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AUTONOMOUS OPTICAL LUNAR NAVIGATION

Brian Crouse,* Renato Zanetti,† Chris D’Souza‡ and Pol D. Spanos§

The performance of optical autonomous navigation is investigated for spacecraft in low lunar
orbits and highly elliptical lunar orbits. Various options for employing the camera measure-
ments are presented and compared. Strategies for improving navigation performance are
developed and applied to the Orion vehicle lunar mission.

INTRODUCTION

Autonomous navigation in proximity to the Moon presents challenges not encountered in near-Earth navi-
gation. The most obvious difference is the absence of GPS as a possible measurement. During the Apollo era,
navigation relied on tracking and state updates from the ground. The Orion program, however, is required to
navigate autonomously from the ground. Due to the absence of an atmosphere on the Moon, optical terrain
navigation is a viable option and has produced positive results in past studies [1–3].

Orion will have star trackers and digital cameras onboard. The two star trackers are required to detect
both stars and terrain features on a single image. The digital cameras are primarily designed for proximity
operations and docking, but they are potentially usable for surface feature tracking. The star trackers and
cameras images will be processed by an onboard digital computer to determine known features on the lunar
surface. The position of the features in the image will provide azimuth and elevation information in the
camera’s own body-fixed frame, which can be used directly by the onboard computer or combined with star
tracker data to measure stellar angles. Strategies to include measurements in the onboard navigation filter
include:

1. Processing the unit vector obtained from the azimuth and elevation.

2. Processing the apparent angle between a landmark and a known star.

3. Processing the elevation between the lunar horizon and a known star.

While strategies 1 and 2 provide identical information, each have advantages and disadvantages. The eleva-
tion between the landmark and a known star is a scalar measurement. As such, it is attitude independent and
is therefore immune to attitude estimation errors and camera misalignments. To avoid introducing errors due
to relative misalignment between cameras, it is preferable that the same camera capture both the landmark
and the star. However, such a solution is strongly limited by the field of view (FOV) of the sensors. The
mentioned measurements’ sensitivity to the spacecraft’s position have inverse proportionality to the distance
to the Moon. It is expected that the landmark solutions will perform better closer to the lunar surface (where
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it is easier to capture the landmark), while the star-horizon elevation approach will perform better further
away from the lunar surface (where it is easier to determine the horizon and the substellar point).

In this paper, models for all the above mentioned measurements are presented, together with trade studies
to determine a mission strategy for their utilization. Studies were conducted for two trajectories: low lunar
orbit (LLO) and highly elliptical lunar orbit. The Orion LLO is a 100 km trajectory that will be used while
the astronauts are on the lunar surface. The high elliptical trajectory is used by Orion during its trans-Earth
injection (TEI) 3 burn sequence.

LINEAR COVARIANCE ANALYSIS

The analysis is done with linear covariance (LinCov) techniques [4,5]. It uses linearized error equations to
propagate the statistics of the system random variables directly. It has the advantage of obtaining statistical
properties of the estimation error in a single run and it is therefore quite useful during the initial stages of
navigation system design. Orion is still under development, and many of the vehicle and orbit specifications
are continuously changing. LinCov analysis provides capability for rapid analysis of many variations of the
navigation parameters.

In spacecraft navigation, an optimal estimator such as the Kalman Filter allows for sequential inclusion
of measurement data to improve state information. The system states and the covariances associated with
those states are first propagated using a system dynamics model, and then updated sequentially. In linear
covariance analysis, the system dynamics are linearized about a nominal trajectory, which, in this particular
tool, is found by integrating the system dynamics. The nonzero components of the nominal state are

xnom =
[
r v qib ω

]
. (1)

The nominal state trajectory can be calculated a priori and stored for reference, or it can be calculated in the
simulation. This LinCov analysis uses the second method, and the nominal state evolves as

ẋnom = f (xnom, t) . (2)

