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ROTATIONS, TRANSFORMATIONS, LEFT QUATERNIONS, RIGHT
QUATERNIONS?

Renato Zanetti ∗

This paper surveys the two fundamental possible choices in representing the atti-
tude of an aerospace vehicle: active and passive rotations. The consequences of
the choice between the two are detailed for the two most common attitude param-
eterizations, a three-by-three orthogonal matrix and the quaternion. Successive
rotations are also reviewed in this context as well as the attitude kinematic equa-
tions.

INTRODUCTION

It has been 25 years since John Junkins and Malcolm Shuster guest edited a special issue of the
Journal of Astronautical Sciences on attitude representations. The issue in general, and reference [1]
in particular, detail many parameterizations of the rotation group with the constant assumption that
attitudes are represented as passive rotations. This work aims to detail in a clear and concise manner
the difference between the active and passive representations of attitude and the implications of
either choice. In a single reference, all fundamental equations are derived and the implications of
each choice are discussed. As such, this paper is of interest to researchers and practitioners in the
field that seek a single reference detailing the two approaches with all relevant equations derived in
a consistent notation.

The attitude of a spacecraft is simply its orientation. When we think of the position of a spacecraft
as a physical quantity, free of the definition of a cartesian frame and associated coordinates, we
usually think of an arrow (vector) starting at an origin and terminating at the location of interest. The
orientation (attitude) is similar in that it can be expressed as a rotation from a reference orientation
to the current spacecraft orientation. It is well known, however, that rotations do not form a vector
space. This interpretation of attitude as a rotation from the reference orientation to the current
orientation is known as “active” interpretation of rotations [2]. This approach takes the point of
view of an observer fixed with the reference that sees the spacecraft rotate and represents the attitude
of the spacecraft with the physical rotation needed to take the reference frame into the body frame.
This interpretation is therefore the most natural when the observer of the motion is fixed with the
reference frame and sees the spacecraft actively moving. As such, this interpretation is perhaps
most natural when describing the motion of an observed object that we are not controlling and
when the direction of successive rotations are known in the inertial frame. This is the interpretation
of attitude that Shuster defines as “historical” [1]. This interpretation is consistent with the study of
translational dynamics, which rarely takes the opposite point of view of an observer moving with
the vehicle that sees the Earth orbit around the spacecraft but in the opposite direction.
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In practical applications, the purely geometric, coordinate-less representation of vectors and rota-
tions is abandoned for the convenience of introducing Cartesian coordinates and representing phys-
ical quantities with numbers: three for a vector, four for a quaternion, and nine for an orthogonal
matrix. The reference orientation is any right-handed coordinate system, but throughout this work,
the reference orientation will always be that of an inertial coordinate system, denoted as i. The
conclusions of this paper are not affected by the choice of reference system. Another right-hand
coordinate system is attached to the spacecraft and rotates with it, it is the body-fixed frame, or
simply body frame b.

The passive interpretation of rotations takes the point of view of the rotating spacecraft, therefore
the observer does not experience the actual rotation of the spacecraft, rather it sees the inertial frame
rotate in the opposite direction. The passive interpretation is perhaps most natural when knowledge
of the direction of successive rotations is known in the body-fixed frame and when describing the
motion of an object that we are controlling. This interpretation is also convenient in the study of
attitude kinematics, because the angular velocity of the spacecraft is more readily available in a
body-fixed frame using Euler equation of rotational dynamics. Expressing the rotational dynamics
in inertial coordinates will cause inertial properties of the spacecraft to change, while the inertia
matrix is constant in the body frame. The term coordinate transformation or simply transformation
is used in this work as a synonym with passive rotation.

The two approaches are clearly related, but due to the non-vectorial nature of rotations, they have
subtle consequences that merit full discussion. One of these consequences is the difference between
the rotation matrix and the transformation matrix. Another consequence is the definition of left
quaternion used in the Space Shuttle onboard flight software [3].

ROTATIONS

Physical three-dimensional (3D) vectorial quantities, such as the position of a point, exist regard-
less of the definition of a coordinate system. Similarly, vectorial operations (such as vector sum,
cross product, and projections/dot products) can be constructed purely geometrically without resort-
ing to numerical coordinates. When doing calculations, however, it is usually more convenient to
express these physical quantities with three scalar numbers, which are the projections of the vector
into three orthogonal coordinates.

While rotations are not vectors, the rotation of an object in 3D space is a physical action that
can also be described purely geometrically. Euler famously stated that each 3D rotation is uniquely
defined by an axis, represented by the unit vector n, and an angle θ. Let’s denote with R(v) the
physical operation of rotating a vector v, and let’s denote with v′ the rotated vector. Let’s express
v as the sum of a component parallel to n and one perpendicular to it, as

v = (n · v) n− n× (n× v) (1)

Let’s define an orthogonal triad with the the z-axis z coinciding with n, the y-axis y aligned with
n× v, and the x-axis x aligned with −n× (n× v).

v = (n · v) z +
√
v · v − (n · v)2 x

The component of v parallel to z (the Euler or rotation axis) remains unchanged, while the compo-
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nent parallel to x rotates counterclockwise (right–hand rule) by the rotation angle (Euler angle)

v′ = (n · v) z + cos θ
√
v · v − (n · v)2 x + sin θ

√
v · v − (n · v)2 y

= (v · n) n− cos θ n× (n× v) + sin θ n× v

= nnTv + sin θ (n× v)− cos θ [n× (n× v)]

= v + sin θ (n× v) + (1− cos θ) [n× (n× v)] (2)

where the following identity was used

n× (n× v) = n(n · v)− ‖n‖2 v

Eq. (2) expressed the rotation of a vector with a coordinate independent formula. When doing op-
erations with components, we must express vectors v and n in the same frame, and the components
of the rotated vector v′ are therefore also expressed in the same frame. This is the most natural
way to study physical rotations: an external viewer and a fixed coordinate system that looks at the
rotating body. Let’s use a superscript i to indicate that a vector is to be interpreted as three numbers
that represent coordinates in the inertial frame rather than a coordinate-less physical vector

