sample development pattern is provided in Figure 2(l). Besides having specially mounted
refectors on EUS that can be tracked by the LIDAR to aid the relative state estimation problem, the current
concept of operations also has the EUS attitude broadcasted to Orion via a communication link.

Once the USA is jettisoned, the CPL habitation module is now accessible. The EUS slews to the docking
attitude represented in Figure 2(f). Orion’s LIDAR acquires the docking reflectors and once the authority to
proceed has been granted; Orion begins the approach and docking sequence to the CPL as shown in Figure
2(g). During the final approach, the relative attitude can be determined using the LIDAR tracking reflectors
mounted near the docking port, by the crew visually monitoring the EUS using a centerline docking camera
for lateral cues, or potentially an onboard vision navigation system processing the centerline docking camera
images. When Orion has docked and secured the CPL, the EUS reorients the stack to point Orion/CPL in
the necessary separation attitude in Figure 2(h). Upon separation depicted in Figure 2(i), the Orion/CPL
stack rotates and departs while EUS performs the necessary disposal burns in Figure 2(j). The choreography
between Orion, the target vehicles, the crew, and ground support includes a level of complexity that requires
an adequate relative navigation solution to successfully meet mission objectives.
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(a) TLI Cutoff (b) EUS to Orion Sep Attitude (c) Orion Transposition

(d) EUS to USA Sep Attitude (e) USA Separation (f) EUS to Docking Attitude

(g) Orion Dock to CPL (h) EUS to Orion/CPL Sep Attitude (i) Orion/CPL Separation

(j) Orion Departure, EUS Disposal (k) EUS Candidate Reflective Targets (l) Reflective Target Pattern Sample

Figure 2. EM-3 Post-TLI Proximity Operations and Docking Event Sequence

Orion NRHO Rendezvous, Proximity Operations, and Docking Several fundamental concepts specific
to the NRHO rendezvous, proximity operations, and docking segment are illustrated in Figure 3. As depicted
Figure 3(a), Orion enters the NRHO nearly along the docking axis of DSG at a distance up to several hundred
kilometers and a relative velocity to ensure any resulting free drift or under-burn contingency scenarios do not
pose a threat to DSG. A sequence of rendezvous maneuvers safely guides Orion to the predesignated docking
axis in preparation for final approach. The current sensor configuration for Orion to support RPODU include
long range S-band range and range-rate measurements from DSG; bearing angles from either the centerline
docking camera, optical navigation camera, or star tracker; a LIDAR for close proximity operations; and a
centerline docking camera for final approach and docking.
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(a) Notional In-Plane NRHO Rendezvous, Proximity Operations, and Docking Trajectory

(b) EM3 Orion and CPL Docking Configuration (c) Beyond EM3 Orion Notional Docking Configuration

Figure 3. Notional EM-3 NRHO Proximity Operations and Docking Concepts

As shown in Figure 3(b), the EM-3 Orion vehicle configuration has the CPL attached to the front of Orion
covering the centerline docking camera and LIDAR. To ensure consistent measurements and performance,
the CPL contains the same relative sensors mounted near its docking port. Not only does this attached con-
figuration produce a challenge for sensing, it also limits the viewing conditions of the crew. For missions
beyond EM-3 or for docking port relocation scenarios for EM-3, Figure 3(c) emphasizes the vehicle config-
uration without the CPL. For Orion, the relative navigation system design must account for these different
configurations and support far-field rendezvous, near-field rendezvous, close proximity operations, docking,
and undocking in a multi-body gravitational environment that enables the NRHO.

Relative Navigation Assumption Summary

Identifying and selecting the proper filter formulation depends on several key factors such as 1) target
vehicle capabilities, 2) rendezvous domain and duration, 3) level of autonomy, and 4) rendezvous and docking
operations which in turn govern the available measurement types and the necessary guidance and targeting
algorithms to support rendezvous and docking. A summary of the relative navigation assumptions is shown
in Table 1. It highlights general examples of each category along with specific assumptions for EM-3 and
anticipated capabilities for future Orion missions.

Given the basic RPOD assumptions in Table 1, the resulting available measurement types and potential
guidance and targeting algorithms can be extrapolated which directly influence the relative navigation filter
formulation. For example, the potential relative measurement types for EM-3 and beyond include relative
range and range-rate, bearings to the target vehicle’s centroid, angles to target features, LIDAR range and
bearings, relative pose, visual odometry, and relative GPS. Candidate inertial measurements include GPS,
bearings to celestial objects, celestial fixes, beacons, planetary features, and bearings to artificial satellites.
These various measurement types must provide sufficient information to properly estimate both the rela-
tive and inertial states to support both relative and inertial guidance and targeting algorithms. For example,
anticipated relative targeting and guidance algorithms for EM-3 include a modified glideslope [6] and inertial-
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Examples Orion Beyond EM-3 Orion EM-3

Target
Vehicle

Cooperative or uncooperative, ac-
tive or passive, attitude controlled
or tumbling, known or unknown,
maneuvering or drifting, commu-
nication assets or not

Cooperative or uncooperative, ac-
tive or passive, attitude controlled
or tumbling, known, maneuvering
or drifting, communication assets
or not

Cooperative, active, atti-
tude controlled, known,
maneuvering and drifting,
communication assets

Domain Low-Earth Orbit (LEO), Geosta-
tionary Orbit (GEO), Low-Lunar
Orbit (LLO), Low-Mars Orbit
(LMO), Distant Retro-grade Or-
bit (DRO), Near Rectilinear Halo
Orbit (NRHO), Cis-lunar, Trans-
Mars, Asteroid

Trans-lunar, Cis-lunar, Near Rec-
tilinear Halo Orbit (NRHO), Low-
Lunar Orbit (LLO), Low-Earth
Orbit (LEO), Low-Mars Orbit
(LMO), Trans-Mars

Trans-lunar and Near
Rectilinear Halo Orbit
(NRHO)

Autonomy Automated, ground operated,
ground support, ground over-site,
local navigation assets, onboard
crew monitoring, onboard crew
navigating, onboard crew piloting

Automated, ground operated,
ground support, ground over-site,
local navigation assets, crew
piloting, crew navigating, crew
monitoring

Automated, ground sup-
port, and crew piloting

Operations Far-field rendezvous, near-field
rendezvous, close-proximity
operations, docking, undocking,
berthing, transposition, station-
keeping, flyaround, docking port
relocation

Far-field rendezvous, near-field
rendezvous, close-proximity
operations, docking, undocking,
berthing, transposition, station-
keeping, flyaround, docking port
relocation

Far-field rendezvous,
near-field rendezvous,
close-proximity oper-
ations, docking, un-
docking, transposition,
extraction, stationkeeping

Table 1. Orion RPODU Basic Assumptions and Application Summary

relative targeting [7] with additional traditional relative algorithms such as CW-targeting, R-bar acquisition,
TORVA, and other station-keeping algorithms envisioned for future exploration missions beyond EM-3. Iner-
tial targeting algorithms for EM-3 include the two-level targeter and multi-body shooting methods. Upcoming
missions may require other heritage inertial algorithms such as Lambert targeting, orbit phasing and altitude
adjust burns, co-elliptic maneuvers, and plane change maneuvers,

RELATIVE NAVIGATION TRANSLATIONAL FILTER FORMULATION OPTIONS

Given the potential suite of measurements along with the guidance and targeting algorithms anticipated
for rendezvous, proximity operations, and docking; the objective is to determine the relative navigation filter
formulation design that can most effectively utilize these measurements while supporting the desired mis-
sion operations. There are three general relative navigation filter formulations that are investigated and they
include the: 1) relative, 2) dual inertial, and 3) inertial relative. This section defines each option and the
potential variations within each approach. The advantages and weakness of each formulation are identified
in context of their flight heritage on previous and current programs. Techniques that could be implemented
to enhance and adopt each strategy are also provided.