The components of the state are inertial position, inertial velocity, body to inertial attitude, and attitude rate.
Attitude is propagated as a four component quaternion to avoid singularities which occur in three component
attitude representations. The other states represent errors which are nominally equal to zero. Neither a truth
(environment) state nor an estimated (onboard filter) state are calculated. Covariances of the differences
between states are carried in the simulation. Environment dispersions are the difference between the nominal
and truth states:

δx = x− xnom, (3)

assumed to be zero mean with covariance

P = E
[
δxδxT

]
. (4)

Navigated dispersions are the difference between the nominal and filter states:

δx̂ = x̂− xnom, (5)

assumed to be zero mean with covariance

P̂ = E
[
δx̂δx̂T

]
. (6)

Navigation errors are the difference between the filter and truth states:

e = x− x̂, (7)

with covariance
Ponb = E

[
eeT

]
. (8)



The “true” dynamics are not propagated; its model is similar to Eq. (2) with the addition of noise, w, to
represent dynamical effects unmodeled by the nominal dynamics. That is,

ẋ = f (x, t) + w(t), (9)

where w(t) is a white noise with zero mean and spectral density given by Q. Linearizing Eq. (9) at the
nominal state and neglecting higher order terms results in a first order truth dynamics partial derivative matrix,

A =
∂f (x, t)

∂x

∣∣∣∣
xnom

, (10)

which can be used to propagate the environment dispersion covariance matrix via the Riccati equation

Ṗ = AP + PAT + Q. (11)

Filter dynamics describe how the filter state, which is the estimate of the truth state, will behave. The
filter state uses state replacement for angular velocity because those states are measured directly by onboard
gyroscopes. Thus, the equations for the filter dynamics differ from the truth dynamics slightly and are given
by the equation,

˙̂x = f̂ (x̂, ω̃, t) , (12)

where the “hat” notation associates the variables with the filter states. The “tilde” notation denotes variables
that are measured directly. The gyroscope introduces noise into the attitude rate states, which shall be modeled
as a white noise with zero mean and variance, Q̂.

Â =
∂ f̂ (x̂, t)

∂x̂

∣∣∣∣
xnom

(13)

Filter states are not carried in the simulation. Instead, information is propagated in the navigated dispersion
covariance matrix via the Riccati equation,

˙̂P = ÂP̂ + P̂Â + Q̂. (14)

The navigation error is the primary measure of navigation performance. This information is carried in the
onboard covariance matrix, which is propagated using the equation,

Ṗonb = ÂPonb + PonbÂ + Qonb. (15)

Dispersions and navigation error covariances grow as time passes as a result of imperfect system models.
In general, environment dispersions are reduced by the incorporation of maneuvers and navigation errors are
reduced by the incorporation of measurements. True measurements are defined as a function of the true state,

z = h(x) + ν, (16)

with measurement noise, ν, white, zero mean, and having variance, R. Nominal measurements are defined
by the same function in equation (16) but lack the measurement process noise:

znom = h(xnom). (17)

The estimated measurements used in the filter are given as

ẑ = ĥ(x̂). (18)

True states are not updated by measurements, because taking a measurement does not change where the
spacecraft actually is. The same is true for the nominal states. The purpose of measurements is to update the



filter states and covariances. When the true measurement is different from the estimated measurement in the
filter, the filter state should be updated appropriately. That is,

x̂+ = x̂− + K (z− ẑ) . (19)

The updated estimation error is approximated through linearization, where

H =
∂h(x)

∂x

∣∣∣∣
xnom

(20)

and

Ĥ =
∂ĥ(x̂)

∂x̂

∣∣∣∣
xnom

. (21)

Since both partial derivatives are evaluated at the nominal state and subtracted from one another in Eq. (19),
the resulting state update equation for the onboard navigation error is

e+ = e− −KHe− −Kν. (22)

The onboard covariance is updated using the equation,

P+
onb = (I−KH)P−

onb(I−KH) + KRKT . (23)

The gain, K, is known as the Kalman gain and is found by minimizing the weighted scalar sum of the diagonal
elements of the error [6],

K = P̂−H(HP̂−HT + R)−1. (24)

The superscript, “-” denotes a variable that has not been updated, and “+” denotes the updated version of
that variable. A full discussion of linear covariance analysis mathematics, Kalman filtering, and how they are
applied to the surface feature tracking camera of this work can be found in reference [7].

