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COVARIANCE ESTIMATION USING GEOMETRIC OPTIMIZATION
ON SYMMETRIC POSITIVE DEFINITE MANIFOLDS

Rahul Moghe∗, Maruthi R. Akella†, and Renato Zanetti‡

This paper provides a significant extension to our previous work on adaptive
covariance estimation that estimates the noise covariance matrices of a discrete lin-
ear system with simultaneous guarantees for convergence of the noise covariance
estimates and the state estimates. The specific advance established in this work is
that the estimates of the covariance are calculated using a differential geometric
optimization framework that ensures that the covariance estimates lie restricted to
the symmetric positive definite (SPD) manifold. This property is desirable since
the covariance estimates used in calculating the state estimates have to be SPD at
all times for them to be meaningful. A cost function that is geodesically convex
on the SPD manifold is chosen to provide a globally optimal solution.

INTRODUCTION

The Kalman filtering problem for linear system is well studied in the literature.1, 2 One of the
important assumptions that allows for a reliable estimation algorithm is that the noise covariance
matrices of the noises entering the system are completely known. This assumption is rarely true
in practice because the noises in the system and the measurements are not readily available. In
practice, the noise covariance matrices are either predetermined through experimental setups or are
artificially inflated to adopt a conservative strategy. The case when inaccurate noise covariances
are used is known to cause filter divergence.3–8 These challenges motivate adaptive algorithms to
estimate the noise covariance matrices.

There have been many notable contributions in the covariance matching techniques for estimat-
ing noise covariances.9–17 Our recent work on adaptive Kalman filtering presented a significant
advance in this field wherein for the first time, we derive the estimates of the unknown elements of
the process and measurement noise covariance matrices along with theoretical guarantees for their
convergence.18 In this setting, although the estimates of the noise covariance matrices can be main-
tained to be symmetric at all times, there were no further assurances on their positive definiteness.
In order to circumvent this issue, Ref. [18] adopts a convenient remedy, that is to revert back the
covariance estimate to the most recent (prior) value when it was symmetric and positive definite
(SPD). The overall convergence result still holds with this heuristic in place as the estimates are
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proved to be SPD in the limit with probability one. However, it motivates the question as to whether
or not the estimator can be modified to guarantee the SPD property for the estimates at all times,
throughout the estimation process.

In this paper, we provide a positive answer to the foregoing question by adopting a differential
geometric approach that ensures SPD covariance estimates. SPD matrices form a convex cone in
the set of matrices of the same size. They also form a differentiable Riemannian manifold that is
also a metric space with non positive curvature.19 This structure enables Geometric Optimization
(GO) that enables us to solve optimization problems that are non-convex in the Euclidean sense, but
are convex in the SPD manifold sense.20 Instead of arbitrarily reverting to the most recent (past)
estimate of the covariance when it was SPD, we estimate the covariance matrices using a differential
GO technique that ensures SPD estimates at all times. Algorithms involving GO techniques have
been used in the past for optimization on manifolds wherein manifold equivalents of first-order
methods, second-order methods, line-search, Newton methods, and trust region methods have been
developed.21, 22 These methods capitalize on the concepts of geodesics and tangent spaces on the
manifolds to ensure that the estimates through the iterations lie on the manifold. The advantages
of GO techniques over traditional optimization methods with additional constraint requiring the
estimates to lie on the manifold have been well documented in the literature.21

Geodesically convex (g-convex) cost functions were introduced to aid theoretical guarantees for
optimality. Although g-convex functions are not convex in the traditional Euclidean sense, they
provide guarantees of global optimality when viewed from the manifold perspective. The GO tech-
niques have been used to estimate parameters of elliptically contoured distributions and covariance
estimation.23, 24 In these studies, the covariance matrix of the distribution was estimated using
samples drawn from that distribution. GO techniques have also been used subspace tracking adap-
tive signal processing.25 In this paper, we use a particular g-convex cost function, namely, the
S-divergence,26 to provide SPD estimates of the noise covariance matrices of a detectable linear
discrete time invariant system.

