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DEALING WITH UNCERTAINTIES IN INITIAL ORBIT
DETERMINATION

Roberto Armellin∗, Pierluigi Di Lizia†, and Renato Zanetti‡

A method to deal with uncertainties in initial orbit determination (IOD) is pre-
sented. This is based on the use of Taylor differential algebra (DA) to nonlinearly
map the observation uncertainties from the observation space to the state space.
When a minimum set of observations is available DA is used to expand the solu-
tion of the IOD problem in Taylor series with respect to measurement errors. When
more observations are available high order inversion tools are exploited to obtain
full state pseudo-observations at a common epoch. The mean and covariance of
these pseudo-observations are nonlinearly computed by evaluating the expectation
of high order Taylor polynomials. Finally, a linear updating scheme is employed
to update the current knowledge of the orbit. Angles-only observation are consid-
ered and simplified Keplerian dynamics adopted to ease the explanation. Four test
cases of orbit determination of artificial satellites in different orbital regimes are
presented to discuss the feature and performances of the proposed methodology.

INTRODUCTION

Orbit determination is typically divided into two phases. When the number of observation is
equal to the number of unknowns a nonlinear system of equations need to be solved. This problem
is known as initial (or preliminary) orbit determination (IOD). When more observations are available
accurate orbit determination can be performed. IOD typically delivers a single solution (or a limited
number of solutions) that exactly produces the available observations. In addition, in IOD simplified
dynamical models are often used (e.g. Keplerian motion) and measurement errors are not taken
into account (the problem is deterministic). When more observations are available the approach
is commonly treated as stochastic by considering the observations’ noise. This problem is usually
solved as an optimization, in which the (optimal) solution minimizes the observation residuals. The
solution is commonly obtained via batch estimation, e.g. weighted linearized least squares, or a
sequential estimation, e.g. extended Kalman Filtering.1

The focus of this paper is the orbit determination of resident space objects (RSO) observed on a
single passage with optical sensors. Thus, the problem is angles-only orbit determination. In order
to determine the orbit IOD is solved to provide an initial estimate followed by a procedure to update
the initial solution based on the additional observations.

Angles-only IOD is the subject of much research. Gauss’2 and Laplace’s3 methods are commonly
used to determine a Keplerian orbit that fits three astrometric observations. These methods have
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been revisited and analyzed by a large number of authors 4, 5, 6. New methods have also been
introduced such as the Double r-iteration technique of Escobal7 and the approach of Gooding.8

In 2012 Armellin at al.9 proposed a IOD solver based on the solution of a Lambert’s problem
(between the second and the third observations) and a Kepler’s problem between the first and second
observation. The method iterates on the slant ranges at the second and third observations in order to
drive to zero the observational defects at the first observation. The iterations were carried out with
a high-order extension of Newton’s method enabled by differential algebra (DA). In addition, high
order Taylor expansions were exploited to nonlinearly map the uncertainties from the observation
space to the state space.

In this work a modified version of the method is proposed, in which all the three slant ranges as
unknowns. The approach is based on the solution of two Lambert’s problems and using the continu-
ity of the velocity vector at the central observation as constraint. The method has no restrictions on
the geometry of the observations and it can deal with both short and long gaps. As in the previous
work the solution is obtained with a high-order Newton’s iteration scheme enabled by DA. This
approach allows the algorithm to both convergence in few iterations and map uncertainties form the
observation space to the state space. Thus, the initial orbit is provided with accurate and nonlinear
statistical information.

When multiple observations on the same passage are available the IOD solution is updated. In-
stead of adopting a classical least squares approach (which employs the linearization of the dynam-
ics and of the measurement functions10) high order inversion tools available in DA are exploited to
nonlinearly map group of observations to the state space at a common epoch, thus producing full
state pseudo-observations. The mean and covariance of these pseudo-observations are nonlinearly
computed by evaluating the expectation of the related high order Taylor polynomials. Finally, a lin-
ear updating scheme is utilized to update the current knowledge of the state mean and covariance.

