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Abstract

The application of a multiple model adaptive estimation architecture
to entry navigation during the highly dynamic hypersonic pre-parachute
deploy phase is investigated. The entry navigation filter design processes
inertial measurement unit outputs of acceleration and attitude rates in
an extended Kalman filter as external measurements, rather than using
the more traditional dead-reckoning approach. The high uncertainty as-
sociated with the Martian atmospheric density is addressed with multiple
dynamic models comprising a filter bank. The proposed filtering architec-
ture produces state estimates to accuracies comparable to dead-reckoning
process, but shows substantial improvement in robustness to uncertainty
in the atmosphere.

INTRODUCTION

A reliable navigation system is an essential element of a fully autonomous,
closed-loop guidance, navigation, and control (GN&C) system for Mars entry,
descent, and landing (EDL). A mission that employs fully autonomous EDL
guidance at Mars has not yet flown. The traditional approach to EDL naviga-
tion is to employ an algorithm that dead-reckons the inertial measurement unit
(IMU) outputs of acceleration and attitude rates, i.e. the IMU measurements
are used to propagate the spacecraft state (position, velocity, and attitude).
Dead-reckoning is characterized by the absence of an aerodynamic forces model
within the navigation algorithm. This is a sensible navigation strategy when
the aerodynamic models have large uncertainties at the same time time that
the IMU hardware is capable of accurately providing measurements of the non-
gravitational accelerations. Fortunately, knowledge of the Mars atmosphere has
improved over time thanks to data collected from various successful planetary
exploration missions. Nevertheless, the lack of predictability of the atmosphere
makes the task of modeling the aerodynamic forces challenging.

Despite the challenges of processing the IMU data in a model-based navigation
algorithm, there are valid reasons for considering abandoning the dead-reckoning
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approach during the upper atmospheric hypersonic phase of EDL. First, the
model-based approach provides the ability to accurately navigate through data
drop-outs. Although thought to be an unusual event, IMU data dropouts can
lead to large state estimation errors that can be mitigated with a model-based
approach. Second, the Kalman filtering approach naturally provides a state
estimation covariance that accurately represents the state uncertainty, thereby
leading to superior estimation accuracies once other external sensors become
available, notably the altimeter after heat shield jettison and parachute deploy.
Finally, if a properly configured filter bank is employed in a multiple-model
adaptive estimation (MMAE) architecture, changes in the atmosphere can be
detected.

The first goal of this investigation is to filter actual IMU measurements from
a NASA Mars landing mission. We employ an extended Kalman filter (EKF)
for this purpose. Previous works[1] have employed sigma point Kalman filters
to accomplish the same goal. The EKF will process actual mission data col-
lected from Mars Exploration Rover (MER) IMUs. It will be shown that the
model-based EKF algorithm leads to better results than dead-reckoning. The
second goal of this investigation is to expand the single EKF navigation system
to a MMAE architecture in order to account for different possible atmospheric
conditions. In previously reported investigations, a different MMAE scheme [2]
was used to filter simulated data. In this work a new filter selection scheme is
developed and used to process actual MER IMU data.

The MMAE is an adaptable estimation technique that consist of a bank of
parallel filters. It has been a topic of great interest since Magill’s pioneering
work [3]. The Magill scheme has been modified to study a variety of problems.
The interacting multiple model (IMM) [4] is a MMAE scheme that has received
attention in the past years. To avoid the necessity of having a large bank of
filters to implement every possible parameter realization, the concept of moving
bank was introduced [5]. Methods to enhance the MMAE performance were
investigated [6], and conditions for the effective steady-state performance were
studied [7]. The MMAE techniques were successfully used for space structures
control [8], and actuator-sensor failure detection in various situations, for exam-
ple on the F-16 [9]. Other applications are tracking maneuvering targets [10],
and estimation in presence of switching coefficients [11].

Together with the filter bank, the MMAE has an hypothesis algorithm that
weights each filter in the bank. In the Magill scheme case, the weight is given
by the conditional probability and is used to combine the state estimates into
a single optimal estimated state. Other possible weighting methods exist, in-
cluding the single layer gating network [12, 13, 14, 15]. The gating network
approach is followed here because it is a “winner take all” strategy consistent
with our objective of determining the filter producing the “best” state estimate.
Each filter in the bank represents a different realization of the atmosphere (e.g.,
one filter represent nominal expected density, another represents possible high



density conditions, and so forth). The filter in the bank assigned the highest
weight by the gating network indirectly indicates the atmospheric conditions.