Relative-Only Filter

Since the goal is to estimate the relative state x
r

between Orion or the chaser vehicle x
c

and a target x
t

, the
most straightforward option is, perhaps, a pure relative navigation filter. This solution is very intuitive and
utilizes the minimum number of states required for relative navigation since no absolute states are included
in the filter. It also results in optimal measurement updates to the relative state in the sense that its filter
gain minimizes the expected squared error for the relative state estimate among the class of all linear esti-
mators. This approach has been used for Space Shuttle’s Rendezvous and Proximity Operations Program [6]
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(RPOP) via Clohessy-Wiltshire (CW) equations [8] and ARGON [9] using relative orbital elements. Both
versions require assumptions on the relative trajectory between the vehicles. A major disadvantage of the
pure relative filter design is the requirement of such assumptions for propagation. For example, assuming
only gravitational accelerations, the absolute states of the chaser and target evolve as

˙x
c

= f(x
c

)

˙x
t

= f(x
t

) (1)

such that the dynamics of the relative state, x
r

= x
t

� x
c

, can be defined as,

˙x
r

=

˙x
t

� ˙x
c

= f(x
t

)� f(x
c

) = f(x
c

+ x
r

)� f(x
c

) (2)

To fully express the nonlinear dynamics of the relative state, knowledge of at least one of the absolute states
such as the chaser state is needed, and a fully relative-only estimator without any absolute knowledge is not
possible.

However, if approximations are allowed, a strict relative filter becomes implementable. First and foremost,
assuming the chaser and the target are close, i.e. x

r

is small, a first-order Taylor series centered at x
c

can
approximate the relative motion dynamics in Eqn 2.

˙x
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= f(x
c

+ x
r

)� f(x
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) ' f(x
c

) + F(x
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) x
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� f(x
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) = F(x
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r
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There are several key points to note. First, the Jacobian of the dynamics, F(x
c

), is still evaluated at one
of the absolute states (that of the chaser). Second, the usual EKF assumptions include the estimation error
being small and linearized, not the estimated state. Using linearized dynamics is only valid in a small region
around the chaser. This region is possibly larger using relative orbital elements rather than relative position
and velocity

In order to reduce the dependency on x
c

, a further simplifications is possible when the target’s orbit is
nearly circular. By expressing the relative state in Local Vertical Local Horizontal (LVLH) coordinates, the
Jacobian of the dynamics is not a function of all six degrees of freedom but rather a function of orbital
radius only. This approach is so common that reference to a relative-only navigation system typically implies
linearized CW dynamics.

Dependence of propagation of the relative state estimate on inertial information of one of the vehicles is
an essential aspect of relative navigation. Although equations of motion for the relative state are known in
form due to physical laws, they really represent a class of dynamical systems that varies over points in the
state-space by which it is anchored (i.e. the inertial state of the chaser or target). This can even be seen in
the linearized version above where evaluation of the Jacobian at one of the vehicle inertial states coincides
with designation of the particular linear dynamics at each time among the class of all linear systems that can
be generated by the Jacobian. This notion crucially implies that relative navigation is ultimately concerned
with estimating variables (x

r

) that are only a portion of the states inherently representing the overall system
(x

r

and x
c

or x
t

). Deficiencies of the pure relative filter are supported in that this design is an exercise in
attempting to decouple an irreducibly coupled system. Absolute information for at least one of the vehicles is
required for propagation of the relative state. Different architecture options are available based on the source
of this absolute information.

Dual-Inertial Filter

Another option is to estimate both the absolute state of the chaser and target in the onboard relative nav-
igation solution, meaning x =

⇥
x
c

; x
t

⇤
. A dual-absolute filter is so commonly coordinated in the inertial

frame that it is commonly referred to as a dual-inertial filter. It still optimally updates the relative state using
relative measurements like the pure relative filter, but it now facilitates propagation using standard equations
of motion. This option is clearly more computationally demanding, but, on the other hand, is also more
accurate because no linearization of the dynamics occurs.
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Dual-Inertial Filter Observability A drawback of this approach is that the full system (at least in its
linearized form) is not strictly observable in the presence of relative measurements alone. Nonlinearities
add observability, but the rate of convergence is usually low and possibly overwhelmed by process noise.
Assume for simplicity that the relative state x

r

is measured directly such that the measurement Jacobian
equals, H =

⇥
�I I

⇤
, and the measurement error variance is simply the identity matrix, R = I. In the

absence of dynamics, the two states cannot be distinguished from each other since only their difference is
measured.

For example, assume the initial state estimate has an estimation error covariance given by P0 shown
below where there are no correlations between the chaser and target states. Processing the first ideal relative
measurement, the correlation coefficient of the updated navigation error covariance P1 jumps from 0 to 1/2
in each component.

P0 =


I 0
0 I

�
! P1 =


2/3 I 1/3 I
1/3 I 2/3 I

�
! P2 =


3/5 I 2/5 I
2/5 I 3/5 I

�
! . . .! P

n

=


1/2 I 1/2 I
1/2 I 1/2 I

�

If another measurement becomes available, the correlation coefficients of the covariance after the second up-
date P2 becomes 2/3. After enough measurements n, the correlation coefficient of covariance P

n

approaches
one. From this point on, further measurements will not produce any improvement since the Kalman gain K

n

becomes zero.

K
n

= P
n

HT
(HP

n

HT
+R)

�1
=


0
0

�

The effects of the non-observable system are now clear. In the absence of process noise, the covariance of
the relative state P

r

becomes zero,
P

r

= HP
n

HT
= 0

but an infinite number of measurements does not result in zero uncertainty of P
n

. Rather it results in the
states being completely correlated.

Observations are modeled here to be independent and identically distributed (i.i.d.), meaning that measure-
ments at all times are of the same probability distribution and are mutually independent. Because of this, the
covariance after n updates is given by

P
n

= P0 �P0H
T
(HP0H

T
+

1

n
R)

�1HP0 (4)

lim

n!+1
P

n

= P1 = P0 �P0H
T
(HP0H

T
)

�1HP0 (5)

The results from Eqn. 5 simply state that in the absence of process noise all the measurement noise eventually
averages out, and therefore the system is equivalent to processing a single perfect measurement. In general,
P1 will be the result of one of three cases. First, if H is not of full row rank, a steady state solution does not
exist. This makes sense because a non-full-rank H implies that the measurements are linear combinations
of each other. A solution is not possible when measurements are perfect and combinations of each other.
Second, when H is square and full rank (i.e. invertible), then lim

n!+1 P
n

= 0. Finally when H is of full
row rank but not square lim

n!+1 HP
n

HT

= 0 but this does not necessarily imply lim

n!+1 P
n

= 0. In
general, when the system is observable, the algebraic Riccati equation has at least one finite solution even in
the presence of process noise (the system subject to process noise needs to be stabilizable for the solution to
be unique).

A few comments about this results are in order. As mentioned above, dynamics and maneuvers can and
do add some observability. In the presence of dynamics the measurement mapping matrix H is effectively
replaced by H�, where � is the state transition matrix. Therefore dynamics effectively modifies H and
can make the system observable. Notice that the linearized dynamics are also unobservable. Therefore, in
the absence of maneuvers, observability is slow when nonlinearities are not pronounced, and process noise
can overwhelm observability gained.The absolute uncertainty of the chaser and target are both reduced by
processing relative-only measurements! Unfortunately this result does not necessarily hold with the inclusion
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of process noise. Work exists analyzing estimation of inertial states using relative measurements [10,11]. The
absolute uncertainty of the chaser and target are both reduced due to the fact that their initial correlation is
zero. The covariance will eventually become singular or ill-conditioned [12].

Dual-Inertial Filter Initialization Initialization of the dual-inertial filter is an important consideration.
Although the chaser state will be known from the absolute onboard filter, how is the initial estimate of the
target obtained? Furthermore, what is the uncertainty in that estimate, and how is it correlated to the initial
state of the chaser? If a completely independent estimate of the target state is available, then the initial
covariance is block diagonal, and the analysis above holds. But that is not always the case. Sometime the
absolute knowledge of the target is not available or is poorly known. Consider rendezvous with an asteroid
as the target. The absolute state of the target is probably known with many kilometers of uncertainty while
an initial relative state can be probably obtained much more accurately from the relative sensors.