The paper is organized as follows. A brief introduction on the DA tools used for the implemen-
tation of the algorithm is given first. This covers the methods to expand the solution of ordinary
differential equations (ODE), compute the expansion of the solution of implicit parametric equa-
tions, and the algorithm to map statistics through nonlinear transformations. The following sections
describes the main algorithms developed in this work, i.e. the angles-only IOD solver and the up-
dating scheme. Simulated observational scenarios for a Low Earth Orbit (LEO), a Geosynchronous
Transfer Orbit (GTO), a Geosynchronous Orbit (GEO) and a Molniya are used to analyzed the
performances of the implemented methods. Some final remarks conclude the paper.

DIFFERENTIAL ALGEBRA TOOLS

DA supplies the tools to compute the derivatives of functions within a computer environment.11

More specifically, by substituting the classical implementation of real algebra with the implemen-
tation of a new algebra of Taylor polynomials, any function f of v variables is expanded into its
Taylor polynomial up to an arbitrary order n with limited computational effort. In addition to basic
algebraic operations, operations for differentiation and integration can be easily introduced in the
algebra, thusly finalizing the definition of the differential algebra structure of DA.12, 13 Similarly to
algorithms for floating point arithmetic, various DA algorithms were introduced, including methods
to perform composition of functions, to invert them, to solve nonlinear systems explicitly, and to
treat common elementary functions.14 The differential algebra used for the computations in this
work was implemented in the software COSY INFINITY.15 The reader may refer to Di Lizia et
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al.16 for the DA notation adopted throughout the paper.

High-order expansion of the solution of ODE

An important application of DA is the automatic high order expansion of the solution of an ODE
in terms of the initial conditions.14, 16 This can be achieved by replacing the operations in a classical
numerical integration scheme, including evaluation of the right hand side, by the corresponding
DA operations. This way, starting from the DA representation of an initial condition x0, DA ODE
integration allows the propagation of the Taylor expansion of the flow in x0 forward in time, up to
any final time tf . Any explicit ODE integration scheme can be rewritten as a DA integration scheme
in a straight-forward way. For the numerical integrations presented in this paper, a DA version of a
7/8 Dormand-Prince (8-th order solution for propagation, 7-th order solution for step size control)
Runge-Kutta scheme is used. The main advantage of the DA-based approach is that there is no need
to write and integrate variational equations in order to obtain high order expansions of the flow. It is
therefore independent of the particular right hand side of the ODE and the method is quite efficient
in terms of computational cost.

Expansion of the solution of parametric implicit equations

Well-established numerical techniques (e.g., Newton’s method) exist, which can effectively iden-
tify the solution of a classical implicit equation

f(x) = 0 (1)

with f : <n → <n. Suppose an explicit dependence on a vector of parameters p can be highlighted
in the previous vector function f , which leads to the parametric implicit equation

f(x,p) = 0. (2)

Suppose the previous equation is to be solved, whose solution is represented by the function x(p)
returning the value of x solving Eq. (2) for any value of p. Thus, the dependence of the solution of
the implicit equation on p is of interest. DA techniques can effectively handle the previous problem
by identifying the function x(p) in terms of its Taylor expansion with respect to p. This result is
achieved by applying partial inversion techniques as detailed in Ref. 16.

The final result is
[x] = x+Mx(δp), (3)

which is the k-th order Taylor expansion of the solution of the implicit equation. For every value
of δp, the approximate solution of f(x,p) = 0 can be easily computed by evaluating the Taylor
polynomial (3). The solution obtained by means of Eq. (3) is a Taylor approximation of the exact
solution of Eq. (2). The accuracy of the approximation depends on both the order of the Taylor
expansion and the displacement δp from the reference value of the parameter.

Nonlinear mapping of the estimate statistics

Consider a random vector x ∈ <n with probability density function p(x) and a second random
vector y ∈ <m related to x through the nonlinear transformation

y = f(x). (4)
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The goal is to calculate a consistent estimate of the main cumulants of the transformed probability
density function p(y). Since f is a generic nonlinear function this formulation includes a wide
range of problems involving uncertainty propagation (uncertainty propagation through nonlinear
dynamics, uncertainty propagation through nonlinear coordinate transformations, etc.).