The paper is organized as follows. First, the adaptive Kalman filter to estimate the unknown
elements of Q and R matrices is formulated. The expressions to adaptively estimate the noise
covariance matrices are presented. This step closely mimics our original approach in Ref. [18]. A
brief introduction to the geometry of the SPD manifold is presented. For brevity purposes, only
relevant concepts required for the GO technique are stated. Next, the cost function which includes
any additional element constraints on the noise covariance matrices is described. The Riemannian
Gradient and Hessian of the cost function are then derived which are further used in a Riemannian
Trust Region (RTR) optimization framework to obtain SPD estimates. g-convexity of the cost is
then analyzed and conditions for g-convexity are derived. A few experimental results using existing
GO tools to estimate the noise covariance matrices are then simulated.

ADAPTIVE FILTER FORMULATION

Problem Formulation

We first begin by presenting the system equations followed by the linear Kalman filter equations
when the Q and the R matrices are known.

xk+1 = Fxk + wk (1)

yk = Hxk + vk (2)
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wherein xk ∈ Rn denotes the state, yk ∈ Rp denotes the measurements, F ∈ Rn×n is the state tran-
sition matrix, H ∈ Rp×n is the observation matrix, and wk ∼ N (0n×1, Q) and vk ∼ N (0p×1, R)
are the white Gaussian process and measurement noise entering the system.

The nominal Kalman filtering equations are as given below:27

x̂k|k−1 = Fx̂k−1|k−1
x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1)

Pk|k−1 = FPk−1|k−1F
T +Q

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRK

T
k


(3)

wherein x̂k|k−1, x̂k|k are the predicted and updated state estimates, Kk is the Kalman gain, Pk|k−1
and Pk|k are the state error covariance matrices after the prediction and update step respectively.
The noise covariance matrices Q and R are constant for all times. The system is assumed to be
fully observable. Note that even though our previous result18 holds for detectable systems with a
state transformation, the non observable part of the system was separated and only the observable
portions of the state and the process noise covariance matrix respectively could be estimated. Hence,
without loss of generality, the proceeding discussion can be extended to detectable systems without
any shortcomings. The adaptive Kalman filter equations can be specified as follows.

x̂Ak|k−1 = Fx̂Ak−1|k−1
x̂Ak|k = x̂Ak|k−1 + K̂k(yk −Hx̂Ak|k−1)

PAk|k−1 = FPAk−1|k−1F
T + Q̂k

K̂k = Pk|k−1H
T (HPAk|k−1H

T + R̂k)
−1

PAk|k = (I −KA
k Hk)Pk|k−1(I −KA

k Hk)
T +KA

k R̂kK
AT

k


. (4)

Here Q̂k and R̂k are the estimates of the process and noise covariance matrices respectively. The
superscripts A denote the quantities are drawn from the adaptive Kalman filter. If the process and
measurement noises are white Gaussian, the baseline Kalman filter in (3) is optimal in the mean
squared error sense and the state error covariance Pk|k converges to a steady-state value.28 Here,
we assume that some elements of the Q and R matrices are unknown and we derive an adaptive
filtering technique to estimate them.

Linear Time Series Formulation

The formulation of the linear time series below follows from our previous work.18 Stacking m
measurements in time, we get a modified observation model. The number of measurements to be
stacked is calculated from the following equation.

Define Oi =


HF i−1

HF i−2

...
H


m = argmin

i
{rank(Oi) = n}

(5)
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wherein, n is the dimension of the state space. The stacked measurement equation is given below.


yk
yk−1

...
yk−m+1


︸ ︷︷ ︸

,Yk

=


HFm−1

HFm−2

...
H


︸ ︷︷ ︸

Om

xk−m+1 +


H HF HF 2 · · · HFm−2

0p×n H HF · · · HFm−3

...
...

. . .
...

...
0p×n 0p×n 0p×n 0p×n H
0p×n 0p×n 0p×n 0p×n 0p×n


︸ ︷︷ ︸

,Mw


wk−1
wk−2

...
wk−m+1


︸ ︷︷ ︸

,Wk

+


vk
vk−1

...
vk−m+1


︸ ︷︷ ︸

,Vk

(6)

Eliminating the state from the above equation, we get the following linear time series.

O†mYk − FO†mYk−1︸ ︷︷ ︸
,Zk

= wk−m +O†mMwWk − FO†mMwWk−1︸ ︷︷ ︸
,Wk

+O†mVk − FO†mVk−1︸ ︷︷ ︸
,Vk

(7)

Here, † denotes the Moore-Penrose inverse of a matrix. Calculating the covariance of the linear time
series gives the following linear matrix equation.