Suppose a relative EKF is initialized using sensor measurements with the absolute state of the chaser
uncorrelated with the sensed relative information. Hence the initial covariance will be

P0 =


P

c

P
c

P
c

P
c

+P
r

�
(6)

If a relative measurement is processed where H =

⇥
�I I

⇤
, the updated covariance P1 equals,

P1 = P0 �P0H
T

(HP0H
T

+R)

�1HP0 (7)

where it can be expressed as a function of the chaser state and the relative state uncertainty by substituting
Eqn 6 for P0 and reducing.

P1 =


P

c

P
c

P
c

P
c

+P
r

�
�

0 0
0 P

r

(P
r

+R)

�1P
r

�
(8)

The following conclusions are made. First, the chaser’s absolute state and the correlations remain un-
changed. In the presence of relative measurements alone, absolute information of the chaser is only obtained
if independent absolute knowledge of the target is available at initialization. Even if such information is
available, is it really needed to improve the absolute knowledge of Orion? Wouldn’t the absolute filter still
be running and be all that is needed? These questions compel definition of coordination between the absolute
and relative filters. If they are to be isolated without feeding absolute states of Orion into the relative filter
(which has been proposed for certification reasons and because much care needs to be taken in cascading
filters), then again this is akin to decoupling the coupled system of relative motion. The relative filter would
then carry its own, presumably different, absolute state of Orion (or the T ), and improved knowledge of that
state would serve to enhance propagation of the relative state. Whether that benefit is truly needed or not
should be rigorously assessed and motivated in the current work. In a dual-inertial filter, the covariance can
become ill-conditioned due large absolute errors that are almost the same and cancel out to produce small
relative errors. To avoid this cancellation, if only the relative state is of ultimate concern, estimating one
inertial and one relative state may prove better than two inertial states.

Inertial-Relative Filter

The absolute-relative or inertial-relative filter does precisely that and is theoretically equivalent to the dual-
inertial formulation. The state is usually taken to be x =

⇥
x
t

; x
r

⇤
for a couple of reasons. First, the target

is usually non-thrusting, meaning it has simpler dynamics. Also, both the chaser and the relative state are
affected by maneuvers and hence accelerometer errors, so it would be easier to avoid those correlations.
However, if inertial relative measurements are available to the chaser vehicle during rendezvous (such as
GPS, bearings to celestial objects, or celestial fixes) they are no longer directly related to the selected filter
states; rather they will produce correlations between the relative and target state. Similar to the dilemma of
having inertial states in the filter with only relative measurements, this would pose the challenge of having
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relative states with inertial measurements. In this circumstance when inertial measurements to the chaser
vehicle may be processed by the relative navigation filter, keeping the chaser inertial state along with the
relative state may be preferred. Assume that the inertial-relative formulation uses the target state such that it
is obtained from the dual-inertial state with a similarity transformation using the mapping matrix M,

M =


I �I
0 I

�
(9)

Notice from the resulting measurement sensitivity matrix H, the absolute state is not updated directly from
the measurement but from its correlation to the relative state (which is an equivalent conclusion to what we
drew in the dual-inertial case).

H HM�1
=

⇥
�I I

⇤ 
I I
0 I

�
=

⇥
0 I

⇤
(10)

The relative state here need not be directly propagated since the chaser absolute state can be formed from
the target and relative states. Both vehicles can be directly propagated using standard equations of motion, and
the relative state will be available as the difference between the two. This choice avoids modeling difficulties
such as mechanizing relative drag. It should be noted that it also means that the absolute-relative and dual-
inertial filters are not only mathematically equivalent but also operationally equivalent for the propagation
phase. A question naturally arises in the case of initializing using relative measurements: if the absolute state
is not directly measured and not directly needed, is it really needed to be carried in the filter?

Relative Filter with External Absolute Parameter

For filter formulation designs that deem carrying absolute variables in the relative filter unnecessary, op-
tions exist where the relative state is directly estimated and an absolute state can be either 1) considered
(provided externally or propagated internally) or 2) provided externally to the relative filter (treated as error-
less or as a simple white sequence with a tuning error covariance). A decision between these options depends
on whether it is acceptable or not to ignore absolute error in Orion RPOD situations. Notice that an advantage
here is maintaining a filter size that is the same as the pure relative filter. There do exist differences in com-
putation between the two options in that the first requires additional operations and storage than the second
to incorporate and store a covariance for the absolute state.

The Apollo and Shuttle relative filters [13, 14] made a simplification similar to that in the second option
proposed with the absolute state estimates of one of the vehicles treated as available and errorless. How-
ever, the absolute state of the other vehicle rather than the relative state was estimated directly in the filter.
Relative state estimates were again taken as the difference between the two vehicle estimates. The XSS-11
(eXperimental Satellite System-11) satellite [15] also utilized this type of filter. This design can be seen as
a relaxation of the dual-inertial framework and is a suboptimal formulation. Though technically suboptimal,
if one of the vehicle’s inertial states are truly well known, then this design performs well at a lower com-
putational burden (as evidenced through the history of Apollo and Shuttle missions). Such an assumption,
however, is prohibitively limited for the wide purvey of RPOD scenarios imagined for Orion.

RELATIVE NAVIGATION FILTER ANALYSIS APPROACH

Objectively evaluating the various filter formulation designs for multiple rendezvous profiles, in multiple
rendezvous domains, with multiple targeting algorithms, utilizing multiple sensors in multiple configurations
may initially appear overwhelming and impractical. Maybeck [16] addressed a similar challenge almost four
decades ago. The solution he outlined using linear covariance analysis techniques has been adopted and
become widely used for trajectory dispersion analysis [17–23] and evaluating navigation performance [24–
26] for an assortment of aerospace applications [27–33] including onboard mission planning and navigation
requirement generation [34–36]; but the original intent of comparing multiple filter designs and tuning filter
parameters has been largely underutilized. This section outlines the techniques to analyze and compare the
performance of an arbitrary number of filter formulation designs. This general approach is then applied to
the specific filter formulations being investigated for Orion’s relative navigation system.
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Performance Analysis Technique

The basic concept of analyzing and comparing filter designs is highlighted in Figure 4 where k different
prospective Kalman filters process both discrete ˜z and continuous ˜y measurements generated in the real world
environment. Each filter produces a navigation state estimate ˆx

k
based on a particular model of the real world

and can vary greatly due to model differences, variation in state dimension, and approximations. To make

(a) Context of Filter Performance Analysis (b) Performance Evaluation of a Kalman Filter Design

Figure 4. Navigation Filter Design Performance Concepts

design decisions, it is not requisite that each of these filters process measurements from actual sensors but
rather the statistical representation of the estimation errors generated by each filter. By developing complete
and high fidelity models of the system dynamics, these truth models can adequately test and evaluate each
design as emphasized in Figure 4(b).

To directly compare the performance capability of each filter that has varying number and types of states,
there are several performance metrics that may be utilized for evaluation which include the true trajectory
dispersions �x, the navigation dispersions �ˆx, the true navigation error �e, and the onboard navigation error
�ˆe. Traditionally, emphasis is made on the true navigation error of particular filter states �e such as position
and velocity or derived performance states, �e

p

= M
p

�e, such as range and range-rate. However, to cap-
ture how the navigation errors due to the filter design affect guidance, targeting, and control algorithms in
following the prescribed trajectory profile, the true trajectory dispersions �x provide a valuable comparison
criteria.

As depicted in Figure 4(b), the true dispersions �x are defined as the difference between the true state x
and the nominal state ¯x.

�x
�
= x� ¯x (11)

D = E
⇥
�x�xT

⇤
(12)

The true state x is an n-dimensional vector that represents the real world environment or actual state. The
nominal state ¯x is also an n-dimensional vector that represents the desired or reference state. The covariance
of the environment dispersions, D, indicates how precisely the system can follow a desired trajectory.

The navigation dispersions �ˆx are defined as the difference between the navigation state ˆx and the nominal
state ¯x. The navigation state is an n̂-dimensional vector (n̂ < n) that represents the filter’s estimated state.