The Taylor expansion of y with respect to deviations δx can be obtained automatically by initial-
izing the independent variable as a DA variable and evaluating Eq. (4) in the DA framework. This
procedure delivers

[y] = f([x]) = y +My(δx) =
∑

p1+···+pn≤k
cp1...pn · δxp11 · · · δxpnn , (5)

where in this expression y is the zeroth order term of the expansion map, and cp1...pn are the Taylor
coefficients of the resulting Taylor polynomial

cp1...pn =
1

p1! · · · pn!
· ∂

p1+···+pnf

∂xp11 · · · ∂xpnn
. (6)

The evaluation of Eq. (5) for a selected value of δx supplies the k-th order Taylor approximation
of y corresponding to the displaced independent variable. Of course, the accuracy of the expansion
map is a function of the expansion order and can be controlled by tuning it.

The Taylor series in the form of Eq. (5) can be used to efficiently compute the propagated statis-
tics.17, 18 The method consists in analytically describing the statistics of the solution by computing
the l-th moment of the transformed pdf using a proper form of the l-th power of the solution Map in
Eq. (5).

For a generic scalar random variable x with pdf p(x) the first four moments can be written as

µ = E{x}
P = E{(x− µ)2}
γ =

E{(x− µ)3}
σ3

κ =
E{(x− µ)4}

σ4
− 3,

(7)

where µ is the mean value, P is the covariance, γ and κ are the skewness and the kurtosis, respec-
tively,19 and the expectation value of x is defined as

E{x} =

∫ +∞

−∞
xp(x)dx. (8)

The moments of the transformed pdf in (4) can be computed by applying the multivariate form
of Eq. (7) to the Taylor expansion (5). The result for the first two moments becomes

µyi = E{[yi]} =
∑

p1+···+pn≤k
ci,p1...pnE{δxp11 · · · δxpnn }

P yiyj = E{([yi]− µi)([yj ]− µj)} =
∑

p1+···+pn≤k,
q1+···+qn≤k

ci,p1...pncj,q1...qnE{δxp1+q1
1 · · · δxpn+qn

n },

(9)
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where ci,p1...pn are the Taylor coefficients of the Taylor polynomial describing the i-th component
of [y]. Note that in the covariance matrix formula the coefficients ci,p1...pn and cj,q1...qn are updated
to include the subtraction of the mean. The coefficients of the higher order moments are computed
by implementing the required operations (e.g. ([yi]−µi)([yj ]−µj) for the second order moment)
on Taylor polynomials in the DA framework. The expectation values on the right side of Eq. (9)
are function of p(x). It follows that if the initial distribution is known, all of the moments of the
transformed pdf p(y) can be calculated. The number of monomials for which it is necessary to
compute the expectation increases with the order of the Taylor expansion and, of course, with the
order of the calculated moment. Note that, at this time, no hypothesis on the initial pdf has been
made. Thus, the method can be applied independently of the distribution.

Under the assumption x is a Gaussian random variable (GRV), x ∼ N (µ,P ), µ is the mean
vector and P the covariance matrix. An important property of Gaussian distributions is that the
statistics of a GRV can be completely described by the first two moments. In case of zero mean,
the expression for computing higher-order moments in terms of the covariance matrix is due to
Isserlis.20 In physics literature, Isserlis’s formula is known as the Wick’s formula.

Let s1 to sn be nonnegative integers, and s = s1 + s2 + · · ·+ sn. Then the Wick’s formula states
that

E{xs11 x
s2
2 . . . xsnn } =

{
0, if s is odd
Haf(P ), if s is even

(10)

where Haf(P ) is the hafnian of P = (σij), which is defined as

Haf(P ) =
∑
p∈

∏
s

s
2∏
i=1

σp2i−1,p2i , (11)

and
∏
s is the set of all permutations p of {1, 2, . . . , s} satisfying the property p1 < p3 < p5 <

. . . < ps−1 and p1 < p2, p3 < p4, . . . , ps−1 < ps.21

We observe that the expectation value terms of Eq. (9) can be computed using Eq. (10), and the
resulting moments can be used to describe the transformed pdf.