MEASUREMENT MODELS

Since this paper is concerned with sensor analysis, only the models for the celestial sensors will be pre-
sented. The dynamics models used for propagation of the states are unchanged from other works [1, 5, 7].
The same is true for the inertial sensors and other aspects of LinCov. The measurement models developed
below are integrated into the existing versions of LinCov and used to analyze and investigate the questions
raised in the introduction to this study.

Feature Tracking Camera

The feature tracking camera updates the onboard covariance matrix by processing the measured feature
azimuth and elevation. The camera is nominally aligned with the body frame nadir direction. There are
several errors associated with this measurement. First, it must be assumed that there is a slight misalignment
between the camera and the body frame. This will be represented by a transformation matrix, TS

B(ψ). The
next error is a camera bias in both azimuth and elevation, bα and bδ . The third error is a vector bias in feature
position, bF . The final error is the measurement noise, ν.

The measurement model used is the one developed in [1] and [7]. Specifically,

h(x) =

[
α
δ

]
=

[
arctan

(
Y
X

)
+ bα + ν

arcsin (Z) + bδ + ν

]
, (25)

where  X
Y
Z

 =
Ts
bT

b
i

[
Ti
p(rF + bF ) − r

]
ρ

, (26)



Furthermore, the symbols X, Y, and Z represent the components of the vector defined in Eq. (26). Tb
i is a

transformation from inertial to body, and Ti
p is the transformation from the planet fixed frame to the inertial

frame. The feature position, rF , is constant in the planet fixed frame, and is rotated to the inertial frame to
process the measurement. The vector, r, is the spacecraft position, and ρ is the magnitude of the numerator
in Eq. (26). The measurement partial derivative matrix is

H =

 ∂α
∂r

∂α

∂φ
∂α

∂ψ
∂α
∂bα

0 ∂α
∂bF

∂δ
∂r

∂δ

∂φ
∂δ

∂ψ
0 ∂δ

∂bδ
∂δ
∂bF

 , (27)

with
∂α

∂r
= − 1

ρ cos(δ)

[
− sin(α) cos(α) 0

]
Ts
i ,

∂α

∂φ
=

1

ρ cos(δ)

[
− sin(α) cos(α) 0

]
Ts
b

dTb
ir

dφ
,

∂α

∂ψ
=

1

ρ cos(δ)

[
− sin(α) cos(α) 0

] dTs
br
b

dφ
,

∂α

∂bα
= 1,

∂α

∂bF
=

1

ρ cos(δ)

[
− sin(α) cos(α) 0

]
Ts
iT

i
p,

∂δ

∂r
= −1

ρ

[
− cos(α) sin(δ) − sin(α) sin(δ) cos(δ)

]
Ts
i ,

∂δ

∂φ
=

1

ρ

[
− cos(α) sin(δ) − sin(α) sin(δ) cos(δ)

]
Ts
b

dTb
ir

dφ
,

∂δ

∂ψ
=

1

ρ

[
− cos(α) sin(δ) − sin(α) sin(δ) cos(δ)

] dTs
br
b

dφ
,

∂δ

∂bδ
= 1,

and
∂δ

∂bF
=

1

ρ

[
− cos(α) sin(δ) − sin(α) sin(δ) cos(δ)

]
Ts
iT

i
p.

The values for the biases and measurement noise used in the simulation are summarized in Table (1).