�ˆx
�
=

ˆx�M
x

¯x (13)
ˆD = E

⇥
�ˆx�ˆxT

⇤
(14)

The matrix M
x

is an (n̂⇥ n) matrix that maps the estimated state in terms of the true and nominal state. The
covariance of the navigation dispersions, ˆD, reflect how precisely the onboard system thinks it can follow a
prescribed reference trajectory.
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The true navigation error �e is the difference between the environment and navigation states. It is also the
difference between the environment and the navigation dispersions.

�e
�
= M

x

x� ˆx = M
x

�x� �ˆx (15)
P = E

⇥
�e�eT

⇤
(16)

The covariance of the true navigation error, P, quantifies how precisely the onboard navigation system can
estimate the actual state.

The onboard navigation error �ˆe itself is never computed, but it is used to develop the onboard navigation
filter equations. It is defined as the difference between the design state, x, and the navigation state ˆx.

�ˆe
�
= x� ˆx (17)

ˆP = E
⇥
�ˆe�ˆeT

⇤
(18)

The covariance of the onboard navigation error, ˆP, quantifies how precisely the onboard navigation system
thinks it can determine the actual state. The performance of the onboard navigation system is determined by
comparing ˆP to the actual navigation performance P.

One approach of generating this statistical information is a Monte Carlo analysis where hundreds or thou-
sands of samples, N , are generated by simulation and then the sample statistics are computed directly

D =

1

N � 1

X
�x�xT

ˆD =

1

N � 1

X
�ˆx�ˆxT

P =

1

N � 1

X
�e�eT

The onboard navigation error covariance ˆP is obtained from the navigation filter covariance for each run.
Unfortunately, this is a costly and time-consuming process. A more efficient technique to obtain the same
statistical information but with a single run is using linear covariance analysis techniques [16, 17] by ini-
tializing, propagating, updating, and correcting an augmented state covariance matrix C and the onboard
navigation covariance matrix ˆP,

C = E
⇥
�X�XT

⇤
(19)

where the augmented state �XT
= [�xT �ˆxT

] consists of the true dispersions and the navigation disper-
sions. By pre- and post-multiplying the augmented state covariance matrix with the following matrices, the
covariance matrices for the trajectory dispersions, navigation dispersions, and the navigation error can be
obtained.

D = [ I
n⇥n

, 0
n⇥n̂

]C [ I
n⇥n

, 0
n⇥n̂

]

T

ˆD = [ 0
n̂⇥n

, I
n̂⇥n̂

]C [ 0
n̂⇥n

, I
n̂⇥n̂

]

T

P = [ I
n̂⇥n

, �I
n̂⇥n̂

]C [ I
n̂⇥n

, �I
n̂⇥n̂

]

T

Relative Navigation Filter Modeling One approach for modeling an assortment of filter designs of various
state dimensions is to first develop a filter implementation with the navigation state ˆx that includes the largest
number of possible states relevant to the problem with the highest fidelity models such that the navigation
state largely mimics the true states x in complexity and fidelity (n̂  n). Although it would not be practical
to implement, the results of this filter would represent the best possible performance. All other filter designs
with the selected navigation states ˆx

k

of n̂
k

-dimension (n̂
k

 n̂) could be expressed as a function of the ideal
navigation states ˆx,

ˆx
k

=

ˆm
k

(

ˆx) (20)
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As a result, the navigation dispersions �ˆx
k

and onboard navigation error �ˆe
k

of the proposed filter design can
be expressed as a linear combination of the original navigation dispersions �ˆx and onboard navigation error
�ˆe,

�ˆx
k

=

ˆM
k

�ˆx, �ˆe
k

=

ˆM
k

�ˆe (21)

where ˆM
k

=

@m̂k

x̂

|
x̄

. In this manner, the augmented state covariance matrix and the onboard navigation
covariance matrix can be quickly modified to reflect each potential filter formulation,

C
k

= E
⇥
�X

k

�XT
k

⇤
, ˆP

k

= E
⇥
�ˆe

k

�ˆeT
k

⇤
(22)

where the augmented state corresponding to the k filter formulation �XT
k

= [�xT �ˆxT
k

] consists of the true
dispersions and the modified navigation dispersions. Substituting Eqn 21 into Eqn 22 produces the mapping
between the original and modified covariance matrices,

C
k

= M
k

CMT
k

, ˆP
k

=

ˆM
k

ˆP ˆMT
k

(23)

where the augmented state covariance matrix mapping matrix M
k

becomes

M
k

=


I
n⇥n

0
n⇥n̂k

0
n̂k⇥n

ˆM
k

�
(24)

By appropriately applying these transformations for the initialization, propagation, update, and correction
operations; it provides a mechanism to quickly and accurately evaluate the performance of k filter formulation
designs by merely defining the matrix ˆM

k

. For example, if the performance of the ideal filter is selected, then
the mapping matrix is simply the identity, ˆM

k

= I
n̂⇥n̂

. To establish the filter formulation mapping matrix
ˆM

k

for each reduced-state filter design, it is essential to first define the truth states x that provide the best
real world model and the corresponding ideal filter states ˆx.

Rendezvous Truth and Navigation States For rendezvous and docking the n-dimensional truth state vec-
tor consists of Orion’s or the chaser vehicle states x

c

, the target vehicle states x
t

, and parameter states x
p

x =

⇥
x
c

; x
t

; x
p

⇤
(25)

The chaser states consist of the chaser’s inertial position, velocity, attitude, and angular velocity. The target
states also include the target’s inertial position, velocity, attitude, and angular velocity. Depending on the
sensors selected and analyzed, the parameter states will vary. They may include continuous measurement
states p

z̃

such as gyro and accelerometer biases, scale factors, misalignments, and non-orthogonality terms;
discrete measurement states p

z̃

such as LIDAR bearing and range biases and misalignments; impulsive trans-
lational burn states p�v

; rotational control maneuver states p⌧ ; and other pertinent states p
a

necessary to
properly model affects due to solar radiation pressure, planetary ephemeris, atmospheric drag, etc.

x
c

=

⇥
r
c

; v
c

; qc

i

; !c

c

⇤
(26)

x
t

=

⇥
r
t

; v
t

; qt

i

; !t

t

⇤
(27)

x
p

=

⇥
p
z̃

; p
ỹ

; p�v

; p⌧ ; pa

⇤
(28)

The resulting number of truth model states n can be on the order of hundreds of states. The ideal navigation
state ˆx is an n̂-dimension state vector. For this development the number of navigation states n̂ equals the
number of truth states n except for conditions when gyros are utilized.

ˆx =

⇥
ˆx
c

;

ˆx
t

;

ˆx
p

⇤
(29)

In this circumstance, the chaser angular rate state is not included and the attitude model operates in model
replacement mode.

ˆx
c

=

⇥
ˆr
c

;

ˆv
c

;

ˆqc

i

⇤
(30)

ˆx
t

=

⇥
ˆr
t

;

ˆv
t

;

ˆqt

i

;

ˆ!t

t

⇤
(31)

ˆx
p

=

⇥
ˆp
z̃

;

ˆp
ỹ

;

ˆp�v

;

ˆp⌧ ; ˆp
a

⇤
(32)
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Rendezvous Navigation Filter Formulations

Four specific relative navigation filter formations are investigated which include the 1) dual inertial, 2)
chaser inertial relative, 3) target inertial relative and 4) the relative only filters. The specific number and type
of states for each filter is defined along with the corresponding mapping matrix. Each of the formulations
strive to replicate in complexity and scope the preliminary Orion translational relative navigation filter design
for rendezvous, proximity operations, and docking [1].

For reference, the preliminary Orion translational relative navigation filter is a variant of the extended
Kalman filter. It is composed of two inertial position and velocity states, one for Orion (ˆr

c

and ˆv
c

) and
one for the target vehicle (ˆr

t

and ˆv
t

). Although the previous navigation architecture proposed having a
separate relative attitude determination filter, an estimate of Orion’s attitude ˆqc

c̄

is still maintained in the
translational filter along with various sensor misalignment and bias states. The number of filter states evolves
depending on availability of sensor measurements. When a bearing measurement is available, the bearing
sensor misalignment ˆ✏ and bias states, ˆb

↵

and ˆb
e

, are initialized. When range or range-rate measurements are
provided, their corresponding biases, ˆb

⇢

and ˆb
⇢̇

, are included. As a result, the filter state vector contains a
maximum of 22 elements.