DA-BASED ANGLES-ONLY IOD

In the classical angles-only IOD problem there are three optical observation at epochs ti, with
i = 1, . . . , 3. The observations consist in three couples of right ascension and declinations, (αi, δi).
These observations provides three inertial line-of-sight vectors ρ̂i, i.e. the unit vectors from the
observer’s location (on the Earth’s surface) to the observed object.

Assume to have initial guessed values of the slant ranges ρi, or equivalently for the orbit radii
ri (e.g. from the solution Gauss’ 8-th degree polynomial). This section presents a high order
iterative procedure with the following objectives: a) find the exact values of ρi assuming Keplerian
dynamics, and b) express the functional dependence of the solution of the IOD problem with respect
to observation uncertainties in terms of a high-order Taylor polynomial.

Start by initializing the observations as DA variables

[α] = α+ δα
[δ] = δ + δδ,

(12)
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in which the observations are grouped in two homogeneous vectors, α = (α1, α2, α3) and δ =
(δ1, δ2, δ3), and δα and δδ account for measurement uncertainties. The line of sight vectors at t1,
t2 and t3 become

[ρ̂1] = ρ̂1 +Mρ̂1(δα1, δδ1)

[ρ̂2] = ρ̂2 +Mρ̂2(δα2, δδ2)

[ρ̂3] = ρ̂3 +Mρ̂3(δα3, δδ3),

(13)

whereMρ̂i is an arbitrary order Taylor polynomial that describes the effect of an observation un-
certainty on the line of sight.

Similarly, the topocentric distances at t1, t2 and t3 are described as DA variables

[ρ1]1
−

= ρ1−
1 + δρ1

[ρ2]1
−

= ρ1−
2 + δρ2

[ρ3]1
−

= ρ1−
3 + δρ3,

(14)

or in more compact form
[ρ]1

−
= ρ1− + δρ, (15)

where the superscript 1− indicates the first step of the iterative procedure, and ρ1−
1 , ρ1−

2 , and ρ1−
3

are the initial guessed values for the slant ranges.

The spacecraft position vectors can be written (by summing the known observer’s locations) as

[r1] = r1 +Mr1(δα1, δδ1, δρ1)
[r2] = r2 +Mr2(δα2, δδ2, δρ2)
[r3] = r3 +Mr3(δα3, δδ3, δρ3).

(16)

A DA-based Lambert’s problem22 can be solved between with [r1] and [r2], and between [r2]
and [r3]. Using the DA-implementation of Lambert’s problem we obtain two Taylor polynomial
approximation for the velocity vectors at t2

[v−2 ] = v−2 +Mv−2
(δα1, δδ1, δα2, δδ2, δρ1, δρ2)

[v+
2 ] = v+

2 +Mv+2
(δα2, δδ2, δα3, δδ3, δρ2, δρ3)

(17)

Note that the two above expressions are different for two reasons. Firstly we start from values of
the slant ranges that are not the solution of the problem. Secondly the they have different functional
dependence on the angles. The goal is to find the nominal values of the slant ranges such that
the velocity vector is continuos at the midpoint, i.e. we want to find the exact values of ρ1, ρ2,
and ρ3 and the high-order Taylor expansion of spacecraft state at t2 with respect to observation
uncertainties. We start by defining the Taylor map of the defects

[∆ṽ2] = [v+
2 ]− [v+

2 ] = ∆ṽ2 +M∆ṽ2(δα, δδ, δρ). (18)

Note that for the exact values of ρ1, ρ2 and ρ3 the constant part of maps in Eq. (18) is zero. We now
need to find the variations δρ necessary to cancel out these constants and to express r2 and v2 as
Taylor polynomials in δα and δδ only.