Mars EDL Scenario

The EDL phase is one of the most challenging phases of a planetary lander
mission. The EDL begins at entry interface (EI), the time when the spacecraft
first encounters the sensible atmosphere and switches from the orbit phase to the
EDL phase. In orbit, the spacecraft is mainly tracked by Earth-based resources,
such as the Deep Space Network. During EDL, the spacecraft are autonomous
and must navigate using on-board resources. Shortly after EI, the IMUs begin
providing measurements of all nongravitational accelerations (i.e., those to due
aerodynamic forces). The spacecraft makes a hypersonic/supersonic descent
during which only on-board IMUs, and possibly atmospheric measurements
(such as stagnation point pressure), are available. The spacecraft is contained
within its aeroshell. On future missions requiring precision landing, it is during
this upper atmospheric phase that the guidance will be active. For Apollo, the
GN&C system modulated the aerodynamic lift direction by banking the capsule
during the time in the Earth’s atmosphere. Future GN&C algorithms for plan-
etary missions may also modulate the angle of attack—our proposed navigation
structure remains applicable in this case.

At about Mach 2+ (or an altitude of approximately 10 km), one or several
parachutes are deployed and the aeroshell is jettisoned, allowing ranging instru-
ments on-board to provide a measurement of the proximity to the ground. At
this point, more advanced sensors can also map the terrain. Once the heat shield
is jettisoned and the altimeter and velocimeter, now exposed to the external en-
vironment, provide measurements to the navigation algorithm, the spacecraft is
on the parachute and cannot be actively guided using lift modulation. During
this phase of EDL, the navigation uncertainty is significantly reduced, but guid-
ance cannot compensate for any existing state errors. Unless there is an active
parachute steering control or there is a decision made to fire the engines on the
chute, this is not an active guidance phase.

In the last hundreds of meters above the surface, the parachute is jettisoned
and the spacecraft lands on its own power. Once the hazard avoidance sensor
is available, guidance can actively be utilized to maneuver the vehicle. By this
time there is not much ability to make large excursions to hit a pinpoint land-
ing. In the case of MER, a landing bag system was deployed which resulted in
a significant bouncing at the final phase. MER did not use active guidance–it
was not a precision targeted landing. Even though our interest is in enabling
precision landings, the MER IMU data will be used in this investigation. The
available IMU data represents an outstanding data set upon which to test the
proposed model-based EKF and MMAE architecture.



EXTENDED KALMAN FILTER

Given that the IMU the only available sensor during upper atmospheric hyper-
sonic/supersonic phase of the EDL, the dead-reckoning approach uses only state
integration with given initial conditions. The accuracy of the initial conditions
depend on the quality of the spacecraft tracking prior to EI. In the terminology
of Kalman filtering, dead-reckoning represents state propagation only without
any state updates. During the state propagation, the accuracy of the estimate
degrades due to random and systematic errors in the IMU. Dependent on the
accuracy of the IMU, the state estimation error covariance necessarily increases.
Using a model-based EKF approach, the goal is to improve the state estimate
sufficiently during the state update to compensate for atmospheric and IMU
modeling errors. It is expected that only the estimate of velocity will be sub-
stantially improved over time, because position is very poorly observable from
aerodynamic acceleration measurements. As the velocity estimation error de-
creases with time, filtering the IMU data will lead to better overall navigation
than with dead-reckoning.

In the remainder of this section, various aspects of the extended Kalman filter
are presented. It will be shown that is possible to improve state knowledge using
EKF processing IMU data. The EKF also serves as the main computational
building block of the MMAE. Every filter in the MMAE filter bank will be of
the form presented in this section, the only difference will be in the realization
of the atmospheric model. The gating network selection algorithm employed in
the MMAE is also presented.

Filter Model

The translation and attitude motion of the spacecraft are modeled via

ṙ = v

v̇ = g(r) + a(r,v) + wp

q̇ =
1
2
Ω(ω)q,

where g is the gravitation acceleration, a is the nongravitational acceleration.
All translational quantities are expressed in the inertial frame I, and the an-
gular velocity ω is expressed in the body frame B. Under standard Kalman
filter assumptions, the disturbance wp is assumed to be zero-mean, white noise
process. The EKF propagation equations are given by

˙̂r = v̂
˙̂v = g(r̂) + a(r̂, v̂)

˙̂q =
1
2
Ω(ωm)q̂,



where ωm is the gyro measurement (assumed to be compensated for biases and
misalignments). Therefore, the IMU gyro measurement is modeled as

ωm = ω + wg,

where wg is zero-mean white noise process.

The estimation error is defined with the multiplicative quaternion formulation

e ,
[
(r− r̂)T (v − v̂)T δqT

v

]T
,

where qv is the vector component of the quaternion δq defined as

δq , q⊗ q̂
−1

.