ˆxOrion =

h
ˆr
c

;

ˆv
c

;

ˆqc

c̄

| ˆr
t

;

ˆv
t

| ˆ✏; ˆb
i

(33)

Dual Inertial Filter The dual inertial (DI) formulation replicates most closely the original Orion relative
navigation filter design. It maintains the chaser inertial position, velocity, and attitude states along with the
target vehicle’s inertial position and velocity. The parameter states include sensor misalignment and biases.

ˆx
DI

=

h
ˆr
c

;

ˆv
c

;

ˆqc

ĉ

| ˆr
t

;

ˆv
t

| ˆ✏; ˆb
i

(34)

The resulting mapping matrix ˆM
DI

for the dual inertial filter formulation becomes,

ˆM
DI

=

2

6666666664

I
rc

0
vc

0
qc

0
rt 0

vt 0
qt 0

wt 0 . . . 0
✏

0
b

. . . 0
0
rc

I
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0
0
rc

0
vc

I
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0

0
rc

0
vc

0
qc

I
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0
0
rc

0
vc

0
qc

0
rt

I
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0

0
rc 0

vc 0
qc 0

rt 0
vt 0

qt 0
wt 0 . . . I

✏

0
b

. . . 0
0
rc

0
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

I
b

. . . 0

3

7777777775

(35)

Chaser Inertial Relative Filter The chaser inertial relative (CIR) filter formulation preserves the inertial
position, velocity, and attitude states of the chaser vehicle but replaces the target vehicle translational states
with the relative position and velocity states, ˆr

r

=

ˆr
t

� ˆr
c

and ˆv
r

=

ˆv
t

� ˆv
c

,

ˆx
CIR

=

h
ˆr
c

;

ˆv
c

;

ˆqc

ĉ

| ˆr
r

;

ˆv
r

| ˆ✏; ˆb
i

(36)

such that the corresponding filter formulation mapping matrix ˆM
CIR

becomes,

ˆM
CIR

=

2

6666666664

I
rc

0
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0
0
rc

I
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0
0
rc 0

vc I
qc 0

rt 0
vt 0

qt 0
wt 0 . . . 0

✏

0
b

. . . 0

�I
rc 0

vc 0
qc I

rt 0
vt 0

qt 0
wt 0 . . . 0

✏

0
b

. . . 0
0
rc

�I
vc

0
qc

0
rt

I
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0

0
rc

0
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . I
✏

0
b

. . . 0
0
rc

0
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

I
b

. . . 0

3

7777777775

(37)
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Target Inertial Relative Filter The target inertial relative (TIR) filter formulation preserves the inertial
position and velocity states of the target vehicle but replaces the chaser vehicle translational states with the
relative position and velocity states, ˆr

r

=

ˆr
t

� ˆr
c

and ˆv
r

=

ˆv
t

� ˆv
c

.

ˆx
TIR

=

h
ˆr
r

;

ˆv
r

;

ˆqc

ĉ

| ˆr
t

;

ˆv
t

| ˆ✏; ˆb
i

(38)

The resulting filter formulation mapping matrix ˆM
TIR

for the target inertial relative design becomes,

ˆM
TIR

=

2

6666666664

�I
rc

0
vc

0
qc

I
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0
0
rc

�I
vc

0
qc

0
rt

I
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0
0
rc

0
vc

I
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0

0
rc 0

vc 0
qc I

rt 0
vt 0

qt 0
wt 0 . . . 0

✏

0
b

. . . 0
0
rc 0

vc 0
qc 0

rt I
vt 0

qt 0
wt 0 . . . 0

✏

0
b

. . . 0

0
rc

0
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . I
✏

0
b

. . . 0
0
rc

0
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

I
b

. . . 0

3

7777777775

(39)

Relative Only Filter The relative only (RO) filter formulation replaces the inertial position and velocity
states of both the chaser and target vehicles with the relative position and velocity states,

ˆx
RO

=

h
ˆr
r

;

ˆv
r

;

ˆqc

ĉ

| ˆ✏; ˆb
i

(40)

such that the corresponding filter formulation mapping matrix ˆM
RO

becomes

ˆM
RO

=

2

66664

�I
rc 0

vc 0
qc I

rt 0
vt 0

qt 0
wt 0 . . . 0

✏

0
b

. . . 0
0
rc

�I
vc

0
qc

0
rt

I
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0
0
rc

0
vc

I
qc

0
rt

0
vt

0
qt

0
wt

0 . . . 0
✏

0
b

. . . 0

0
rc

0
vc

0
qc

0
rt

0
vt

0
qt

0
wt

0 . . . I
✏

0
b

. . . 0
0
rc 0

vc 0
qc 0

rt 0
vt 0

qt 0
wt 0 . . . 0

✏

I
b

. . . 0

3

77775
(41)

RELATIVE NAVIGATION FILTER PERFORMANCE RESULTS

Given the techniques to model and analyze various filter formulations, this section evaluates their perfor-
mance in context of the EM-3 rendezvous scenarios introduced previously which include the co-manifested
payload (CPL) extraction after the trans-lunar injection (TLI) burn and the rendezvous and docking with the
deep space gateway (DSG) following insertion into the Earth/Moon near rectilinear halo orbit (NRHO). The
key performance metrics to evaluate each filter formulation includes the navigation error for the 1) relative
state, 2) chaser inertial state, and 3) target inertial state; along with the relative trajectory dispersions.

To properly compare the performance of each filter formulation, it is essential that the initialization of each
filter is done consistently. In addition, several key trends and characteristics of the filter design depend on
whether the chaser and target states of the initial covariance are correlated or not. Table 2 summarizes the
two different approaches for initializing each filter assuming the chaser and target initial covariances, P

cc

and P
tt

, are the same for each. The first column illustrates the initial covariance ˆP01 assuming there are
no correlations between the chaser and target states. For this case, the initial relative covariance is simply
the sum of the chaser and target initial covariances, P

r1 = P
cc

+ P
tt

. The second column summarizes
the initial covariance ˆP02 assuming there are correlations between the chaser and target states such that the
cross correlation term is defined as P

tc

= P
ct

=

1
2 (Pcc

+ P
tt

� P
r2). For this circumstance, the relative

navigation error is set to P
r2 = P

tt

�P
cc

such that P
tc

= P
cc

. Each filter is evaluated for the two different
initialization methods.

Orion Proximity Operations, Docking, and Undocking at Post-TLI

The nominal transposition and docking profile for Orion during the post-TLI rendezvous and proximity
operations is summarized in Figure 5. Figure 5(a) highlights the in-plane trajectory profile and Figure 5(b)
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Filter Formulation Init Cov #1: No Correlation (P̂01 ) Init Cov #2: Correlation (P̂02 )

1: Dual Inertial M̂DI P̂01M̂
T
DI

=


Pcc 0
0 Ptt

�
M̂DI P̂02M̂

T
DI

=


Pcc Ptc

Pct Ptt

�

2: Chaser Inertial Relative M̂CIRP̂0M̂
T
CIR

=


Pcc �Pcc

�Pcc Pr1

�
M̂CIRP̂0M̂

T
CIR

=


Pcc 0
0 Pr2

�

3: Target Inertial Relative M̂TIRP̂0M̂
T
TIR

=


Pr1 Ptt

Ptt Ptt

�
M̂TIRP̂0M̂

T
TIR

=


Pr2 0
0 Ptt

�

4: Relative-Only M̂RO P̂0M̂
T
RO

=
⇥
Pr1

⇤
M̂RO P̂0M̂

T
RO

=
⇥
Pr2

⇤

Table 2. Onboard Filter Initial Covariance: With and Without Correlation Terms

shows the nominal downrange, cross-track, and altitude profiles as a function of time. The total simulated
duration from initial separation to extracting the CPL is approximately an hour. The sensors utilized include
the rendezvous lidar, angle measurements to a set of target retro-reflectors [37], star tracker for attitude
determination, gyros, and accelerometers.