The first step is to work with an origin preserving map

[∆v2] = [∆ṽ2]−∆ṽ2 =M∆v2(δα, δδ, δρ) (19)
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and to build an augmented Taylor polynomial by adding identities in observation deltas ∆v2

δα
δδ

 =

 M∆v2

Iα
Iδ

 δα
δδ
δρ

 . (20)

This polynomial map can be inverted using ad-hoc algorithms implemented in COSY-Infinity, yield-
ing  δα

δδ
δρ

 =

 M∆v2

Iα
Iδ

−1  ∆v2

δα
δδ

 . (21)

Extracting the three last lines we obtain

[
δρ
]

=
[
Mρ

]  ∆v2

δα
δδ

 . (22)

We now evaluate the map (22) in [∆v2] = −∆ṽ2, obtaining

[ρ]1
+

= ρ1+ +Mρ(δα, δδ) (23)

where the subscript 1+ indicates the Taylor polynomial of the corrections of the topocentric dis-
tances to be applied at the end of the first iteration. Note that this step is the high-order counterpart
of classical Newton’s method.

The second iteration starts with the Taylor polynomials of the topocentric distances given by

[ρ]2
−

= [ρ]1
−

+ [ρ]1
+

+ δρ = ρ2− +Mρ(δα, δδ, δρ) (24)

where now the explicit dependence on the entire set of observables appears. Thus, from the second
iteration, the Taylor polynomials (16)–(17) depend on all (δα, δδ, δρ). The iterative procedure
ends when the values of ∆ṽ2 are smaller than a prescribed tolerance. The Taylor polynomials of
the topocentric distances at the last iteration k are

[ρ] = [ρ]k
−

+ [ρ]k
+

= ρ+Mρ(δα, δδ) (25)

Using these expressions the spacecraft position and velocity vectors at t2 assume the form

[r2] = r2 +Mr2(δα, δδ)
[v2] = v2 +Mv2(δα, δδ).

(26)

or more compactly
[x2] = x2 +Mx2(δα, δδ), (27)

where x2 = (r2,v2).

Note that, as a result of the iterative procedure, r2 and v2 exactly satisfy (in the two-body model)
the nominal observation set (α, δ). Furthermore, for any displaced value of the observables, the
solution of the preliminary determination problem is computed by evaluating the polynomial (26)
in the corresponding values of (δα, δδ). Map (27) is an arbitrary order Taylor polynomial in δα
and δδ, which maps the uncertainties from the observable space to the spacecraft state phase. In
particular, using the approach described in Section “Nonlinear mapping of the estimate statistics”
we can compute the statistical moments of x, given the statistics of the measurements.
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DA-INVERSION IOD

When more than three optical observations are available the solution (reference state and associ-
ated statistics) of the IOD problem needs to be updated to include the additional information. This
is carried out through a high-order filtering technique based on nonlinear mapping of statistics and
linear update scheme, in which only the pdf of the measurements is constrained to be Gaussian.

The optimal linear estimate of a state x based on a measurement y is given by

x̂ = µx + P xyP
−1
yy(ỹ − µy) (28)

where µx is the state mean, P xy is the joint covariance of the state and the measurement, and
P yy is the covariance of the measurement. For a general non-linear measurement with additive
noise ỹ = h(x) + η, calculating µy and the covariance matrices requires full knowledge of the
distribution of the state. This requirement has two consequences: first it means that the state and
its uncertainty need to be propagated forward to the measurement time, and second that statistics
of the measurement need to be calculated through a nonlinear transformation of the current state.
In this work we propose addressing this issue in a different way. The state is always estimated at a
fixed epoch time, and the nonlinear map to transport it to any other epoch is calculated with the DA
framework. Instead of working with y as a function of x, a full pseudo-measurement of the state
is generated from y; the inverse of the non-linear map from the state to the measurement is readily
available from COSY-Infinity. The advantage of this approach is that only the distribution of the
measurement noise is assumed Gaussian while the distribution of the state is left unconstrained.