R(vi) = vi + sin θ (ni × vi) + (1− cos θ) [ni × (ni × vi)]

=
(
I3×3 + sin θ [ni×] + (1− cos θ) [ni×]2

)
vi (3)

= Ri vi (4)

where Ri is called the rotation matrix and the above equalities use the definition of the 3× 3 skew-
symmetric cross-product matrix [w×] formed from a 3D vector w. In this example, the rotation
matrix is also referenced to the inertial frame because it must be calculated from the Euler vector
n expressed in the same frame as the vector v we intend to rotate. Exactly like vectors, rotations
exist regardless of frame definitions and, exactly like vectors, when doing numerical calculations
we define a coordinate system to express them.

The Euler axis remains unchanged across a rotation, i.e. R n = n. While Eq. (3) is ubiquitous
in dynamics, mathematics, and computer science; in aerospace engineering we usually see a minus
sign in front of sin θ. That is because we usually interpret rotations as passive.

COORDINATE TRANSFORMATIONS

The attitude (orientation) of a spacecraft can be expressed as the rotation that takes the inertial
frame into the body fixed frame, we will denote with Ri→b the rotation matrix that rotates the
inertial frame into the body frame and call this representation of attitude active rotations or simply
rotations. Notice that the Euler axis of this rotation has the same numerical coordinates in both the
inertial and body frame, therefore Ri→b is the same when expressed in either frame. In the active
interpretation the body frame actively moves and it is sometimes referred to as the alibi description
from Latin. In the passive, or alias description, the observer is fixed with the rotating body, therefore
body-fixed quantities are perceived as stationary. In the passive description we concentrate on the
fact that vb is constant for a rigid body and write

vb = Tb
i v

i (5)

where Tb
i is the direction cosine matrix (DCM), also known as coordinate transformation matrix,

which is the matrix that changes the coordinates of a vector from frame i to frame b. Therefore a
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passive rotation matrix is the same as a DCM or transformation matrix. In order to avoid confusion,
we prefer to reserve the name rotation only to active ones, and we will refer to passive rotations as
transformations. The use of DCMs to represent attitude is so prevalent that they are often referred
to as Attitude matrices.

Let {xi,yi, zi} be the basis of the inertial frame and {xb,yb, zb} the basis of the body frame.
Since Ri→b is the rotation matrix that rotates the inertial frame into the body frame, we have that[

xb yb zb
]

= Ri→b
[
xi yi zi

]
(6)

It is also clear that [
xii yii zii

]
= I3×3 (7)

therefore

vb =

(xib)
Tvi

(yib)
Tvi

(zib)
Tvi

 =

(Ri→b x
i
i)

T

(Ri→b y
i
i)

T

(Ri→b z
i
i)

T

vi =

(xii)
T

(yii)
T

(zii)
T

RT
i→b v

i = RT
i→b v

i = Tb
i v

i (8)

hence

Tb
i = RT

i→b (9)

The DCM (or Transformation matrix or Attitude matrix or passive rotation matrix) from i to b is
the transpose of the (active) rotation matrix that takes i into b. Some practitioners refer to active
rotations as “rotating the vector” and passive rotations as “rotating the frame”.

If n and θ are the Euler axis and angle of the rotation that takes frame i into b, then

Tb
i =

(
I3×3 + sin θ [n×] + (1− cos θ) [n×]2

)T (10)

= I3×3 − sin θ [n×] + (1− cos θ) [n×]2 (11)

this equation with the minus sign in front of sin θ is most commonly used in aerospace engineering
applications. When numerically calculating the nine entries of the 3 × 3 matrix Tb

i from Eq. (11);
in which frame should we express the coordinates of n? Either i or b, it does not matter since their
numerical values coincide.

In summary, the attitude of a rigid body is the relative orientation of a frame fixed with the body
with respect to a reference frame. Taking the convention that we start from the reference frame and
go to the body frame, we can decide to describe the attitude in two different ways. First, as the
physical rotation that takes the reference frame into the body frame, we parameterize this rotation
with a 3 × 3 orthogonal matrix Ri→b. Alternatively, we can express the attitude as the DCM Tb

i

that transforms the coordinates of a vector from inertial coordinates to body coordinates. Matrix
Tb
i is also referred as attitude matrix, transformation matrix, and (unfortunately) even as rotation

matrix, with the usually unspoken understanding that it is a passive rotation. The two matrices are
related as Tb

i = RT
i→b. Matrix Ri→b is a rotation and it can be expressed in any frame we wish

by coordinatizing its Euler axis accordingly. To calculate Tb
i , on the other hand, the Euler axis of

RT
i→b must be coordinatized in the i or b frame, since this matrix is used with vectors expressed in

those coordinates.
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COMPOSITION OF ROTATIONS

From Euler’s 1775 famous theorem stating that displacements about a fixed point can be repre-
sented with a rotation about an axis [4], an attitude representation comes natural: the so called Euler
axis and angle [5, 6]∗. This parametrization is the most intuitive method to represent a rotation,
while many authors view the directions cosine matrix as the most fundamental attitude parametriza-
tion [7].

From Euler’s theorem we known that any number of successive rotations can be expressed as a
single one. Therefore there must be a composition formula that combines two successive rotations
R1 andR2 into a single oneR3

R3(v) = R2(R1(v)) = (R2 ◦ R1) (v) (12)

using the rotation matrix the composition rule is trivially found as the row-by-column matrix multi-
plication

v′′ = R3v = R2v
′ = R2 (R1v) = (R2R1) v (13)

expanding the discussion above, in doing calculations with components, v, v′ and v′′ must be all
expressed in the same frame as must be n1 and n2; the Euler axes of the two rotations. This means
that the direction of the second rotation is referenced to fixed-space (i.e. non rotating). For example
a first rotation with an Euler axis coinciding with the inertial x-axis followed by a second rotation
around the inertial y-axis. The Euler axis of the second rotation does not rotate together with v due
toR1.