Cov(Zk) = A1QA
T
1 + · · ·AmQATm +B0RB

T
0 + · · ·BmRBT

m (8)

The covariance is estimated using a Maximum a Posteriori (MAP) estimate of an Normal-inverse-
Wishart (NIW) distribution. The mean and covariance are assumed to belong to the four parameter
NIW distribution with a probability density function given below.29

NIW(µ,Σ|ν, λ, µ,Φ) = |Σ|−(
1
2
(ν+d)+1)exp

(
− 1

2
tr
(
ΦΣ−1

)
− λ(µ− µ0)TΣ−1(µ− µ0)

)
(9)

The posterior NIW distribution after observing r samples xi ∼ N (µ,Σ), i = 1, · · · , r is character-
ized by the following updated parameters.

µr =
λ0µ0 + rx̄

λ0 + r

λr = λ0 + r

νr = νr + r

Φr = Φ0 + S +
λ0 r

λ0 + r
(x̄− µ0)T (x̄− µ0)

(10)

wherein, S =
r∑
i=1

(xi − x̄)(xi − x̄)T is the sample covariance. The posterior estimates of µ and Σ

are expressed as follows.

µ̂r = µr

Σ̂r =
Φr

νr − l
(11)

For further discussion about NIW distributions and a detailed calculation of the posterior, we refer
the reader to Ref. [29]. Previously, Eq. (8) was solved through vectorization and separating out the
known and unknown elements of the noise covariance matrices18 as shown below.

θ̂k = S†(vec(Cov(Zk))−Θknown) (12)

wherein, θ̂k is the estimate of the unknown elements of the noise covariance matrices, S is their
coefficient matrix, vec(·) is the vectorization operation, and Θknown is formed using the known
elements from Eq. (8) through vectorization.
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GEOMETRY OF THE SYMMETRIC POSITIVE DEFINITE MANIFOLD

Optimization algorithms require the characterization of the Gradient and the Hessian of the cost
function over the set of SPD matrices. The set of SPD matrices represent a constraint on the eigen-
values of the matrix which is a nonlinear constraint on the matrix elements. Hence, the linear update
steps used in traditional optimization algorithms do not ensure positive definiteness of a matrix. This
is because there is a possibility of the updated matrix becoming indefinite or negative definite. The
set of SPD matrices form a convex cone whose interior (strictly positive definite) forms a differen-
tiable Riemannian manifold with non positive curvature. This means that the neighborhood of every
SPD matrix resembles a Euclidean space of symmetric matrices locally.

We restate relevant definitions and properties of the SPD Riemannian Manifold that will motivate
the Riemannian versions of the Gradient and the Hessian from.19, 22 Let the set of SPD matrices be
denoted by Pn. The tangent space to Pn at any point X ∈ Pn, denoted by TXPn, is identified with
Sn, the space of symmetric matrices.

Definition 1. The Euclidean inner product on the Sn space is chosen to be the Frobenius inner
product defined below.

gE(A,B) = 〈A,B〉F = tr(AB) ∀ A,B ∈ Sn (13)

wherein, 〈·, ·〉F is the Frobenius inner product.

Definition 2. The Riemannian inner product at the point X for U, V ∈ TXPn is defined as follows.

gX(U, V ) = gE(X−
1
2UX−

1
2 , X−

1
2V X−

1
2 ) = tr(X−1UX−1V ) (14)

Definition 3. The Riemannian metric induced by the inner product on TXPn at X is given in a
differential form as follows.

ds = gX(dX, dX)
1
2 = ‖X−

1
2dXX−

1
2 ‖2 =

[
tr(X−1dX)2

] 1
2 (15)

wherein, dX ∈ TXPn denotes the differential tangent element.

Definition 4. The unique geodesic (minimum length path) between two matricesA,B ∈ Pn is given
by the following equation.

γ(t) = A
1
2 (A−

1
2BA−

1
2 )tA

1
2 , t ∈ [0, 1] (16)

Definition 5. A retraction on Pn at X is defined as a smooth map RX : TXPn → Pn given by the
following expression.

RX(V ) = X
1
2 Exp(X−

1
2V X−

1
2 )X

1
2 V ∈ TXPn (17)

wherein, Exp denotes the matrix exponential operation. We use a shorthand notation, RX(V ) =
ExpXV in the sequel.