Error Type 1σ Value Units

Misalignment 0.1 deg

Bias in α, β 0.1 deg

Feature Bias 20 m

Measurement Noise 0.0002 rad

Table 1. Feature Tracking Camera Errors



Star Landmark Sensor

The star landmark sensor measures the angle A between the landmark of interest, and a star. The theory
for the development of this sensor comes from [8]. The advantage of using this sensor instead of the feature
tracking camera is that the seperation angle is a scalar quantity. Therefore, this sensor’s measurement is
independent of attitude and alignment errors. It is advantageous to detect landmark features close to the
vehicle’s nadir. This strategy would guarantee that the features are closer and especially would decrease
optical deformation of the craters making them more easily recognized. Unfortunately it is unlikely that the
camera with field of view large enough to capture both a star and a landmark close to nadir would be installed
on Orion. In LLO, the camera would need a field of view greater than 143 degrees. Therefore, the landmark
would be viewed in the optical camera, and the stars would be viewed by a startracker that is installed on
Orion in a direction normal to the optical camera. This configuration introduces a misalignment between the
two cameras, which must be taken into account. However, the measurement is still independent of attitude.

There are various errors associated with the star landmark sensor. The first is the misalignment between
cameras, T(γ). There also are biases in azimuth, elevation, and feature position, as before. The overall star
camera bias, bsc is also modeled. The last error source is the sensor measurement noise, ηsc. Note that there
is no correction for aberration effects in the model. It is assumed that since orbital trajectory speeds are much
slower than that of cislunar trajectories, they can be ignored. The model is

h(x) = A = arccos
(̂
ıTs T(γ)̂ıV L

)
+ bsc + ηsc, (28)

where

ı̂V L =

 cos(α+ bα) cos(δ + bδ)
sin(α+ bα) cos(δ + bδ)

sin(δ + bδ)

 , (29)

α = arctan

(
Y

X

)
,

δ = arcsin(Z),

and  X
Y
Z

 =
TI
P (rF + bF ) − r

ρ
.

The measurement partial matrix is

H =
[

∂A
∂r

∂A
∂γ

∂A
∂bα

∂A
∂bδ

∂A
∂bF

∂A
∂bsc

]
, (30)

with
∂A

∂r
=

1

ρ sin(A)

[̂
ıTs T(γ) − cos(A)̂ıTV L

]
,

∂A

∂γ
=

1

sin(A)
ı̂Ts [̂ıV L×],

∂A

∂bα
= − 1

sin(A)
ı̂Ts T(γ)

 − sin(α+ bα) cos(δ + bδ)
cos(α+ bα) cos(δ + bδ)

0

 ,
∂A

∂bδ
= − 1

sin(A)
ı̂Ts T(γ)

 − cos(α+ bα) sin(δ + bδ)
− sin(α+ bα) sin(δ + bδ)

cos(δ + bδ)

 ,
∂A

∂bF
= − 1

ρ sin(A)

[̂
ıTs T(γ) − cos(A)̂ıTV L

]
Ti
p,



and
∂A

∂bsc
= 1,

where

cos(A) = ı̂Ts T(γ )̂ıV L, (31)

and [̂ıV L×] is the notation for a skew symmetric matrix of the included vector. In order to calculate the
partial with respect to the misalignment vector, the following small angle first order approximation for a
transformation matrix is made:

T(γ) = I + [γ×]. (32)

This result is obtained from [9] with the sign changed due to the fact that LinCov uses a left handed quaternion
and rotation convention. The values for the errors are given in Table (2).

Error Type 1σ Value Units

Camera Misalignment 0.1 deg

Bias in α, β 0.1 deg

Feature Bias 20 m

Camera Bias 5 arcsec

Measurement Noise 3.35 arcsec

Table 2. Star Landmark Sensor Errors

Star Horizon Sensor

The model for the star-horizon measurement is based on [10]. The apparent direction of the star is given
by is. The apparent direction of the horizon is given by the equation,

ih = Unit(rh − r) (33)

where the notation Unit(v) means the unit vector with the same direction of vector v. The vector, r, is
the position of the spacecraft, and rh is the position of the substellar point on the horizon. The perfect
star-elevation measurement is given by the equation,

y?se = arccos(ih · is). (34)