(a) Nominal Trajectory In-Plane (b) Nominal Trajectory Time-History

Figure 5. Post-TLI Transposition and Docking Nominal Relative Trajectory Profile

The performance results for the four different filter formulations are provided in Figure 6. Since this sce-
nario starts with Orion attached to the EUS/CPL, the target spacecraft; only the correlated initial condition
scenarios are presented. For each sub-figure, the left plot emphasizes the dual inertial results and also indi-
cates the sensor utilization schedule. The right plot shows the difference in performance between the dual
inertial filter and the other formulation designs for comparison.

The relative navigation error for each filter design is summarized in Figure 6(a). For the transposition,
docking, and extraction segment where the relative distance between the two vehicles remains within hun-
dreds of feet and only relative sensors are utilized; the relative navigation performance for each filter formu-
lation is the same. Not only are the processed measurements primarily from relative sensors, the targeting
algorithms adopted are relative targeting algorithms. As a result, the relative trajectory dispersions in Fig-
ure 6(b) are also the same for each filter design. The inertial navigation position errors for both the chaser
and target are included in Figure 6(c) and Figure 6(d) respectively. These plots highlight that the relative
measurements with the Orion and target vehicle inertial states completely correlated, provides no additional
inertial information as evident with the constantly increasing filter 3-sigma uncertainty bounds. Based on
these metrics alone, there are no significant discriminators between the various formulation options.
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(a) Relative Navigation Error (b) Relative Trajectory Dispersions

(c) Chaser Navigation Error (d) Target Navigation Error

Figure 6. Post-TLI Transposition and Docking Relative Filter Formulation Performance Results

Orion Proximity Operations and Docking at NRHO

The nominal trajectory profile for the notional close proximity operations and docking scenario with DSG
in the NRHO is highlighted in Figure 7. It starts 15 minutes prior to the NRI burn such that the subsequent

(a) Nominal Trajectory In-Plane (b) Nominal Trajectory Time-History

Figure 7. NRHO Nominal Relative Trajectory Profile

rendezvous sequence takes a total of 7 hours to dock. The sensors utilized include an S-band range and range-
rate measurements, star tracker bearing measurements, lidar, visible camera, accelerometers, gyros, and a

17



startracker for attitude estimation. The large NRI burn is computed with the Orion two-level targeter [38]
and the subsequent rendezvous maneuvers utilize both inertial and relative targeting algorithms. The nominal
in-plane trajectory is illustrated in Figure 7(a) with the relative downrange, cross-track, and altitude profiles
as a function time summarized in Figure 7(b).

(a) Relative Navigation Error (b) Relative Trajectory Dispersions

(c) Orion Navigation Error (d) DSG Navigation Error

Figure 8. NRHO Relative Filter Formulation Performance Results

The resulting performance of each filter formulation (dual inertial, chaser inertial relative, target inertial
relative, and relative-only) given initial navigation state errors that are both uncorrelated and correlated (la-
beled 1 and 2 respectively) for the NRHO rendezvous and docking sequence is provided in Figure 8. For
each sub-figure, the left plot emphasizes the dual inertial results when the initial Orion and DSG navigation
states are not correlated and correlated. It also highlights when each sensor is utilized. The right plot shows
the difference in performance of the other filter formulations compared to the dual inertial to facilitate direct
comparison of each design. The relative navigation errors are summarized in Figure 8(a) with the correspond-
ing relative trajectory dispersions in Figure 8(b). The inertial navigation errors for both the chaser and target
translational states is provided in Figure 8(c) and Figure 8(d) respectively.

During this flight phase, there are several key observations regarding the filter design that are noted. First,
the dual inertial, chaser inertial relative, and target inertial relative have nearly identical performance results
supporting the theoretical equivalence developed previously. Second, when the inertial position and veloc-
ity state vectors for Orion and DSG are correlated, Orion’s inertial state estimate is largely unaffected by
processing relative measurements. However, when the correlations are removed at initialization, the relative
measurements cause both vehicle’s inertial states to be updated indicating relative measurements provide
inertial state information. Third, the relative-only filter has a degraded performance compared to the other
formulations as anticipated, but from a relative navigation estimation aspect it differs only by several meters.
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Since it is unable to accurately estimate the inertial states of both vehicles, the resulting relative trajectory
dispersions due to both inertial targeting and navigation errors become much larger and are on the order of 30
meters (3-sigma) following the NRI maneuver. Noting the ratio between the navigation errors and trajectory
dispersions in context of the separation distances, the relative-only filter formulation may still be sufficient.

CONCLUSION

As rendezvous, proximity operations, and docking re-emerges into the Orion program, the relative navi-
gation system will continue to be developed and analyzed to support NASA’s exploration missions. A pre-
liminary step has begun by re-evaluating the formulation of the translational relative navigation filter design.
Various design options were introduced and analyzed both from a theoretical and flight heritage perspective
along with simulation filter performance results based on the anticipated EM-3 mission RPOD scenarios.
For the Orion program where the rendezvous flight domains will likely still include traditional environments
such as low Earth orbit or low lunar orbit, new challenges are emerging as RPOD activities are envisioned
in cis-lunar space to support assets in halo orbits in the Earth/Moon system. Given the expectation that both
inertial and relative sensors along with inertial and relative guidance and targeting algorithms are necessary
to support rendezvous and proximity operations; the dual inertial filter formulation was initially identified as
the baseline approach. However, other formulations such as the target inertial relative or the chaser inertial
relative have shown to possess comparable performance qualities but have other potential advantages related
to the properties of the filter covariance. Other design factors may ultimately drive the particular formulation
besides navigation and trajectory dispersion performance metrics.
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Information Formulation of the UDU Kalman Filter
Christopher D’Souza and Renato Zanetti

Abstract—A new information formulation of the Kalman filter

is presented where the information matrix is parameterized as

the product of an upper triangular matrix, a diagonal matrix,

and the transpose of the triangular matrix (UDU factorization).

The UDU factorization of the Kalman filter is known for its

numerical stability, this work extends the technique the infor-

mation filter. A distinct characteristic of the new algorithm is

that measurements can be processed as vectors, while the classic

UDU factorization requires scalar measurement processing, i.e.

a diagonal measurement noise covariance matrix.

I. INTRODUCTION

The UDU formulation of the Kalman Filter has been used
in aerospace engineering applications for several decades.
Thornton[1], Bierman and Thornton [2] and Bierman [3]
introduced an elegant formulation where the covariance matrix
P is replaced by two factors: a diagonal matrix D and an upper
triangular matrix U with ones on the main diagonal, such
that P = UDUT . Whereas the UDU factorization improves
the computational stability and efficiency of large navigation
filters, it was originally used in a batch formulation [4]. How-
ever, this formulation lent itself to sequential implementations,
well-suited for platforms where both computational stability
and numerical efficiency are at a premium. It serves as the
backbone of the Orion Navigation System [5].

Factorization of the covariance matrix in a Kalman filter
[6] is almost as old as the filter itself. In 1963 James Potter
developed a square-root formulation of the Kalman filter to
implement on the Apollo onboard computer[7]. The main
driver at the time was numerical precision, as computer words
were only 8 bits long. Replacing the covariance by a square
root matrix S, such as P = SST , reduces the spread of the el-
ements of P bringing them closer to 1, doubling the numerical
precision of the stored variable. Potter’s algorithm requires the
computation of scalar square roots (one per measurement). At
the time, the Apollo Kalman filter was designed without any
process noise, because computations required for inclusion of
the process noise required too many computations[8]. A very
desirable by-product of this factorization is that the symmetry
and semi-positive definiteness of the covariance are insured by
construction, and does not need to be checked or enforced to
correct for numerical and round-off errors. It should be noted
that this Apollo factorization was not a triangular square root
matrix.

An alternative square root covariance factorization is the
Cholesky factorization [9], [10]. The Cholesky method is very
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2101 NASA Parkway, NASA Johnson Space Center, Houston, Texas 77058.