The retraction at X in the direction V gives the Pn element obtained by moving a unit distance
on the geodesic emanating from X in the V tangential direction.
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Definition 6. Consider a function f : Pn → R. The directional derivative of f at X ∈ Pn in the
direction V ∈ TXPn is defined as follows.

Df(X)[V ] =
d

dt
f(γ(t))

∣∣∣
t=0

(18)

wherein, γ is a smooth curve on Pn passing through X at t = 0 with a γ′(t) = V ∈ Sn as its first
derivative.

Note that Pn can be identified as an embedded submanifold of the Euclidean space E = Rn×n.
Let f̄ : E → R be the extension of f to E, such that f̄(X) = f(X) ∀ X ∈ Pn. The directional
derivative can be calculated by extending the domain of f to the Euclidean space wherein Pn is
embedded.22

Df(X)[V ] = Df̄(X)[V ] = lim
t→0

f̄(X + tV )− f̄(X)

t
(19)

Definition 7. The Riemannian gradient of f , denoted by grad f , is defined through the directional
derivative as follows.

Df(X)[V ] = gX(grad f, V ) ∀ V ∈ TXPn (20)

Hence, for the Pn manifold, rearranging the expression for the directional derivative yields the
Riemannian gradient at X from the Euclidean gradient as follows.

grad f =
1

2
X(grad f̄ + grad f̄T )X (21)

Such a calculation ensures that grad f ∈ TXPn, and subsequently, a first-order algorithm such
as the steepest descent, that utilizes the retraction map ensures SPD estimates.

Xk+1 = RXk
(−η grad f) (22)

wherein, Xk, Xk+1 ∈ Pn are the prior and updated estimates, η is the learning rate and f : Pn → R
is the cost function.

Second-order methods involving the Hessian map provide a better control over the cost function
for GO applications. To this effect, the second-order terms in the Taylor series expansion of the cost
function needs to be calculated. This requires the calculation of Hessian maps and the derivative
of vector fields on manifolds, known as connections or covariant derivatives. Without going into
too much detail, a few general results from Ref. [22] are restated within the context of Pn, our SPD
manifold.

Definition 8. The Riemannian Hessian of a map f : Pn → R at X is a linear operator Hess f :
TXPn → TXPn defined as follows.

Hess f(X)[U ] = ∇U grad f (23)

wherein, ∇U is the covariant derivative.

The covariant derivative, in simple terms, characterizes the derivative of a vector field along
another vector field. For the Pn manifold, the Euclidean gradient of f represents a vector field on
Pn. The Hessian of f for U ∈ TXPn is expressed as a map below.

Hess f(X)[U ] = X Hess f̄ X +
1

2
(X grad f̄ U + U grad f̄ X) (24)

The gradient and Hessian of the cost function enables us to optimize the cost function over the SPD
manifold.
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GEOMETRIC OPTIMIZATION

Although numerous cost functions may be constructed to ensure that Eq. (8) holds, optimal-
ity properties need to be rigorously established. Previous studies have introduced the concept of
geodesic convexity that ensures a globally optimal solution to the GO problem. The log-det α-
divergence and its variants have been known to provide efficient alternatives to the cost functions in-
volving matrix logarithm and exponential calculations.26, 30, 31 The expression for the S-divergence,
which is used in this paper, is stated below.

JS(A,B) = det
(A+B

2

)
− 1

2
detA− 1

2
detB (25)

The above function was shown to be g-convex wheneverA andB are SPD matrices.26 This property
ensures that the local and global minimizers of the cost function to coincide. In this paper, the
optimization variable is the block diagonal version of the noise covariance matrices to be estimated.

X =

[
Q 0n×p

0p×n R

]
∈ Pn+p (26)

The cost function can be broken down into three parts.

J(X) = Jcov(X) + Jcorr(X) + Jconst(X) (27)

The first part of the cost function, namely Jcov(X) enforces Eq. (8) using the S-divergence stated in
Eq. (25).

Jcov(X) = αJS

(
Ck,

i=m∑
i=0

Ei X ETi

)
. (28)

Here, α is a positive constant, and Ei =
[
Ai, Bi

]
for all i = 0, . . . ,m, A0 = 0n×n. The rate of

convergence of Ck, was shown to be 1/
√
k in our previous work.18

The second part of the cost function minimizes the cross-correlation between the process and
measurement noises.

Jcorr(X) = βtr
(
Z1XZ

T
2 Z2XZ

T
1

)
(29)

Z1 =
[
0p×n Ip

]
Z2 =

[
Ip 0p×n

]
.