Paul [8] presents a very elegant derivation of the composition rule for Euler axis and angle. The
citations in Paul’s article are also valuable since they point to a few different approaches to solve
the same problem. The derivation by Paul is shown in the appendix. The composition rule for Euler
axis and angle was first introduced by Rodrigues [9, page 408] and its derivation assumes that the
Euler axis of the second rotation n2 is fixed and known a priori. To reinforce this fact, we will
denote it as n2f . This is the most natural point of view for a coordinate-less description of rotations
and for the active description, where we observe the rotation from the reference frame. With this
premises, the composition rule of the Euler axis and angle is

cos
θ3

2
= cos

θ1

2
cos

θ2

2
− sin

θ1

2
sin

θ2

2
n2f · n1 (14)

n3 =
sin(θ1/2) cos(θ2/2)

sin(θ3/2)
n1 +

sin(θ2/2) cos(θ1/2)

sin(θ3/2)
n2f +

sin(θ1/2) sin(θ2/2)

sin(θ3/2)
n2f × n1

(15)

this is the most common formula seen in mathematics, but it is not what we usually see in aerospace
applications. Successive rotations in aerospace systems are usually referred to the rotating space.
For example, in the Euler sequence roll-pitch-yaw, the pitch axis rotates together with the first
(roll) rotation, and therefore it is not known a priori, but rather it is a function of the first rotation.
Similarly, the third rotation along the yaw axis rotates due to the first two rotations.

Assume the second rotation is expressed with respect to the rotating space; the second Euler axis
n2r rotates with the first rotation. Therefore, we can use the matrix composition rule above but we

∗At Euler’s time vector notation did not exist. Euler notation consists in a rotation angle φ and the direction cosines
of the axis cos ζ, cos η, cos θ, all his equations are derived component by component.
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must replace “n2f” with “R1n2r”

R3 = R2fR1

=
(
I3×3 + sin θ2 [R1n2r×] + (1− cos θ2) [R1n2r×]2

)
R1

=
(
I3×3 + sin θ2 R1[n2r×]RT

1 + (1− cos θ2) R1[n2r×]2RT
1

)
R1

= R1

(
I3×3 + sin θ2 [n2r×] + (1− cos θ2) [n2r×]2

)
= R1R2r (16)

therefore successive rotations referenced to the rotating frame compose in the opposite order as
those reference to the fixed frame. By flipping the order of the arguments in Eq. (14) and Eq. (15),
the only difference is due to the non-commutative nature of the cross product

cos
θ3

2
= cos

θ1

2
cos

θ2

2
− sin

θ1

2
sin

θ2

2
n2r · n1 (17)

n3 =
sin(θ1/2) cos(θ2/2)

sin(θ3/2)
n1 +

sin(θ2/2) cos(θ1/2)

sin(θ3/2)
n2r −

sin(θ1/2) sin(θ2/2)

sin(θ3/2)
n2r × n1

(18)

this is the most common formula seen in aerospace engineering.

In the mathematical notation of function composition (f ◦ g)(x) = f(g(x)), the first function
applied is the one on the right (g in this case). Therefore, the rotations composition rule for matrices
is very pleasing when we write the second rotation referenced to fixed-space

R2 ◦ R1 → R2fR1 (19)

but when we write the second rotation referenced to the rotating-space the composition rule is in the
“opposite” or “wrong” order

R2 ◦ R1 → R1R2r (20)

we do notice, however, that function composition and row-by-column multiplication are completely
different concepts and their order do not need to match.

Consider two successive coordinate transformations: Tb
a whose Euler axis is expressed in either

the the a or b frame (it has the same numerical value in either frame), and Tc
b whose Euler axis is

expressed in either the the c or b frame (it has the same numerical value in either frame).

vc = Tc
b v

b = Tc
b T

b
a v

a = Tc
a v

a (21)

we immediately notice that the composition rule of transformations is also the row-by-column mul-
tiplication.

In multiplying Tc
b T

b
a are we doing a cross product between Euler axes in different frames? Let

n1 be the Euler axis of the first transformation Tb
a = T1 = RT

1 and n2 be the Euler axis of
Tc
b = T2 = RT

2 , so that

Ra
1 = Rb

1 = I3×3 + sin θ1 [na1×] + (1− cos θ1) [na1×]2

= I3×3 + sin θ1 [nb1×] + (1− cos θ1) [nb1×]2

Rb
2 = Rc

2 = I3×3 + sin θ2 [nb2×] + (1− cos θ2) [nb2×]2

= I3×3 + sin θ2 [nc2×] + (1− cos θ2) [nc2×]2
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The Euler axis of Tc
a must be expressed in either the a or c frame, let’s, for example, do the calcu-

lations in the a frame. We have that

na2 = Ta
b n

b
2 = Rb

1 nb2 = Ra
1 nb2

and

Tc
a = (Ra

2 Ra
1)T

=
[(
I3×3 + sin θ2 [na2×] + (1− cos θ2) [na2×]2

)
Ra

1

]T
=
[(

I3×3 + sin θ2 [Ra
1n

b
2×] + (1− cos θ2) [Ra

1n
b
2×]2

)
Ra

1

]T

=
[(

I3×3 + sin θ2 Ra
1[nb2×](Ra

1)T + (1− cos θ2) Ra
1[nb2×]2(Ra

1)T
)
Ra

1

]T

=
[
Ra

1

(
I3×3 + sin θ2 [nb2×] + (1− cos θ2) [n2r×]2

)]T

=
[
Ra

1 Rb
2

]T
= Tc

b T
b
a

therefore, while it might seem that we are doing operations with Euler axes in different frames, in
reality we are not; the process of changing coordinates of the Euler axis is equivalent to flipping the
order of the matrix multiplication; i.e. composing them with the second rotation referenced to the
rotating space.