Renato Zanetti is with the Department of Aerospace Engineering and
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similar to Potter’s but computes the square root of the covari-
ance matrix with a Cholesky decomposition (S is a triangular
matrix)[11]. Another relevant covariance factorization work is
that proposed by Oshman and Bar-Itzhack [12], which utilizes
the spectral decomposition of the covariance matrix.

The UDU factorization is not a square root filter; the
numerical precision of the stored variable does not increase
due to the factorization. For example, if P is diagonal, U = I
and D = P ; therefore the full range of values in P are
preserved in this factorization. However, the UDU formulation
of the Kalman filter has great numerical stability properties [3];
it insures symmetry of the covariance by construction, and it
requires a trivial check and correction to ensure semi-positive
definiteness (it suffices to enforce that the diagonal elements
of D remain non-negative). The UDU formulation is free from
square root operations, making it computationally cheaper
than the Cholesky approach. For these reasons the UDU has
endured as one of the preferred practical implementation of
Kalman filters in aerospace applications.

While the UDU factorization is well known, it has never
been applied to the information formulation of the Kalman
filter [13], [14], [15]. In this formulation the inverse of the
covariance matrix, known as the information matrix, is carried
in the recursive algorithm rather than the covariance matrix
itself. The information formulation is a popular approach in
several situations. In particular, the Square Root Information
Filter (SRIF) [16], [17], [18], [3], [19], [20] is a go-to Kalman
filter factorization method used in orbit determination pack-
ages such as Monte because of its great stability and accuracy.
In this work we introduce the UDU Information Filter, a never
developed before algorithm with two key properties that make
it a very desirable implementation of a recursive estimator: i.
unlike the regular UDU filter, measurements do not need to
be processed as scalars, i.e. the measurement noise covariance
matrix R does not need to be diagonal or diagonalized, and ii.
unlike the regular information formulation the state estimation
error covariance matrix does not actually need to be inverted.

II. BACKGROUND

The well-known Kalman filter equations measurement up-
date equation are given by

ˆ

xk =

¯

xk +Kk(yk �Hk¯xk) (1)
Pk =

¯Pk � ¯PkH
T
k (Hk

¯PkH
T
k +Rk)

�1Hk
¯Pk

= (I �KkHk)
¯Pk (2)

Kk =

¯PkH
T
k (Hk

¯PkH
T
k +Rk)

�1
= PkH

T
k R

�1
k (3)

where the bar represent the a priori value, Kk is the n ⇥m
Kalman gain, x 2 <n is the state vector, Pk is the n⇥ n es-
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timation error covariance matrix, y 2 <m is the measurement
vector defined as

yk = Hkxk + ⌘k (4)

where ⌘k is a zero mean, white sequence with covariance
matrix Rk. The propagation equations are

¯

xk+1 = �(tk+1, tk)ˆxk (5)
¯Pk+1 = �(tk+1, tk)Pk�(tk+1, tk)

T
+GkQkG

T
k

= �kPk�
T
k +GkQkG

T
k (6)

where �(tk+1, tk) (which we will denote as �k) is the state
n⇥n transition matrix from tk�1 to tk, Qk is the p⇥p process
noise covariance matrix, and Gk is the n ⇥ p process noise
shaping matrix.

The UDU factorization implements the above equations by
replacing the covariance matrix Pk with an upper triangular
matrix with ones on the diagonal (Uk) and a diagonal matrix
Dk, such that

Pk = UkDkU
T
k (7)

The UDU approach to propagate Uk and Dk forward in time
makes use of the Modified Weighted Gram-Schmidt (MWGS)
orthogonalization algorithm that avoids loss of orthogonality
due to round-off errors [21]. Measurements are processed one
at the time as scalars by noting that when Rk is diagonal
Eq. (2) the update is obtained by recursively processing one
element of yk at a time, using the corresponding row of
Hk and diagonal element of Rk. The measurement residual
covariance matrix Wk = Hk

¯PkHT
k + Rk thus becomes a

scalar, and the quantity ¯PkHT
k = wk becomes a vector; thus

each of the scalar updates takes the form

Pk =

¯Pk � 1

Wk
wkw

T
k (8)

since matrix ¯Pk is updated with a rank one matrix ( 1
Wk

wkw
T
k ),

we call this a rank one update, Agee and Turner [22] detailed
how to directly update the Uk and Dk factors due to a rank
one update. The subtraction in Eq. (8) could cause some
numerical instabilities in Agee-Turner’s algorithm. Carlson
[23] introduced an alternative rank-one update algorithm that,
while less generic, is more stable for the measurement update.
Carlson’s rank-one update is not valid for generic values of wk

and Wk, but only when the update is done with the optimal
Kalman gain.

An alternative formulation of the Kalman filter is the
information formulation, where the covariance matrix P is
replaced by its inverse. The covariance update and Kalman
gain are calculated as

P�1
k =

¯P�1
k +HT

k R
�1
k Hk (9)

Kk = PkH
T
k R

�1
k (10)

The information formulation is particularly useful when there
is no prior information, i.e. P0 = 1, in this case the
covariance formulation of the KF is not defined, while the
information formulation is, and starts from P�1

0 = O. In
the covariance formulation, the m⇥m measurement residual
covariance matrix Wk = Hk

¯PkHT
k +Rk is inverted to process

the measurement, while in the information formulation the

n ⇥ n covariance matrix is inverted in the time propagation
step. In situations when m > n, therefore, the information
formulation could be computationally cheaper, although mea-
surements are often processed one at the time as scalars.
Processing measurements as scalars is only possible when
R is diagonal, otherwise the additional steps of a change of
variables to diagonalize R is required.

III. THE UDU INFORMATION FILTER

A. The Measurement Update

Begin with factoring the covariance P into an LDL form;
that is, rather than using an upper triangular matrix we will
use a lower triangular matrix. We denote the diagonal matrix
with �

Pk = Lk �k L
T
k and P k = Lk �k L

T
k (11)

and we define U and D as the inverses of LT and �,
respectively

P�1
k = L�T

k �

�1
k L�1

k = Uk Dk U
T
k (12)

P
�1
k = L

�T
k �

�1
k L

�1
k = Uk Dk U

T
k (13)

so that the measurement update (Eq. (9)) becomes

UkDkU
T
k = UkDkU

T
k +HT

k R
�1
k Hk (14)

We now factor the m⇥m matrix Rk into LDL form as

Rk = LRk�RkL
T
Rk

(15)

and

R�1
k = L�T

Rk
�

�1
Rk

L�1
Rk

= URkDRkU
T
Rk

(16)

so that Eq. (14) becomes

URDRU
T
R = URDRU

T
R +HT

RURkDRkU
T
Rk

HR (17)

We now work on the term URkH where we note that it is of
dimension m⇥ n so that it can be expressed as

UT
Rk

HR =

2

6664

v

T
1

v

T
2
...

v

T
m

3

7775
(18)

where each vi is an n⇥ 1 vector.
The factor HT

k R
�1
k Hk can be expressed as

HT
k R

�1
k Hk = HT

k URkDRkU
T
Rk

Hk

=

2

6664

v

T
1

v

T
2
...

v

T
m

3

7775

T 2

6664

1/d1R 0 · · · 0

0 1/d2R · · · 0

...
...

. . .
...