Here, β is a positive constant and the matrices Z1 and Z2 select the cross-correlation matrix from
X and minimizes it. Although the cross-correlation can be estimated, we assume that it is zero.

The final part of the cost function constraints certain elements of the Q and R matrices if they are
known. Let the set of nv known elements be denoted by the following set.

Iknown =
{
k
∣∣ 0 ≤ k ≤ nv, Xik,jk = x̄ik,jk

}
(30)

Known elements indexed using the above set can be constrained as follows.

Jconst(X) = γ

nv∑
l=0

(
eTilXejl − x̄il,jl

)2 (31)
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wherein, γ > 0 is a constant, and ei is a vector of zeros with 1 at the ith place.

The Euclidean gradient of J(X) is given below.

grad J̄ = α
( m∑
i=0

ETi (S(X)−1 − 1

2
P (X)−1)Ei

)
+ β

(
ZT1 Z1XZ

T
2 Z2

)
+ 2γ

( nv∑
l=0

(eTilXejl − x̄il,jl)ejle
T
il

) (32)

wherein, J̄ is the Euclidean extension of J , P (X) =
m∑
i=0

EiXE
T
i , and S(X) =

m∑
i=0

Ck + P (X).

The Euclidean Hessian of the cost function is calculated below.

Hess J̄ =− α
( m∑
i=0

ETi (S(X)−1P (U)S(X)−1 − 1

2
P (X)−1P (U)P (X)−1)Ei

)
+ β

(
ZT1 Z1UZ

T
2 Z2 + ZT2 Z2UZ

T
1 Z1

)
+ 2γ

( nv∑
l=0

(eTilUejl − x̄il,jl)ejle
T
il

) (33)

Subsequently, the Riemannian Hessian can be calculated using the expression in Eq. (24) and the
cost function minimized for the covariance estimates. The Riemannian Hessian of the cost function
enables us to use Riemannian Trust Region method for optimization. This method is guaranteed
to converge to a critical point of the cost function. For more details regarding the optimization
algorithms, the reader is referred to Refs. [20–22].

GEODESIC CONVEXITY

The conditions for global optimality of the critical point found by minimizing the cost function in
Eq. (27) are analyzed in this section. First we define a positive linear map. The following discussion
is based on Ref. [20].

Definition 9. A linear map Φ from one Hilbert Space H1 to another Hilbert space H2 is called
positive if

0 � A ∈ H1 =⇒ Φ(A) � 0.

It is called strictly positive if A � 0 =⇒ Φ(A) � 0.

We immediately note that the map Φ(X) = Ck+
m∑
i=0

EiXE
T
i is positive and linear. Additionally,

Φ is strictly positive linear if the following condition is true.

rank
(

ET0
ET1

...
ETm

) = n (34)
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Under this condition, it has been shown in Ref. [20, Collorary 2.11 and Remark 2.12] that the
function Jcov(·) is g-convex on the Pn manifold. The other two parts of the cost function can
similarly be proven to be g-convex. Such functions have the property that all the local minimizers
of the function are also the global minimizers.

SUMMARY OF THE ALGORITHM

The pseudo code of the algorithm is described below.

Algorithm 1: Geometric Optimization based Covariance Estimation Algorithm

Input: x̂0, Q̂0, R̂0, P̂0, ν0, λ0, µ0, Φ0, {Qij , Rij known}
Data: yi

∣∣k
i=1

1 Calculate m from Eq. (5)
2 for i = 1 to k do
3 Calculate the measurement Zkfrom LHS of Eq. (7)
4 Update the distribution of Zk to obtain νi, λi, µi, Φi given in Eq. (10)
5 Calculate the MAP posterior estimate of Cov(Zk) from Eq. (11)
6 if i > m then
7 Calculate cost function from Eqs. (27), (28), (29), and (31)
8 Calculate the Gradient of the cost function from Eqs. (32) and (21)
9 Calculate the Hessian of the cost function from Eqs. (33) and (24)

10 Solve the unconstrained GO problem to obtain Q̂i and R̂i
11 Update the state and state error covariance estimates using Eqs. (4)
12 else
13 Update the state and state error covariance estimates using Q̂0 and R̂0 in Eqs. (4)
14 end
15 end