It is hard to imagine the need of composing DCMs where the second transformation is referenced
to the fixed-space. Therefore, it is natural for subscribers of the passive interpretation of rotations
to always and only assume rotating-space successive rotations. A similar argument cannot be made
for active rotations. While Rodrigues and most mathematicians usually worked with fixed-space
successive rotations, Euler himself invented the rotation sequence named after him in which three
successive rotations were referenced to the rotating-space.

SUMMARY OF MATRIX PARAMETERIZATIONS OF ATTITUDE

Shuster [1] rightly notes that subscribers of the passive interpretation have not completed avoided
the use of the external observer point of view. In particular, the Euler axis and angle are always taken
as active rotations, they are never re-defined as passive. In summarizing the equations of the passive
and active interpretations of the matrix representation of attitude, we will make two assumptions

1. We start from the Euler axis n and angle θ which are always the parameterization of the active
rotation that takes the inertial frame into the body frame

2. Successive rotations are referenced to the rotating space, as most commonly assumed in
aerospace applications

In the active interpretation the 3 × 3 orthogonal matrix Ri→b parameterizes the rotation from
inertial to body

Ri→b = I3×3 + sin θ [n×] + (1− cos θ) [n×]2 (22)
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the composition rule of a first rotation Ri→b followed by a second one Rb→c referenced to the
rotating-space is the row-by-column multiplication with the matrices appearing in the “opposite”
order

Ri→c = Ri→b Rb→c (23)

vector coordinates can be transformed as

vb = (RT
i→b) v

i (24)

The action of physically rotating vectors is not usually needed but is simply given by

v′ = Rv (25)

If we are more interested in coordinate transformations and we work more often with successive
rotations referenced to the rotating space, the active interpretation seems less practical, and most
researchers and practitioners in the field favor a passive interpretation in which the 3× 3 orthogonal
matrix Tb

i is a DCM and is given by

Tb
i = I3×3 − sin θ [n×] + (1− cos θ) [n×]2 (26)

the composition rule is

Tc
i = Tc

b T
b
i (27)

and the change of coordinates is given by

vb = Tb
i v

i (28)

QUATERNION

In introducing the composition rule for rotations [9], Olinde Rodrigues uses four parameters,
which in modern notation are given by†

sin

(
θ

2

)
n, cos

(
θ

2

)
(29)

This four dimensional attitude representation is sometimes attributed to Euler because in Ref. [10]
Euler studied orthogonal matrices, and in Section 23 he discovered how to compute a 3 × 3 or-
thogonal matrix in terms of four parameters p, q, r, and s. By choosing these four parameters as
in Eq. (29), Euler’s construction returns the rotation matrix. The four parameters of Eq. (29) are
sometimes called Euler symmetric parameters or Euler-Rodrigues symmetric parameters. However,
this representation is more commonly referred to as quaternion-of-rotation, or simply quaternion.

Three years after Rodrigues, in 1843, Sir William Rowan Hamilton presented the quaternion at
the Royal Irish Academy. The first paper on quaternions appeared in the Academy’s proceedings
the following year [11]. Hamilton invented a new algebra in which the elements are both operators
†At Rodrigues’ time vector notation did not exist yet. Similarly to Euler’s notation, Rodrigues represents the Euler axis

with its three direction cosines. Originally Rodrigues four symmetric parameters were given by: cos 1
2
θ, and sin 1

2
θ cos g,

sin 1
2
θ cosh, sin 1

2
θ cos l, where g, h, l, are the three direction angles of the Euler axis with respect to the coordinate

frame. The entire Volume 5 of Journal de Mathématiques Pures et Appliquées has been digitalized and is readily available.
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(rotations) and operands (vectors) [12]. More specifically he invented a skew-field, which is a field
in which the multiplication is non commutative, in contrast with the regular commutative field. The
first person to notice a relation between the quaternion and the four parameters by Rodrigues was
Cayley [13]. Cayley discovered that by defining a quaternion via Euler-Rodrigues parameters, the
resulting unitary quaternion represents a rotation and he showed that using this quaternion the vector
rotation rule is exactly the rule introduced by Rodrigues.

The quaternion used here is denoted by an upper bar and has the vector component first and
scalar last, q̄ =

[
qT q

]T. If n and θ are the Euler axis and angle parameterization of a rotation, the
corresponding quaternion parameterization is given by

q̄ =

[
sin ( θ2)n

cos ( θ2)

]
(30)

From the trigonometric identities

sin θ = 2 sin
θ

2
cos

θ

2

cos θ = cos2 θ

2
− sin2 θ

2

1 = cos2 θ

2
+ sin2 θ

2

we can rewrite Eq. (3) as

R = I3×3 + 2 sin(θ/2) cos(θ/2) [n×] + 2 sin2(θ/2)[n×]2 (31)

or
R = R(q̄) = I3×3 + 2q[q×] + 2[q×]2 (32)

Once again, Eq. (32) is the most commonly seen equation in mathematics to obtain a rotation matrix
from a quaternion, but it is not what we usually see in aerospace engineering where transformations
are used and a minus sign precedes the 2q[q×] term.

