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COVARIANCE MATCHING FILTER FOR IMU ERROR ESTIMATION

Rahul Moghe∗, Renato Zanetti†, and Maruthi Akella‡

In this paper, an on-line adaptive accelerometer calibration algorithm is presented.
The accelerometer is corrupted with an exponentially correlated random bias and
white Gaussian noise. Assuming the availability of noisy position and velocity
measurements, the estimates of position, velocity, bias as well as the accelerome-
ter’s noise characteristics are estimated. These results are made possible through
the application of use a covariance matching adaptive filter recently established
by the authors. Numerical simulations are performed to evaluate the performance
of the proposed calibration algorithm and its effectiveness subject to noisy ac-
celerometer measurements.

INTRODUCTION

Inertial measurement units (IMUs) consisting of accelerometers and angular-rate gyroscopes are
extensively used in conjunction with GPS,1 visual-INS,2 and magnetometers3, 4 for navigation and
tracking applications. Accelerometers measurements are usually used to propagate the dynamics,
while the position and velocity measurements are used as external measurements to achieve better
navigation accuracy. The performance of these estimation algorithms is limited by the accuracy
of the calibrated sensor bias, scale factors, and non-orthogonality, as well as the knowledge of the
statistics of the residual calibration error. The bias or drift in accelerometer measurements is known
to be a major contributor to the navigation accuracy.5 Hence, many estimation algorithms have been
developed to compensate for the sensor bias.6 However, these algorithms assume that the velocity
random walk or the statistics of the additive white noise in the accelerometer is completely known.
Filter divergence has been studied for a Kalman filter with an incorrect covariance matrix.7–9 In this
paper, a Covariance Matching Kalman Filter (CMKF) that was recently established by the authors10

is applied to adaptively estimate the power spectral density of the velocity random walk.

Previous methods of sensor error estimation include artificially inflating the process noise covari-
ance heuristically and augmenting the state vector with the bias. Techniques which involve decou-
pling the state and bias estimation have also been presented. Filters treating bias as an error term
rather than a state component have also been formulated.11 A survey of attitude estimation meth-
ods presents additional methods for estimating sensor biases.12 Nonlinear complementary filters
for estimating attitude and gyroscope bias have also been developed.2, 13 In some filters, a constant
random bias model was used while in some others, an exponentially correlated random bias model
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was used. Another approach is to calibrate the accelerometers using the modified Allan variance
method.14 While most works concentrate on estimating the bias, this paper uses the measurements
to simultaneously estimate both the bias and the covariance of the velocity random walk.

Unlike for biases, the estimation of covariances cannot be achieved by state space augmentation,
rather adaptive filtering is used instead to estimate both the state and parameters of the model.15

Innovation-based Sage-Husa adaptive filters and their various modifications are one approach for
adaptable filtering with GPS/INS applications.16 The formulation presented here is derived from
recent formulations of adaptive filters,10, 17 where a stacked measurement equation is formulated
and the state and covariance estimators are subsequently derived. An example problem is then
numerically simulated to test the validity of the algorithm. Certain limitations and proposed future
work are discussed as part of concluding remarks.

PROBLEM FORMULATION

Dynamics Model

Consider a simplified two-axis linear model for position and velocity as state components of a
two-axis accelerometer sensor. The algorithm presented here is intended for calibration on a planar
table of two axes. Hence, the z-axis (vertical axis) is not considered. However, the same results can
be readily extended to include all 3 axes and the effects of gravity. Thus, we have

r̈x = ax (1)

r̈y = ay (2)

where in rx and ry are scalar positions and ax and ay are the true accelerations in the x and y
directions of the sensor’s center of mass respectively. The quantities bx and by are the accelerometer
biases in the x and y measurement channels modeled as exponentially correlated random variables:

ḃx(t) = −bx(t)

τx
+ wx(t) (3)

ḃy(t) = −by(t)
τy

+ wy(t) (4)

wherein, τx and τy are the time constants for the decay rates for the respective bias terms and wx(t)

and wy(t) are zero-mean white processes with power spectral densities Sbx =
σ2
ss,x

2τx
and Sby =

σ2
ss,y

2τy

respectively, where σ2
ss,x and σ2

ss,y are the steady-state variances of the two exponentially correlated
random biases. Writing the state dynamical equations as a continuous-time linear equation

d

dt


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ṙx
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(5)
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In order to express the foregoing continuous-time dynamics to a discrete-time difference equation,
we assume that the sample time T is small enough such that acceleration a(t) ≈ ak, ∀t ∈ [tk, tk+T ]

xk+1 = Fxk +Gak + Λwk (6)

Here,

F = eAT =



1 T 0 0 0 0
0 1 0 0 0 0

0 0 e−
T
τx 0 0 0

0 0 0 1 T 0
0 0 0 0 1 0

0 0 0 0 0 e
− T
τy


, and G =

T∫
0

eAtBdt =



T 2

2 0

T 0
0 0

0 T 2

2

0 T
0 0


The zero-mean white sequence wk has a covariance matrix

Qb =

(1− e−
2T
τx )σ2

ss,x 0

0 (1− e−
2T
τy )σ2

ss,y

 (7)

Measurement Model

The system is assumed to have position and velocity measurements through external sensors with
additive white Gaussian noise.

zk =


rxk
ṙxk
ryk
ṙyk

+


vrx
vvx
vry
vvy

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


︸ ︷︷ ︸

H

xk + ηk (8)

Along with that, the acceleration measurement ã(t) corrupted by bias and noise is given by

ã(t) = a(t) + b(t) + v(t) (9)

where the zero mean white process v(t) is known as the velocity random walk (VRW). Most ac-
celerometers do not measure output acceleration directly, rather they accumulate the measurement
into a ∆ṽk, the actual measurement produced by the sensor is