Result: Q̂k, R̂k, P̂k+1|k, x̂k, νk, λk, µk, Φk

SIMULATION

The numerical performance of our adaptive scheme is highlighted below. A detectable LTI system
which satisfies the assumptions of the adaptive algorithms is simulated.

xk =

0.8 0.2 0
0.3 0.5 0
0.1 0.9 0.7

xk−1 + wk−1 (35)

yk =

[
1 0 0
0 1 0

]
xk + vk (36)

It is assumed that wk ∼ N (0, Q), and vk ∼ N (0, R) are both i.i.d white Gaussian noises. We
assume

R =

[
5 0.7

0.7 4

]
, Q =

 3 0.2 0
0.2 2 0
0 0 7.5


Note that since the above system is detectable, only the first two states are observable and hence, the
covariance matrix corresponding to the first two states can be estimated. There is no such restriction
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on the measurement noise covariance matrix. In the first case, the elements R12, R22, and Q12 are
assumed to be known and the R11, Q11, and Q22 are to be estimated. The initial estimates for all
the unknown elements was chosen to be 10. The Manopt software for optimization on Riemannian
manifolds is used for this example.22 The estimated elements from our algorithm are compared to
the results of the baseline adaptive scheme in Fig. (1). In the baseline adaptive scheme, the estimates
were calculated using vectorization operation of Eq. (8). Whenever the baseline estimates were not
SPD, the most recent SPD estimate was used. This is visualized with the flat regions in the plots.
The predicted and the true state error covariance matrix elements are plotted in Figs. (2).
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Figure 1. The unknown elements Q11, Q12, and R11 with the Euclidean, and the
Geometric optimization scheme along with their true values.
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Figure 2. The state error covariance matrix elements for the Euclidean, Riemannian,
and the optimal cases.

In the second case, an additional element R12 is assumed to be unknown. Note that this does
not satisfy the assumptions of our baseline adaptive filter. This is simply because the coefficient
matrix S in Eq. (12) of the unknown elements is not full rank. The GO method however proves to
be robust and provide SPD estimates of noise covariance matrices. Although the noise covariance
matrices are not guaranteed to converge to their true values, the state error covariances do converge
and Riemannian adaptive scheme produces reasonable state and state error covariance estimates. In
this case, the cost function, although g-convex, has multiple global minimizers which are no longer
distinguishable. This was confirmed by checking that value of the cost function at the true values
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and the estimated values were equal. The estimates of the unknown elements of the noise covariance
matrices and the state error covariance estimates are given in Figs. (3) and (4) respectively.
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Figure 3. The unknown elements Q11, Q12, and R11 with the Euclidean, and the
Geometric optimization scheme along with their true values.
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Figure 4. The state error covariance matrix elements for the Euclidean, Riemannian,
and the optimal cases.

CONCLUSION

A geometric optimization (GO) based adaptive Kalman filter to estimate the states as well as
the process and measurement noise covariance matrices is presented in this paper. A linear matrix
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equation in the noise covariance matrices was formulated by stacking the measurement equation in a
fixed time window. Since the covariance matrices belong to the Riemannian manifold of symmetric
positive definite (SPD) matrices, a geometric optimization problem on this manifold was formulated
and solved whenever a new measurement is available. A log-det divergence based cost function
was used for the optimization. The Riemannian versions of the Gradient and Hessians of the cost
function are characterized which are used for second-order optimization techniques on the SPD
manifold.

Conditions for the cost function to be geodesically convex were derived which, in turn, guarantee
global optimality of all solutions. The previous covariance matching filter failed in cases where the
S matrix in Eq. (12) was not full rank. The GO based algorithm had no such limitation and hence
was found to be more applicable than its Euclidean counterpart. Even in such degenerate cases, the
numerical experiments showed that the state error covariances and the noise covariance estimates
converged to a steady state.

The case when the S matrix was rank deficient was found to be the case when the cost function
was not strictly g-convex. This, in turn, leads to existence of multiple global minima. Although
the Riemannian Trust Region optimization ensures convergence to a critical point, the inability to
distinguish between multiple global minima is a limitation of this algorithm. This may occur in
part because of the scalar nature of objective functions or simply because of lack of observability
properties of the system. Characterizing the degenerate case is important. This analysis is a potential
direction of future research. Optimizing over multiple geodesically convex cost functions may yield
a different set of globally optimal solutions which may help reduce the degeneracy of such cases.
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