To perform a sequence of two rotations R1 followed by R2f (referenced to the fixed space), the
total rotation is

R3 = R2f R1 = R(q̄2f )R1(q̄1) = R(q̄2f ~ q̄1) (33)

The Hamiltonian quaternion product ~ is defined as [14]

q̄2 ~ q̄1 =

[
q1q2 + q2q1 + q2 × q1

q1q2 − q2 · q1

]
(34)

which can be derived immediately from Rodrigues’ composition formula for fixed-space successive
rotations (Eqs. (14) and (15)). Using Hamilton’s quaternion multiplication, quaternions multiply in
the same order as rotation matrices when the successive rotations are referenced to the fixed space,
which is the norm in the historical study of rotations and in many disciplines outside of aerospace.

The historical development of rotations sees them as active and with successive rotations ref-
erenced to the fixed space. In this context, rotation matrices compose in the most intuitive order
and Hamilton’s quaternion multiplication matches this order of the operands. In the more recent
aerospace literature, rotations are usually interpreted as passive and successive rotations are most
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often referenced to the rotating space. Therefore they compose in opposite order. Shuster introduced
a modified quaternion multiplication

q̄1 ⊗ q̄2 = q̄2 ~ q̄1 =

[
q1q2 + q2q1 − q1 × q2

q1q2 − q1 · q2

]
(35)

which is equivalent to Eqs. (17) and (18); the composition formula for rotating-space successive
rotations. Using Shuster’s quaternion multiplication, quaternions multiply in the same order as
transformation matrices when the successive rotations are referenced to the rotating space.

In his 1993 survey paper [1], with regards to the quaternion composition formula, Shuster writes:
“the Euler-Rodrigues symmetric parameters for successive rotations have been written in the same
order as the rotation matrices. This has not always been the convention followed (...). It was once
the convention to write the composition of matrices also in the opposite order to today’s usage. The
convention changed when interest focused more on the algebra of operators. The quaternion had by
this time fallen into disuse and did not succumb to the change in the conventions. This historical
oddity has persisted in many works up to the present. The need to abandon the older convention
becomes apparent when ...”

What Shuster says is correct but easily misinterpreted. Shuster, as most attitude determination
specialists do, uses passive rotations and refers to them simply as rotations. And, as also most
attitude determination specialists do, he assumes successive rotations are always referenced to the
rotating space (with the only exception of deriving kinematics laws for both interpretations, as also
done later in this paper). Therefore the “historical oddity” of composing matrices and quaternions
in the “opposite” order is not an oddity at all. They were composed in the most natural order given
their assumptions: 1. active rotations and 2. space-referenced successive rotations.

Let’s assume we are interested in the attitude of a rigid body using quaternions and that successive
rotations are always referenced to the rotating frame. If we lean towards an active interpretation of
rotations, we would probably use Hamilton’s product in which quaternions multiply in the same
order as rotation matrices

q̄3 = q̄1 ~ q̄2r (36)

Alternatively, we can use Shuster’s product in which quaternions multiply in the same order as
transformation matrices

q̄3 = q̄2r ⊗ q̄1 (37)

either way, the rotation matrix and the transformation matrix are given by

R = I3×3 + 2q[q×] + 2[q×]2 (38)

T = I3×3 − 2q[q×] + 2[q×]2 (39)

What is interesting is that the definition of quaternion itself does not change going from the active
interpretation to the passive one, while the definition of the matrix does. While there are two def-
inition of matrices (rotation matrix and transformation matrix) most people subscribe to a single
definition of quaternion

q̄ =

[
sin ( θ2)n

cos ( θ2)

]
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The designers of the Space Shuttle flight software took a different approach, and they defined the
quaternion differently to emphasize it was a parameterization of a transformation, not of a rotation;
the so-called left quaternion. [3]

LEFT QUATERNION

Starting from the Euler axis and angle that parameterize the rotation from a reference frame to a
body-fixed frame, it should be clear by now that there are two alternative matrix representations of
the attitude of a rigid body: rotation matrices:

R = I3×3 + sin θ [n×] + (1− cos θ) [n×]2

and transformation matrices, aka passive rotations

T = I3×3 − sin θ [n×] + (1− cos θ) [n×]2

Under the assumption that in aerospace applications successive rotations are always referenced
to rotating space, we have that transformations matrices multiply in the “natural” order and rota-
tion matrices multiply in the “opposite” order. Most aerospace specialists lean towards the passive
interpretation which multiplies matrices in an intuitive order. Most aerospace specialists also fa-
vor a lower-dimensional attitude representation than the 9 of the 3 × 3 matrix, often choosing the
four-dimensional quaternion. Defining the quaternion as in Eq. (30) has the disadvantage that they
multiply in a non-intuitive order when using the original Hamilton multiplication. Most aerospace
specialists adhere to one of three conventions, whose arguments are described below.

Hamilton’s Convention. There is really not a right order and a wrong order to multiply matrices
or quaternions. The fact that we write a functional composition asR2 ◦ R1 does not mean we need
to have the matrix multiplication or the quaternion multiplication with the two arguments in that
same order. The fact that we have rotating-space successive rotations creates a minus sign in the
Euler axis composition rule of Eq. (18)

n3 =
sin(θ1/2) cos(θ2/2)

sin(θ3/2)
n1 +

sin(θ2/2) cos(θ1/2)

sin(θ3/2)
n2r −

sin(θ1/2) sin(θ2/2)

sin(θ3/2)
n2r × n1

but nobody ever writes

n3 =
sin(θ1/2) cos(θ2/2)

sin(θ3/2)
n1 +

sin(θ2/2) cos(θ1/2)

sin(θ3/2)
n2r +

sin(θ1/2) sin(θ2/2)

sin(θ3/2)
n2r ∗ n1

with a new definition of cross product n1 ∗ n2r = n2r × n1, just to have a positive sign and
the arguments in the “right” order.‡ Similarly, we should not change the definition of quaternion
multiplication (which was the first introduction of the vector cross product as the vector part of the
product of two quaternions with zero scalar part) from that of Hamilton. Hamilton’s quaternion
algebra follows the well established right-hand rule. From Hamilton’s famous equations i2 = j2 =
k2 = −1, ijk = −1 it follows immediately that ij = k, which is true for a right-hand triad.
Changing the definition of the quaternion multiplication while still using right-hand triads makes
little sense.
‡Actually, since he always used successive rotations referenced to rotating-space, Shuster noticed that all cross prod-