To first-order, the evolution of the estimation error is given by

ė =
d

dt




er

ev

δqv


 =




ev

G(r̂)er + Arer + Avev + wp

−ωm × δqv − 0.5wg


 , (1)

where

Ar :=
∂a
∂r

∣∣∣∣
r=r̂,v=v̂

and Av :=
∂a
∂v

∣∣∣∣
r=r̂,v=v̂

.

The approach taken here in the EKF development is to update the position and
velocity estimates with the accelerometer measurement, and to dead-reckon the
attitude estimate. The reasoning is as follows. Once through the upper at-
mosphere hypersonice/supersonic phase, other EDL sensors (such as the al-
timeter and velocimeter) will be available to provide information about trans-
lational states. Those measurements can naturally be fused together with the
accelerometer measurements within the EKF. On the other hand, it is assumed
that there are no other attitude sensors available post-parachute deploy, hence
the gyro is the only sensor capable of providing attitude information. There is
no tangible benefit to updating the attitude estimate with the gyro data unless
accompanied by an attitude dynamics model of sufficient complexity to cap-
ture the rotational motion of the spacecraft. The additional complexity of the
navigation algorithm due to the attitude dynamics model was deemed to be
too great for the potential benefit. If an external attitude sensor should in fact
become available, then this issue would necessarily be re-visited.

The model for the aerodynamic acceleration expressed in the inertial frame is
given by

a = −CDS

2m
ρ‖vrel‖vrel.

The parameters CD, S, and m are assumed to be known. The spacecraft velocity
relative to Mars atmosphere is denoted by vrel. The atmospheric model is a
modified exponential

ρ = ρ1 exp{−βh + γ cos(ωρh) + δ sin(ωρh)}, (2)



where h is the altitude. Eq. (2) employs the coefficients of the COSPAR model,
which employs data from Viking 1 and Mariner missions. The specific values of
ρ1, β, γ, ωρ, and δ are different for each EKF in the MMAE filter bank.

IMU Measurements

The measurements used are the IMU data collected during the MER EDL at a
frequency of 8 Hertz. The IMU measurements represent the spacecraft change
in velocity, ∆vm, and change in angle, ∆θm, (corrected for biases and misalign-
ments) since the last IMU measurement. These ∆vm and ∆θm are divided by
the time interval to obtain the measured acceleration, aC

m, and angular velocity,
ωm. The accelerometer measurement expressed in the IMU case frame aC

m is
rotated into the body frame through a known constant rotation matrix

aB
m = TB

CaC
m.

Measurement Model

The accelerometer measurement has two components: (i) the change in velocity
due to nongravitational accelerations, and (ii) the change in velocity due to the
offset between the center of mass and the accelerometer location, given by

âoffset ' ωm × ωm × roffset.

The estimated measurement expressed in the body frame is

âB = TT(q̂)â + âoffset,

The residual ε used to update position and velocity is given by

ε = aB
m − âB .

Simulation Results

Simulations show that filtering leads to a more accurate state estimate than
dead-reckoning. Figure 1 shows the comparison between the EKF state esti-
mates and the dead-reckoning. Every run is preformed with the same set of
IMU data from the MER mission. The error history is obtained comparing a
JPL-provided best estimated trajectory (BET) to the EKF state estimate. Each
run differs in the initial condition generated with a zero-mean, normal distribu-
tion whose covariance is diagonal and has standard deviation of 1000m in each
position axes, 100m/s in each velocity axes, 3◦ in attitude, and mean equal to
the initial state of the BET.
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(a) Dead-Reckoning
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(b) Filtering

Figure 1: Comparison of dead-Reckoning and EKF filtering approach. Ten runs
varying the initial conditions and using the same set of MER IMU measure-
ments. The thick line is the standard deviation.

HIERARCHICAL GATING NETWORK

The MMAE scheme employed here is a modified version of that of Chaer et
al[14, 15]. Figure 2 show the structure of hierarchical gating network.

A bank of filters with different values of the unknown parameter α is im-
plemented. In our investigations, α represents the various parameters of the



Filter 1

Filter 2

Zk

Filter L

Xk
^ Opt

Xk,1
^

Xk,2
^

Xk,L
^

Gating Network

g
1

g

g

2

L

Weights Update

residues 

residue covariances

r

Wk,j

k,j

Σ

Measurement 
at time t

k

Optimal state 
estimate at 
time t

k

Expert filters

α

α

α

1

2

L

Figure 2: The hierarchical gating network architecture.