Consider a time span [t0, tf ] and let xk be the state variable at some time tk ∈ [t0, tf ]. Consider
also a set of N measurements ỹi given at times ti ∈ [t0, tf ] with i = 1, . . . , N . Given the current
estimate of the state µ−xk

and the related error statistics, we can always define the estimated state
as a DA variable and compute the predicted measurement at ti in the DA framework. The relation
between state and measurement is a nonlinear map that accounts for the forward propagation of the
initial condition and the measurement function. Under proper conditions this relation can be inverted
to map the observation space at ti into the state space at tk. The main cumulants of the resulting
map can be computed as described in the previous section, with the assumption that the statistics
of the measurement errors is Gaussian. The computed mean and covariance are exploited to update
the knowledge of xk using a linear update scheme. This can be done for groups of measurements
for which the dimension of measurement vector yi is equal to the dimension of the state vector, and
the map is invertible.

The resulting method can be made recursive and summarized as follows. From the IOD algorithm
we start from an initial value of the state estimate and covariance, x̂−k = µ−xk

and P−xkxk
(in general

tk = t2, the epoch of the central observation in the IOD problem.) Define the current estimate at
time of interest tk as a DA variable; i.e.,

[xk] = x̂−k + δxk. (29)

and propagate it to time ti when a measurement becomes available. The result assumes the form of
the following high-order Taylor expansion map

[xi] = x̂i +Mxi(δxk). (30)

Then, use the measurement equation to compute

[yi] = h([xi]) = ŷi +Myi(δxk), (31)
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yi

xi

xi +Mxi
(δxk)

yi +Myi
(δxk)

δxk

δyi

y i
+
My i

(δx
k
)

µ−
xk

(a) Direct maps representation

yi

ỹ i
− y iỹi

ỹk

µ−
xk

µ−
yk

ỹk − µ−
xk

µ
−
xk

+
Mxk

(δ
y i
)

(b) Inverse map representation

Figure 1: Sketch of the Taylor maps involved in the construction of the DA-base map inversion
nonlinear filter.

where h represents the measurement function. Figure 1(a) can be used by the reader to better
understand the meaning of Maps (30)–(31).

The next step consists in defining an origin preserving map

δyi = [yi]− ŷi =Mδyi(δxk). (32)

This polynomial map can be inverted if two conditions are satisfied: the map must be square and all
the measurements must be independent. If these requirements are satisfied, we can invert Map (32)
using algorithms implemented in COSY-Infinity, obtaining

δxk =Mδxk
(δyi). (33)

We now substitute in Map (29) the expression of δxk from (33), yielding

[xk] = x̂−k +Mxk
(δyi). (34)

Note that this map now represents the pseudo-measurement of the state xk based on the observation
ỹi, so it is renamed as

[zk] = x̂−k +Myk(δyi). (35)

By construction the constant part of Eq. (35) is equal to the state estimate at step k, i.e. x̂−k , but
its statistical moments are different to those of xk, due to the nonlinear contribution ofMxk

(δyi)
(as highlighted in Fig. 1(b)). We can now apply Eq. (9) to Taylor expansion (35) to compute the
statistics of the random variable zk and, in particular, the first two moments µzk and P zkzk . The
computed mean can be treated as the “predicted measure” of the state at time tk, with measurement
error defined by P zkzk . Thus, we can update the initial estimate and error covariance, using the
least square method. This can be done using the Kalman filter update equations that, applied to the
current problem, read

K = P−xkxk

(
P−xkxk

+ P zkzk
)−1

, (36)

x̂+
k = x̂−k +K

(
z̃k − µzk

)
, (37)

P+
xkxk

= (I −K)P−xkxk
(I −K)T +KP zkzkK

T , (38)
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where µ+
xk

the updated estimate at time tk and P+
xkxk

the updated estimation error covariance
matrix. When another measurement becomes available, we can define the state at time tk as a new
DA variable, centered in the new estimate µ+

xk
, and iterate the process. Note that z̃k is the true

measurement at ti mapped to the state space at time tk, which is readily available by evaluating
Map (35) for δyi = ỹi − yi.