0 0 · · · 1/dmR

3

7775

2

6664

v

T
1

v

T
2
...

v

T
m

3

7775

=

mX

i=1

1

diR
viv

T
i (19)

so that the measurement update equation is now

UkDkU
T
k = UkDkU

T
k +

mX

i=1

1

diR
viv

T
i (20)
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Thus it reduces to a series of m rank-one updates.
Notice that Eq. (20) is the update equation due to a vector

measurement so that the need to process scalar measurements,
as in the covariance UDU formulation, is avoided in the
proposed information UDU formulation. Rather than perform-
ing an eigenvalue decomposition of Rk and a corresponding
change of variables for yk, we simply perform the UDU
factorization of R�1

k .
As stated earlier, one of the benefits of using an information

formulation is that if P0 is singular, this allows for an estimate
to be obtained [14]. To this end, ˆzk and ¯

zk, which are directly
related to ˆ

xk and ¯

xk, are defined as

ˆ

zk
�
= P�1

k ˆ

xk , ¯

zk
�
= P�1

k ¯

xk (21)

Premultiplying Eq. (1) by P�1
k , we get

ˆ

zk = P�1
k (I �KkHk) ¯xk + P�1

k Kkyk (22)
=

¯

zk +HkR
�1
k yk (23)

B. The Time Update

Prior to propagation, the standard information formulation
of the Kalman filter inverts the information matrix to obtain the
covariance, it then propagates the covariance with Eq. (6), and
finally inverted the propagated covariance matrix to prepare
for the measurement update phase. We propose an algorithm
that propagates the factors of the information matrix directly.
Starting from the covariance propagation Eq. (6), we factorize
Qk via a UDU parameterization so that

Qk = UQk �QkU
T
Qk

(24)

where �Qk is a diagonal p⇥ p matrix and define GQk as

GQk

�
= Gk UQk (25)

so that P k becomes

P k+1 = �k Pk �
T
k +GQk �Qk G

T
Qk

(26)

Invoking the matrix inversion lemma

(Z +XAY )

�1
= Z�1 � Z�1X

�
A�1

+ Y Z�1X
��1

Y Z�1

(27)
and letting

Z = �k Pk �
T
k ; A = �Qk ; X = GQk ; Y = GT

Qk
(28)

and

Z�1
= Mk

�
= �

�T
k P�1

k �

�1
k (29)

The inverse of the propagated covariance is

P
�1
k+1 = Mk �Mk GQk

h
GT

k Mk GQk +�

�1
Qk

i�1
GT

Qk
Mk

(30)
Defining

Gk
�
= �

�1
k GQk DQk = �

�1
Qk

(31)

P�1
k+1 becomes

P
�1
k+1 = �

�T
k

⇢
P�1
k �

P�1
k Gk

h
G

T
k P�1

k Gk +DQk

i�1
G

T
k P

�1
k

�
�

�1
k

(32)

and defining Kk as

Kk
�
= P�1

k Gk

h
G

T
k P�1

k Gk +DQk

i�1
(33)

Defining the quantity inside the brackets in Eq. (32) as P�1
k

P�1
k

�
= P�1

k � P�1
k Gk

h
G

T
k P�1

k Gk +DQk

i�1
G

T
k P

�1
k

=

h
I �KkG

T
k

i
P�1
k (34)

We notice Eq. (34) is an analog to Eq. (2) with

P�1
k ! Pk Gk ! HT

k DQk ! Rk

P�1
k ! ¯Pk Kk ! Kk

and since DQk is a diagonal p ⇥ p matrix, we can solve for
the UDU factorization of P�1

k directly by using a Carlson
Rank-One Update [23] performed p times on

UkDkUT
k = UkDkU

T
k �

UkDkU
T
k Gk

h
G

T
k UkDkU

T
k Gk +�

�1
Qk

i�1
G

T
k UkDkUk

(35)

so that we can find the time-propagated UDU factors of P
�1
k

as

P
�1
k+1 = Uk+1Dk+1U

T
k+1 = �

�T
k UkDkUT

k �

�1
k (36)

Since this equation is equivalent to a covariance propagation
without process noise, the MWGS orthogonalization algorithm
can be used to obtain the factors Uk+1 and Dk+1.

Notice that ��1
k does not necessarily need to be computed

by a direct matrix inversion. Usually �k is computed via
integration of a matrix differential equation or by series
approximation. Similarly, �

�1
k can be obtained directly by

backwards integration or by series approximation.
Beginning with Eq. (5) the time update for ¯zk+1 is obtained

as follows

¯P�1
k+1¯xk+1 =

¯P�1
k+1�k Pk P

�1
k ˆ

xk (37)

which becomes

¯

zk+1 =

¯P�1
k+1�k Pk ˆzk (38)

substituting from Eqs. (32) and (34)

¯

zk+1 = �

�T
k

h
I �KkG

T
k

i
ˆ

zk (39)

or

¯

zk+1 = �

�T
(tk+1, tk)

h
I �KkG

T
k

i
ˆ

zk (40)
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C. An Efficient Algorithm to compute U�1

The algorithm proposed does not necessitate to invert the
covariance matrix nor its U or L factor. However, in case
the initial covariance was provided, it might be convenient to
factorize it first, and to efficiently invert its factors rather than
inverting the full covariance. In this section we compute the
inverse in an efficient manner, taking advantage of the ‘1’s’
and ‘0’s’. It is as follows: Given an n ⇥ n upper triangular
‘unit’ matrix U expressed as

U =

2

66666664

1 U1,2 U1,3 · · · U1,n�1 U1,n

0 1 U2,3 · · · U2,n�1 U2,n

0 0 1 · · · U3,n�1 U3,n
...

...
...

. . .
...

...
0 0 0 · · · 1 Un�1,n

0 0 0 · · · 0 1

3

77777775

(41)

the inverse is also an n ⇥ n upper triangular ‘unit’ matrix V
(so that det (V ) = 1) which is

V = U�1
=

2

66666664

1 V1,2 V1,3 · · · V1,n�1 V1,n

0 1 V2,3 · · · V2,n�1 V2,n

0 0 1 · · · V3,n�1 V3,n
...

...
...

. . .
...

...
0 0 0 · · · 1 Vn�1,n

0 0 0 · · · 0 1

3

77777775

(42)
since

U V = I (43)

we can solve for the elements of V as

j = n� 1, · · · , 2, i = j � 1, · · · , 1

V (i, j) = �
"
U(i, j) +

j�1X

k=i+1

U(i, k)V (k, j)

#
(44)

IV. A NUMERICAL EXAMPLE

In this section we show the performance of the algorithm
in linear, time-varying example with correlated measurement
noise covariance matrix R. The system is given by

xk+1 = �kxk + ⌫k (45)
yk = Hkxk + ⌘k (46)

�k =


I Ak

Bk I

�
(47)

Ak =


tk 0

0 tk

�
(48)

Bk = 0.1


(sin(tk)� sin(tk�1) �(cos(tk)� cos(tk�1)

0 (sin(tk)� sin(tk�1)

�

(49)

Hk =


1 0 0 0

0 1 0 0

�
(50)

where I is the identity matrix, O the zero matrix, tk�tk�1 = 1

second, ⌫k is a zero mean, Gaussian white sequence with

Fig. 1. Estimation Error and 3� predicted standard deviations

Fig. 2. Norm of the State Error (kx̂KF � x̂UDUIk)

covariance matrix Qk = 0.01 I , and ⌘k is a zero mean,
Gaussian white sequence with covariance matrix Rk

Rk =


2.96 2.8
2.8 2.96

�
(51)

The initial estimate is unbiased, and the initial estimation error
is Gaussian with covariance P0 = I . Fig. 1 shows the result
of a single run and the 3� predicted standard deviations from
a straight formulation of a Kalman filter. In order to show
the equivalence between the Kalman filter (KF) and the UDU
information approach (UDUI), Fig. 2 shows the norm of the
difference between the two state estimates

✏
x

= kˆxKF � ˆ

xUDUIk

while Fig. 3 compares the Kalman filter covariance PKF with
the UDU factorization of the Information matrix P�1

UDUI =

UDUT by plotting the following quantity:

✏P = kPKF P�1
UDUI � Ik

The figures show that the proposed algorithm results closely
match the Kalman filter hence validating the proposed algo-
rithm as its UDU information formulation.
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Fig. 3. Norm of the Covariance error (kPKF P�1
UDUI � Ik)

V. CONCLUSIONS

A new algorithmic mechanization of the classic Kalman
filter is presented, the new algorithm combines the information
formulation with the UDU factorization. While the covari-
ance formulation of the Kalman filter is usually employed,
the information formulation has distinct advantages in some
applications, for example when no initial condition is avail-
able. The UDU factorization is a wildly adopted technique
to produce a numerically stable and accurate algorithm to
keep the covariance matrix symmetric and positive definite.
A numerical example confirms the equivalency between the
Kalman filter and the proposed algorithm.
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