ucts were preceeded by a minus sign. Therefore, Shuster did not use the skew symmetric cross product matrix [w×] but
he rather defined its opposite [[w]] = −[w×], effectively creating a left-hand cross product.
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Shuster’s Convention. Hamilton’s multiplication is a good representation of the composition
of rotations (assuming fixed-space successive rotations) not of the composition of transformations
(assuming rotating-space successive rotations). As a field, we shifted from representing attitude
with rotation matrices (active rotations in Eq. (3)) to transformation matrices (passive rotations in
Eq. (11)) so that matrices multiply in the “right” order. Similarly, we should change the definition of
multiplication from Eq. (34) to Eq. (35) such that quaternions multiply in the same order as attitude
matrices. In defining a new product we are not concerned about the group and algebraic properties
of quaternions and their operator; rather we are interested in the composition rule of successive
rotations referenced to rotating-space.

Space Shuttle Convention The so-called Shuttle convention, or left quaternion, rather than re-
defining the quaternion multiplication, provides an alternative definition of the quaternion itself.
Starting from the Euler axis and angle that parameterize the rotation from a reference frame to a
body-fixed frame, we can construct either a rotation matrix or a transformation matrix. Similarly,
the usual definition of quaternion is a parameterization of rotations:

q̄ =

[
sin ( θ2)n

cos ( θ2)

]

while left quaternions Lq̄ are parameterizations of coordinate transformations:

Lq̄ =

[
− sin ( θ2)n

cos ( θ2)

]

Under this framework, there is only one definition of quaternion multiplication, the one by Hamilton
(like there is only one definition of matrix multiplication) and there is only one formula for a quater-
nion to operate on a vector: with the same formula Hamilton’s quaternions will physically rotate a
vector and a left quaternions will transform its coordinates. There is also only one formula to go
from quaternions to matrices, if we start from regular quaternions we get a rotation matrix otherwise
we get a transformation matrix. Quaternions represent rotations and they multiply in the same order
as rotation matrices (this statement assumes the historical development where successive rotations
are referenced to fixed-space). Left quaternions represent transformations and they multiply in the
same order as transformation matrices. Using a regular quaternion to represent a transformation and
then modifying its multiplication is equivalent to expressing a transformation with a rotation matrix
and then define a column-by-row product such that they multiply in the natural order. The adoption
of the Space Shuttle convention was recently endorsed by Ref. [15].

SUMMARY OF QUATERNION PARAMETERIZATIONS OF ATTITUDE

In summarizing the equations of the various interpretations of the quaternion representation of
attitude, we will make the same two assumptions as before:

1. We start from the Euler axis n and angle θ which are always the parameterization of the active
rotation that takes the inertial frame into the body frame

2. Successive rotations are referenced to the rotating space

12



Hamilton’s convention is an active interpretation of the quaternion defined as

q̄i→b =

[
sin ( θ2)n

cos ( θ2)

]
(40)

the composition rule of a first rotation q̄i→b followed by a second one q̄b→c referenced to the
rotating-space is the Hamilton multiplication with the quaternions appearing in the “opposite” order

q̄i→c = q̄i→b ~ q̄b→c (41)

The vector coordinates can be transformed using pure quaternions (quaternions with zero scalar
part) as [

vb

0

]
= q̄∗i→b ~

[
vi

0

]
~ q̄i→b (42)

where superscript ∗ represents the quaternion conjugate. The action of physically rotate vectors is
not usually needed, but is given by [

v′

0

]
= q̄~

[
v
0

]
~ q̄∗ (43)

If needed, the rotation and transformation matrices are calculated as

Ri→b = I3×3 + 2q[q×] + 2[q×]2 (44)

Tb
i = I3×3 − 2q[q×] + 2[q×]2 (45)

Shuster’s convention is an overall passive interpretation but it keeps the quaternion definition as
an active one

q̄bi =

[
sin ( θ2)n

cos ( θ2)

]
(46)

the composition rule of a first transformation q̄bi followed by a second one q̄cb referenced to the
rotating-space is the modified multiplication with the quaternions appearing in the “correct” order

q̄ci = q̄cb ⊗ q̄bi (47)

The vector coordinates can be transformed using pure quaternions[
vb

0

]
= q̄bi ⊗

[
vi

0

]
⊗ (q̄bi)

∗ (48)

If needed, the rotation and transformation matrices are calculated as above

Ri→b = I3×3 + 2q[q×] + 2[q×]2

Tb
i = I3×3 − 2q[q×] + 2[q×]2

The Space Shuttle convention is a passive interpretation that also defines the quaternion as passive

Lq̄bi =

[
− sin ( θ2)n

cos ( θ2)

]
(49)
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the composition rule of a first transformation Lq̄bi followed by a second one Lq̄cb referenced to the
rotating-space is the Hamilton multiplication with the quaternions appearing in the “correct” order

Lq̄ci = Lq̄cb ~
Lq̄bi (50)

The vector coordinates can be transformed using pure quaternions[
vb

0

]
= Lq̄bi ~

[
vi

0

]
~ (Lq̄bi)

∗ (51)

The transformation matrix is obtained from the left quaternion using a plus sign in front of the
second term

Tb
i = I3×3 + 2 Lq [Lq×] + 2[Lq×]2 (52)