Three error sources are modeled, each having both bias and noise. The first source of error is the precision
of the star camera. The noise is ηsc and the bias is bsc. The second source of error is the identification
of the substellar point along the planet’s horizon, with bias bss and noise ηss. Finally, there is the error in
determining the altitude of the horizon, whose bias is bh and noise is ηh. The measurement model is obtained
using the cosine law and is given by the equation

yse =

{(
y?se + arcsin

Rp
rpv

)2

+

(
arcsin

Rp
rpv

+ arcsin
bh + ηh
rpv

)2

+

− 2

(
y?se + arcsin

Rp
rpv

)(
arcsin

Rp
rpv

+ arcsin
bh + ηh
rpv

)
cos(bss + ηss)

} 1
2

+ bsc + ηsc, (35)



where Rp is the planet’s diameter and rpv is the distance between the planet and the vehicle. The nominal
measurement is given by the equation

ȳse =

{(
ȳ?se + arcsin

Rp
r̄pv

)2

+

(
arcsin

Rp
r̄pv

+ arcsin
b̄h
r̄pv

)2

+ (36)

− 2

(
ȳ?se + arcsin

Rp
r̄pv

)(
arcsin

Rp
r̄pv

+ arcsin
b̄h
r̄pv

)
cos b̄ss

} 1
2

+ b̄sc. (37)

The measurement mapping matrix and the noise shaping matrix are defined as

Hse =
∂yse
∂x

∣∣∣∣
x=x̄,ηse=0

Lse =
∂yse
∂ηse

∣∣∣∣
x=x̄,ηse=0

, (38)

where

ηse =

ηstηss
ηh

 , (39)

and
Rse = Lse E

{
ηseη

T
se

}
LT
se. (40)

The partials and a more detailed derivation are presented in Ref. [10].

TEST METHODOLOGY

Since the star landmark and star horizon sensors are fundamentally the same, it is worth examining which
point on the planet will result in the highest measurement sensitivity. That is, all errors being equal, is it better
to select a surface landmark which is very close to the center of the planet, or the horizon sub-stellar point,
which is the edge of the planet? Which measurement theoretically reduces position navigation error further?

The two main trajectory scenarios explored in this paper have vastly different parameters. In the LLO
trajectory, Orion will loiter over the lunar surface at a constant altitude of 100 km for multiple orbits. In the
TEI trajectory, Orion will perform a burn to place itself in a highly elliptical orbit with a maximum altitude of
almost 16,000 km. Throughout the course of the TEI sequence, Orion will need to continue taking navigation
measurements. Since each sensor measurement presented in this paper is sensitive to spacecraft altitude, it is
also worth examining the error sources to decide whether one sensor would be better than another in different
altitude regions.

The feature tracking camera measurement will not be very accurate at altitudes far above the surface
because the limited resolution of the camera will make the landmarks difficult to track. The star landmark
camera has similar error sources to the feature tracking camera. It, too, is expected to be more accurate at
low altitudes. The star horizon camera ought to be the more accurate sensor at higher altitudes because its
errors are based on distinguishing the sub-stellar point, which is easier to distinguish at higher altitudes. The
altitude threshold beyond which one sensor is better than the other is be found by comparing the steady state
performance of the navigation system using each of the sensors.

Test Cases

To answer the two preceeding questions, multiple LinCov runs are set up and run. Nominally, LinCov has
a gyroscope and startracker sensor, which measure spacecraft angular velocity and attitude. They will remain
enabled for all simulations because they do not affect position error. The performance of the feature tracking
optical camera has been documented extensively in [7]. To better detect the individual differences between
processing a landmark and the horizon, the optical camera will be turned off for these simulations.

Figure 1 shows an example plot of a single run in LinCov. This plot shows the 3σ root sum square of



Figure 1. Star Landmark Sensor, 500km Orbit

position navigation error, calculated from the onboard covariance matrix,

σpos = 3
√

Ponb(1, 1) + Ponb(2, 2) + Ponb(3, 3) (41)

as a function of time. LinCov was initialized with Orion in a 500 km equatorial circular orbit starting at the
first point of Aries. Integration was performed with a 10 second step size, and the sensors were configured
with the optical sensor being the star landmark sensor processing two stars simultaneously with the same
landmark. The error starts high but quickly drops to a steady state level while the navigation error covariance
matrix continuously updates with sensor measurements.