COSPAR atmospheric density model. The gating network has to assign a gain
gi to each filter. The gain is interpreted as the filter probability to be the best
performing filter in the bank. Let L be the number of filters. To be interpreted
as a probability gi has to satisfy the following characteristics:

0 ≤ gi ≤ 1, ∀i = 1, 2, ..., L

∑L
i=1 gi = 1

(3)

The “max” function assigns 1 to the maximum value between the arguments
and zero to the other values. Since the max function is not differentiable, the
softmax function

gi =
eui

ΣL
i=1e

ui
(4)

is used instead of the max function. The probability of the entire bank is

f(zk) =
L∑

i=1

f(zk | αi)P (αi) =
L∑

i=1

f(zk | αi)gi, (5)

where P (·) denotes probability. The goal is to maximize the probability of the
bank. In order to maximize this probability density, it is easier to work with
the natural logarithm of f(zk), or

l , ln f(zk) = ln
L∑

i=1

f(zk | αi)eui − ln
L∑

i=1

eui .



Taking the derivative of l with respect to ui yields

∂l

∂ui
= hi − gi, (6)

where

hi = P (αi | zk) =
f(zk | αi)gi

f(zk)
.

Eq. (6) shows the direction of maximum growth of the function l. The update
is accomplished via

ui ← ui + η
∂l

∂ui
(7)

where η is a learning rate parameter. The gating network gains can now be
computed with Eq. (4). The scalar ui can be interpreted as a measure of how
likely the ith filter is to be the best performing filter within the bank. The higher
the value of ui, the higher the likelihood that it is the best performing filter.
Notice that ui cannot be interpreted as a probability since ui ∈ <. Eq. (7) can
be rewritten as

ui ← ui + η [P (αi | zk)− P (αi)]

which is intuitive in the following sense: the updated ui starts from the old
value, increases if the probability associated with the last measurement is larger
than the old probability, decreases otherwise. The larger the learning rate pa-
rameter, the larger the current measurements are weighted. For η = 0 the gains
do not update, for η →∞ the filter with higher probability after measurement
zk will be given probability one, all others will be given probability zero.

Once the filter weights are computed, the state estimate can be chosen to be
the state estimate associated with the winning filter, or it can be a weighted
average of the L filters in the bank. In the latter case, the estimated state is
given by

x̂ =
L∑

i=1

gix̂i. (8)

The estimation error associated with the weighted state estimate is

e =
L∑

i=1

gi (x̂i − xi) =
L∑

i=1

gi ei, (9)

and the estimation error covariance is

P = E
{
e · eT

}
=

L∑

i=1

L∑

j=1

gigj E
{
ei · eT

j

}
=

L∑

i=1

L∑

j=1

gigjPij (10)

where Pii is the autocovariance of the ith filter, and Pij , i 6= j is the crossco-
variance between filters i and j. Recall that

e+
i ' e−i + KiHie−i + Kiwa, (11)



where wa is the accelerometer noise which is a common quantity for all filters
in the bank. Then it follows that

P+
ij = (I−KiHi)P−ij(I−KjHj)T + KiRKT

j (12)

where R is the measurement noise autocovariance, which is also the crosscovari-
ance because the filters share the sensors.

Simulation Results

The algorithm described in the previous section was tested with the MER IMU
measurements. The bank was composed of three filters, a filter with the nominal
COSPAR air density model, a “high” filter with air density 10% higher than
nominal, and a “low” filter with air density 10% lower. Figure 3 shows the
evolution of the gains in the bank, Figure 4 shows the total estimation error in
position and velocity.
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Figure 3: Gain evolution.

In Figure 3, the gain associated with the filter modeling a “high” density situa-
tion is assigned the highest weight during the initial 180s, then a switch occurs
and the filter modeling a “low” density situation is assigned the highest weight.
Correspondingly, in Figure 4 the position and velocity errors are smallest for
the filter modeling the “high” density during the first 180s. After about 200s,
the filter modeling the ‘low” density produces the smallest estimation errors.
This shows that the gating network is capable of correctly selecting the best
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Figure 4: Total position and velocity errors of the three filters in the bank.

filter among the ones implemented in the filter bank.

These results are only indicative of the possibilities of using an EKF for process-
ing the IMU data coupled with the MMAE architecture. This is not an exhaus-
tive investigation, hence no general statements about the MER mission or the
atmosphere encountered during the MER EDL should be made. First, the BET
provided by JPL was, in fact, not a final BET (that work is still underway),
so that the state estimation errors shown in Figures 1 and 4 may not reflect
the actual estimation errors. Second, and more importantly, the atmospherice
density model used in the analysis (based on the COSPAR data) is likely not
of sufficient complexity to accurately reflect the expected density variations at
Mars.

CONCLUSIONS

A modification of an existing multiple model adaptive estimator has been suc-
cessfully implemented for Mars EDL state estimation. It was shown that real
flight IMU measurements can be processed as an external measurement in a
model-based extended Kalman filter. Filtering the IMU measurements leads to
a more accurate state estimate than the dead-reckoning approach.
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