ANGULAR VELOCITY AND KINEMATICS

The angular velocity is closely related to infinitesimal rotations and the discovery of its vectorial
representation follows the discovery that infinitesimal rotations can be added together like vectors
[16]. Suppose we have a rigid object with a body-fixed frame b attached to it and at an arbitrary
time t we know its orientation with respect to an inertial reference frame i. After some time ∆t, the
object rotated to a new orientation with respect to the inertial frame and the rotation from time t to
t + ∆t is parameterized by the Euler axis n(t,∆t) and angle ∆θ(t,∆t). The angular velocity of
the object is defined as [17]

ω(t) = ωb/i(t) , lim
∆t→0

∆θ(t,∆t)

∆t
n(t,∆t) =

dθ(t)

dt
n(t) (53)

the subscript b/i indicates the angular velocity of b is with respect to the reference inertial frame.
The angular velocity is an infinitesimal rotation over an infinitesimal time step. Since infinitesimal
rotations form a vector space, so does the angular velocity. Eq. (53) is coordinate-free and it can
be expressed in any coordinate system of our choice. The attitude kinematic equations depend on
whether the time history of the Euler axis (and hence of the angular velocity) is known and expressed
in the rotating body frame or in the fixed inertial frame.

Let’s first assume the Euler axis is referenced to fixed space and its time history is known in the
inertial frame. Therefore rotation matrices compose in the “natural” order and we have that

R(t+ ∆t) = ∆Rf (t,∆t) R(t) (54)

In terms of Euler axis and angle, and dropping the arguments for ease of notation, we have

∆Rf = I3×3 + sin ∆θ [nf×] + (1− cos ∆θ)[nf×]2 (55)

The subscript f denotes that the delta-rotation is referenced to fixed space. The Euler angle becomes
infinitesimally small and we have that

∆R→ I3×3 + ∆θ [nf×] (56)

as ∆t→ 0. The derivative of the rotation matrix is therefore given by

Ṙ(t) , lim
∆t→0

R(t+ ∆t)−R(t)

∆t
= lim

∆t→0

∆Rf − I3×3

∆t
R(t) = lim

∆t→0

∆θ [nf×]

∆t
R(t)

= [ωf (t)×]R(t) (57)
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this formula is coordinate-independent and valid when the angular velocity ωf (t) is referenced to
the fixed space. For a coordinate-dependent formulation we have

Ṙi
i→b(t) = [ωi(t)×]Ri

i→b(t)

We can take the transpose of this equation and derive how the transformation matrix evolves with
respect to an inertial angular velocity

Ṫb
i(t) = Ṙi→b(t)

T =
(
[ωi(t)×]Ri→b(t)

)T
= −Tb

i(t) [ωi(t)×] (58)

Similar steps can be taken when the Euler axis is referenced to the rotating-space, for example its
time history is known in the body-fixed frame. The derivation can be done either for transformation
matrices starting from Tb

i(t+ ∆t) = ∆T(t,∆t) Tb
i(t) or for rotation matrices starting from

Ri→b(t+ ∆t) = Ri→b(t) ∆Rr(t,∆t) (59)

where the subscript r indicates that the delta rotation is referenced to the rotating space. to obtain

Ṙi→b(t) , lim
∆t→0

Ri→b(t+ ∆t)−Ri→b(t)

∆t
= lim

∆t→0
Ri→b(t)

∆Rr − I3×3

∆t

= Ri→b(t) lim
∆t→0

∆θ [nr×]

∆t
= Ri→b(t) [ωr(t)×] (60)

For a coordinate-dependent formulation we have

Ṙb
i→b(t) = Rb

i→b(t) [ωb(t)×]

Taking the transpose we obtain how the transformation matrix evolves with respect to a rotating-
space angular velocity:

Ṫb
i(t) = Ṙb

i→b(t)
T =

(
Rb
i→b(t) [ωb(t)×]

)T
= −[ωb(t)×] Tb

i(t) (61)

The same approach can be also used for the quaternion. Assuming n(t,∆t) is referenced to the
fixed-space, we have that

q̄i→b(t+ ∆t) = ∆q̄f (t) ~ q̄i→b(t). (62)

In terms of Euler axis (n) and angle (∆θ) we have that

∆q̄f →
[

∆θ
2 n

1

]
, as ∆θ → 0. (63)

Substituting Eq. (63) into Eq. (62) we obtain that

q̄i→b(t+ ∆t) =

([
0
1

]
+

[
∆θ
2 n

0

])
~ q̄i→b(t) = q̄i→b(t) +

[
∆θ
2 n

0

]
~ q̄i→b(t). (64)

The derivative of the quaternion is defined as

˙̄qi→b(t) = lim
∆t→0

q̄i→b(t+ ∆t)− q̄i→b(t)

∆t
= lim

∆t→0

1

2

[
∆θ
∆tn

0

]
~ q̄i→b(t)

=
1

2

[
ωi(t)

0

]
~ q̄i→b(t). (65)
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repeating the same steps for a rotating-space angular velocity we obtain

˙̄qbi(t) =
1

2
q̄bi(t) ~

[
ωb(t)

0

]
=

1

2

[
ωb(t)

0

]
⊗ q̄bi(t)

Finally, the left quaternion evolution contains a minus sign exactly like the DCM evolution

L ˙̄qbi(t) = −1

2

[
ωb(t)

0

]
~ Lq̄bi(t) = −1

2
Lq̄bi(t) ~

[
ωi(t)

0

]
(66)

CONCLUSIONS

The historical study of rotations takes an external-viewer approach in which everything is known
with respect to a fixed (inertial) observer. This approach has an intuitive geometric construction
of rotation sequences that directly represents the rotation of the rigid body. As the focus shifts to
sequences of rotations referenced to the rotating space, a passive interpretation of rotations becomes,
perhaps, more intuitive. The passive interpretation is an internal-viewer approach in which the
observer is rotating together with the body, and sees the surroundings artificially rotate opposite to
the motion of the body. This interpretation is particularly convenient, for example, when studying
attitude dynamics, because the evolution of the angular velocity is more easily calculated attaching
it to the rigid body than to the inertial frame. Many researchers refer to both approaches simply
as rotations without specifying an active or passive interpretation. A complete treatise of the two
approaches and how they affect the formulas used in the study of attitude has so far eluded the
literature. This paper provides a single reference where the mathematics of the two approaches are
fully developed, together with a complete description of the obscure left quaternion convention used
in the NASA Space Shuttle program.
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APPENDIX

In the derivation of the composition rule of two rotations below, it is very important to notice
that we assume that the second axis n2 is fixed a priori and independent of the first rotation. The
composition rule is different when the second axis is fixed with respect to the vector, i.e. rotates
with it during the first rotation. This proof follows that of Paul [8].