Figure (2) shows an example plot of a TEI sequence run. It provides position navigation error in local
vertical local horizontal (LVLH) coordinates. In this case, a maneuver at 2.7 hours raises the orbit, and
the error increases steadily as the spacecraft approaches an apogee of 16000 km. At 17.8 hours, another
maneuver initiates a plane change, and the sequence ends at 26.7 hours once the spacecraft reaches a perigee
of 100 km. The star horizon sensor is the optical sensor processing two stars, and the run used a 100 second
step size.

Various parameters in the sensor configurations are changed to create an appropriate ensemble of results
and plots in order to derive answers to each of the preceeding questions. The tests and their results are
summarized in the following section.

RESULTS

The first question to be addressed is the one of optimal location on the planet to use as the landmark. The
angle processed in the star landmark and star horizon sensors is an inner product between two unit vectors.
In all of the following runs, the star is selected from a table of 165 stars based on which star is closest to
45 degrees above the horizon. A pre-defined unit vector can be used in conjunction with the star table to
determine the best location for the landmark. Nominally, the current landmark being processed by the feature
tracking camera is used as the landmark unit vector. For testing purposes, however, locations were selected at
nadir (i.e. the center of the planet), the horizon, 1/3 the way to the horizon, and 2/3 of the way to the horizon.
See Figure 3.

Figure 4 shows the results of running the TEI sequence with the generic star camera choosing each of the
four locations specified in Figure 3. The generic star camera sensor had only a single source of error, which



Figure 2. Star Horizon Sensor, TEI Sequence

Figure 3. Apparent View of Lunar Sphere



is a camera measurement noise that remained the same in each of the four test cases.

(a) Nadir (b) 1/3 Horizon

(c) 2/3 Horizon (d) Horizon

Figure 4. TEI Runs With a Generic Star Camera

As the landmark location moves from the center of the planet to the horizon, the maximum error decreases.
With all other errors being equal, processing a star horizon measurement is much more accurate than pro-
cessing a star nadir measurement. In fact, the greatest drop in error occurs between the nadir direction and
the direction to 1/3 horizon. The largest component of position error is in the radial direction. Indeed, the
other components of error are actually quite similar in each of the four landmark locations. The reason for
the difference in position uncertainty is geometric. Consider Figure 5.

In this diagram, all angles are measured from the center of the planet (nadir). The angle subtended by
the lines of sight to the nadir direction and the star form a cone in space with the spacecraft on the surface.
The center of the planet is the apex of the cone whose center axis is the line of sight between the planet and
the star. The angle of the cone is twice the supplement of the measured elevation angle. The intersection of
this cone with another cone formed about a second star establishes a line of position on which the spacecraft
rests. Any additional stars will only confirm the line of position already established by the first two stars.
Therefore, when nadir is processed as the landmark, regardless of where the star is, no information about the
radial distance from the planet is added to the filter. Now consider Figure (6).

In this diagram, angles are measured from the substellar point to the star instead of the center of the planet.
Therefore, stars at different locations will generate position cones that have different apices. Now, intersec-
tions between two cones result in points in space instead of lines. Using this method, position uncertainty
is further reduced than in the case of Figure (5) because information about spacecraft radial distance is pro-
cessed in the filter. Three stars are shown because the intersection of two cones actually makes two points.
The third star selects the correct point as measured position. Thus, three pieces of information are required
for a position fix. The further the landmark is from the center of the planet, the more information about the



Figure 5. Geometry of a Position Fix (Nadir)

Figure 6. Geometry of a Position Fix (Horizon)



radial direction is added, so the total position error is lower.