We said that Map (32) must be square in order to be invertible. It follows that if the measurement
vector has smaller dimension than the state vector, after the first measurement is received we can
not proceed with the update, but we have to wait for additional measurements (i.e. in the optical
case three observations are needed). When the number of independent scalar measurements equals
the dimension of the state variable, we can define an augmented measurement vector that can be
used to build Maps (31) and (32).

Once the final estimate of the state at time tk is obtained, the statistics of the solution can be
computed at any time via propagation and DA-based expectation evaluation.

TEST CASES

In the following section, the algorithms for IOD are run considering single-pass optical observa-
tions of four objects as listed in Table 1.

Table 1: Test cases: orbital parameters

Test Case A B C D

Orbit type LEO GEO GTO Molniya
NORAD ID 04784 26824 23238 40296

Epoch JED 2457155.973681 2457163.282443 2457167.100821 2457165.070824
a km 7353.500 42143.7813 26569.834 26569.833
e – 0.0026401 0.0002262 0.7233923 0.72339221
i deg 74.0295 0.03570 62.79393 62.79393

Ω deg 179.64010 26.27830 344.537891 344.53789
ω deg 359.07890 42.05210 271.34770 271.34770
M deg 99.45760 72.45500 347.72640 347.72640

The observations are all simulated from Teide Observatory, Tenerife, Canary Islands, Spain (ob-
servation code 954). The simulation windows are summarized in Table 2. For all the cases 15
equally spaced optical observations are simulated within the observation window. The spacecraft
is considered observable when it has an elevation above 10 deg, it is in sunlight, and the Sun has
an elevation lower than -7 deg). As a result, different gaps between observations are considered,
going from a separation of 43.2 s for the LEO case to 2160 s for the GEO case. This approximately
translates in a average angular separation between observations (on the orbit) of 2.4 deg the LEO
and 9.1 deg for GEO case. The GTO object is observed before the apogee on an orbital arc of ap-
proximately 20.7 deg. The average separation between observations is 1.5 deg, with maximum and
minimum values of 1.9 and 1.3 deg, respectively. On the contrary the Molniya object is observed
before the apogee on an orbital arc of 13.4 deg. In this case the mean, maximum, and minimum
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observation separations are 1, 1.1, and 0.8 deg. For all the cases the central observations (i.e. obser-
vations 7,8,9) are used for the IOD, whereas the remaining ones for orbit update. Finally, pertaining
to the observation accuracies we consider a standard deviation of 0.5 arcsec for all the observations,
except for the LEO case for which the error is increased by one order of magnitude to account for
the faster motion of the object.

Table 2: Test cases: observation windows

Test Case Observation Window ∆t σα,δ
yr mo day0 dayN hr0 hrN hr arcsec

A 2015 MAY 15 15 22.250 22.418 0.012 5
B 2015 MAY 22 23 21.000 05.400 0.600 0.5
C 2015 JUN 02 02 03.550 05.580 0.145 0.5
D 2015 MAY 22 22 20.600 23.400 0.200 0.5

CONCLUSIONS

In this paper the problem of nonlinear filtering has been addressed. Working in the differen-
tial algebra framework we derived a high-order filter, called differential algebra-based map inver-
sion filter. This filtering algorithm is based on nonlinear mapping of statistics and linear update
scheme, in which only the probability density function of the measurements’ error is constrained
to be Gaussian. No hypothesis on the state probability density function is made. The proposed
filter is compared to the conventional extended Kalman filter and to the unscented Kalman filter in a
Earth-orbiting spacecraft application. The filter simulations are carried out assuming the dynamics
of the system are perfectly known and given by the two-body problem, but there are random errors
in the initial state and in the measurements. The results show that the proposed filter provides better
performance that the linearized solution and, in some cases (i.e., when the initial uncertainty, the
measurement noise, and/or the filtering time step are large) also than the unscented Kalman filter.
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