We have two successive rotationsR1 followed byR2

v′′ = R2(R1(v)) = R2(v′) = R3(v)

The Euler axis n1 of the first rotation remains unchanged across it

R3(n1) = R2(R1(n1)) = R2(n1) (67)

Let’s denote with an asterisk the inverse rotation

v′ = R(v)⇒ v = R∗(v′) (68)

The Euler axis n2 of the second rotation remains unchanged across it.

R∗3(n2) = R∗1(R∗2(n2)) = R∗1(n2) (69)

Using Euler’s formula and Eq. (67), the displacementR3(n1)− n1 can be expressed in two equiv-
alent ways

R3(n1)− n1 = R2(n1)− n1

= sin θ2 [n2×]n1 + (1− cos θ2) [n2×]2n1 (70)

= sin θ3 [n3×]n1 + (1− cos θ3) [n3×]2n1. (71)

Similarly we find that

R∗3(n2)− n2 = R∗1(n2)− n2

= − sin θ1 [n1×]n2 + (1− cos θ1) [n1×]2n2 (72)

= − sin θ3 [n3×]n2 + (1− cos θ3) [n3×]2n2. (73)
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In deriving the composition rule we will assume that neither θ1 nor θ2 are multiples of 180 degrees.
The cases in which either or both the angles are multiples of 180 degrees can be easily verified to
obey the same composition rule we will now derive.

The displacement due to a rotation is always perpendicular to the rotation axis, therefore both
R3(n1) − n1 and R∗3(n2) − n2 are perpendicular to n3, hence n3 must be parallel to the cross
product of the two, we will denote the vector obtained from the cross product as u.

u =
(
R3(n1)− n1

)
×
(
R∗3(n2)− n2

)
= sin θ2(1− cos θ1)

(
[n2×]n1

)
×
(

[n1×]2n2

)
− sin θ1(1− cos θ2)

(
[n2×]2n1

)
×
(

[n1×]n2

)
+

+ (1− cos θ2)(1− cos θ1)
(

[n2×]2n1

)
×
(

[n1×]2n2

)
=
{
− sin θ2(1− cos θ1)n1 − sin θ1(1− cos θ2)n2 + (1− cos θ2)(1− cos θ1)(n1 × n2)

}
·
(

1− (n1 · n2)2
)

(74)

where the following identities are used(
[n2×]n1

)
×
(

[n1×]2n2

)
= (n1 × n2)×

(
(n1 × n2)× n1

)
= −

(
1− (n1 · n2)2

)
n1(

[n2×]2n1

)
×
(

[n1×]2n2

)
= −

(
(n1 × n2)× n2

)
×
(

(n1 × n2)× n1

)
(75)

=
(

(n1 × n2) · (n1 × n2)
)

(n1 × n2)

=
(

1− (n1 · n2)2
)

(n1 × n2) (76)

sin θ = 2 sin
θ

2
cos

θ

2
(77)

cos θ = cos2 θ

2
− sin2 θ

2
(78)

1 = cos2 θ

2
+ sin2 θ

2
, (79)

A newly defined vector w parallel to u and n3 is defined as

w = S1S2

(
1− (n1 · n2)2

)−1
(1− cos θ2)−1(1− cos θ1)−1 u

= C2S1n1 + C1S2n2 − S1S2(n1 × n2) (80)

where the symbols Ci = cos(θi/2) and Si = sin(θi/2) are introduced to ease notation. The Euler
axis of the composed rotation is therefore given by

n3 = ± w

‖w‖
, (81)

the sign ambiguity is solved choosing the appropriate angle. The norm of w can be obtained from

‖w‖2 =C2
2S

2
1 + C2

1S
2
2 + 2C2S1C1S2(n1 · n2) +

(
1− (n1 · n2)2

)
,

To obtain the Euler angle we use

Eq. (71) · n2 − Eq. (73) · n1 = Eq. (70) · n2 − Eq. (72) · n1 (82)
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to obtain that

1− cos θ3 =
1− (n1 − n2)2

(n1 · n3)2 − (n2 · n3)2
(cos θ2 − cos θ1). (83)

Substituting for n3, after some algebra we finally obtain that

1− cos θ3

2
= sin2 θ3

2
= ‖w‖2. (84)

Noticing that cos θ32 = ±
√

1− sin2(θ3/2) we finally obtain the composition rule for Euler axis and
angle

cos
θ3

2
= cos

θ1

2
cos

θ2

2
− sin

θ1

2
sin

θ2

2
n2f · n1 (85)

n3 =
sin(θ1/2) cos(θ2/2)

sin(θ3/2)
n1 +

sin(θ2/2) cos(θ1/2)

sin(θ3/2)
n2f +

sin(θ1/2) sin(θ2/2)

sin(θ3/2)
n2f × n1.

(86)

Eqs. (85) and (86) provide the composition of successive rotations as first introduced by Rodrigues
[9]. The subscript f is added to n2f as a reminder that the axis of the second rotation is referenced
to the fixed space. In this derivation we assumed n2f fixed and known a priori. Nowhere in the
derivation we made the second Euler axis rotate with the first rotation and hence be a function of n1

and θ1.
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