When actual landmarks are used in the star landmark measurement, they are selected based on which one
is closest to the nadir direction. They will never be exactly in the nadir direction; thus, certain information
concerning the radial component of error will be added to the filter. Nonetheless, the star horizon sensor is
the more accurate sensor.

As discussed in the introduction to this section, the next step is to determine at which altitude the star
horizon sensor becomes more accurate than the star landmark sensor. For this purpose, plots like Figure 1 are
created based on circular orbits with different altitudes. If the average value of error is taken once the plot
reaches steady state (after about 6000 seconds in Figure 1), one data point for position navigation error versus
altitude is created. In Figure 1, a 500 km orbit generates a steady state error of 0.092 km. The altitude range
of interest stretches between orbits of 100 km to 16000 km. Figure 7 shows the position accuracy obtained by

Figure 7. Star-Landmark vs. Star-Horizon Performance

processing the two types of star elevation measurements with a 100 second step size. Circular plots ranging
from 75 km to 20000 km were used to fully populate the plot. Since dozens of plots were created to produce
these data points, they are omitted for the sake of space. Their behavior is all very similar to Figure 1, with
different steady state values. The number of data points near LLO and near the crossover point is denser to
provide greater resolution. The two lines show elevation measurements from the landmark and the horizon.
At low altitudes, processing landmarks is preferable, while at higher altitudes horizon elevation measurements
are recommended.

Since the star landmark camera essentially gives the same information as the feature tracking camera, it
is worth asking why one would use a star landmark camera at all. It is thought that the removal of attitude
dependency might warrant use of the star landmark camera. How do the two cameras compare? Figure 8
shows how the cameras compare throughout the range of altitudes. Also included in Figure 8 is a plot of the
star landmark sensor with no misalignment error included in the model. This plot would simulate a camera
capable of capturing both the landmark and the star in the same image. Naturally, it has better accuracy
than the original camera model; however, it is only significant after the range at which the CEV would have
switched to the star horizon sensor.

At low altitudes (below 130 km) the error starts high and then drops down before resuming the expected
behavior for both sensors. This behavior is due to the lunar gravity perturbations. Currently, Earth gravity
models are very accurate in comparison to lunar models. Not only does Earth have a much more stable



Figure 8. Star Landmark vs. Feature Tracking

gravity field, but it has also been documented in more detail over the years due to the far greater number
of missions. Typically a gravity model accounting for nonspherical parameters up to J4 is sufficiently ac-
curate and computationally efficient for spacecraft in Earth orbit. However, as the few lunar missions have
revealed, this same modeling does not sufficiently account for the true effects in lunar orbit, which are due
to asymmetric mass concentrations. Therefore, in LinCov, three gravity perturbation states are added to the
state matrix. These states are used to approximate errors as if the CEV were carrying a 9x9 gravity model.
Figure 9 shows a plot of the position error through a range of LLO altitudes with the gravity perturbation
states turned off in LinCov. These runs were also done with a 10 second step size for further clarity. In this

Figure 9. Sensor Performance with No Gravity Perturbations

case, error is smallest at the lowest altitude and increases as altitude increases, as expected. The orbital effect



of the gravity perturbations is more pronounced at LLO, which is the reason for the unexpected behavior at
low altitude in Figure 7.

CONCLUSIONS

The final version of the Orion Crew Exploration Vehicle will likely have several optical cameras at its
disposal. Since crew safety is of utmost importance, every available resource must be investigated as an aid
to returning the crew home in the event of an emergency. Although primary navigation will be handled though
ground updates, autonomous optical navigation as presented will likely be the backup navigation system in
lunar orbit. The three strategies for including optical measurements in the navigation filter are all useful and
viable options. The surface feature tracking capability will likely stay the primary optical measurement. The
research has shown, however, that in situations where Orion departs LLO and enters highly elliptical orbits,
a star elevation measurement becomes quite helpful in lowering position error. Selecting a landmark off of
the nadir direction is ideal. The resolution of the cameras and the altitude above the surface will ultimately
determine whether to use the current surface feature or the horizon as the landmark.
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