∆ṽk =

∫ tk

tk−1

ã(t)dt =

∫ tk

tk−1

a(t)dt+

∫ tk

tk−1

b(t)dt+

∫ tk

tk−1

v(t)dt (10)

and the true change in velocity is given by

∆vk =

∫ tk

tk−1

a(t)dt (11)

Assuming the sample time of the accelerometer measurements is much smaller than the time con-
stant of the bias, the measurement is given by

∆ṽk = ∆vk + bkT + vk (12)
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where vk is a zero-mean white sequence with covariance matrix given by
[
SvxT 0

0 SvyT

]
. The

measurement noise ηk is assumed to have a known constant diagonal covariance of R. The initial
state estimate, the measurement noise and the process noise are assumed to be uncorrelated with
each other.

FILTER FORMULATION

Propagation

The acceleration measurement accumulated as ∆ṽk is a known exogenous input to the system.
Therefore, the velocity estimate propagation equation is given by the following equation.

r̂xk+1|k = r̂xk + ˙̂rxkT +
1

2
(∆ṽxk − b̂xkT )T (13)

˙̂rxk+1|k = ˙̂rxk + ∆ṽxk − b̂xkT (14)

r̂yk+1|k = r̂yk + ˙̂rykT +
1

2
(∆ṽyk − b̂ykT )T (15)

˙̂ryk+1|k = ˙̂ryk + ∆ṽyk − b̂ykT (16)

wherein, ∆ṽk =

[
∆ṽxk
∆ṽyk

]
is the acceleration measurement and r̂xk is the x position estimate at

time-step k. The state estimate propagation equation is given as follows.

x̂k+1|k =


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0 1 −T 0 0 0

0 0 e−
T
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2

0 0 0 0 1 −T
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− T
τy


︸ ︷︷ ︸

,F̂

x̂k +



T
2 0

1 0
0 0

0 T
2

0 1
0 0


︸ ︷︷ ︸

,Ĝ

∆ṽk (17)

Also, using Eq. (12) in Eq. (6), we get the following truth propagation equation.

xk+1 = Fxk + Ĝ∆vk + Λwk (18)

Note that (F − F̂ )xk = ĜT

[
bxk
byk

]
= ĜTbk. The state error covariance Pk+1|k = E[(xk+1 −

x̂k+1|k)(xk+1 − x̂k+1|k)
T ] is obtained by:

xk+1 − x̂k+1|k = Fxk − F̂ x̂k + Ĝ(∆vk −∆ṽk) + Λwk (19)

Using Eq. (12), we get

xk+1 − x̂k+1|k = Fxk − F̂ x̂k − Ĝ(bkT + vk) + Λwk (20)

xk+1 − x̂k+1|k = F̂ (xk − x̂k) + (F − F̂ )xk − ĜTbk − Ĝvk + Λwk (21)

xk+1 − x̂k+1|k = F̂ (xk − x̂k)− Ĝvk + Λwk (22)

Pk+1|k = F̂PkF̂
T + Q̂a + ΛQbΛ

T (23)

4



wherein, the matrix Q̂a is the estimate of the covariance matrix of Ĝvk and has the true value:

Qa =



T 3

3 Svx
T 2

2 Svx 0 0 0 0
T 2

2 Svx TSvx 0 0 0 0

0 0 0 0 0 0

0 0 0 T 3

3 Svy
T 2

2 Svy 0

0 0 0 T 2

2 Svy TSvy 0

0 0 0 0 0 0


The unknown parameters to be estimated in the adaptable filter are the VRW power spectral densities
Svx and Svy .

Measurement Update

The Kalman Filter measurement update equation is as follows.

x̂k+1 = x̂k+1|k +Kk+1(zk+1 −Hx̂k+1|k) (24)

Kk+1 = Pk+1|kH
T (HPk+1|kH

T +R)−1 (25)

xk+1 − x̂k+1|k+1 = (I −Kk+1H)(xk+1 − x̂k+1|k)−Kk+1vk+1 (26)

Pk+1 = (I −Kk+1H)Pk+1|k(I −Kk+1H)T +Kk+1RK
T
k+1 (27)

Covariance Estimator

The (F̂,H) pair stated respectively in Eq. (17) and Eq. (8) can be readily verified to be is com-
pletely observable. Following the formulation in our previous work,10 the measurements are stacked
in time to obtain the following equation.

xk = F̂xk−1 + Ĝ∆ṽk−1 − vk−1 + Λwk−1 (28)[
zk
zk−1

]
=

[
HF̂
H

]
︸ ︷︷ ︸
,Mo

xk−1 −
[
H
0

]
︸︷︷︸
,Mv

vk−1 +

[
HĜ
0

]
︸ ︷︷ ︸
,Ma

∆ṽk−1 +

[
HΛ
0

]
︸ ︷︷ ︸
,Mw

wk−1 +

[
ηk
ηk−1

]
︸ ︷︷ ︸

,Ek

(29)

[
zk
zk−1

]
−Ma∆ṽk−1︸ ︷︷ ︸
,Yk

= Moxk−1 +Mwwk−1 −Mvvk−1 + Ek (30)

Yk = Moxk−1 +Mwwk−1 −Mvvk−1 + Ek (31)

Yk−1 = Moxk−2 +Mwwk−2 −Mvvk−2 + Ek−1 (32)

The matrix Mo is full column rank as a result of observability of the system given in Eqs. (18)
and (8). Eliminating the state from Eq. (31), we get the following equation.

M †oYk − F̂M †oYk−1 − Ĝ∆ṽk−2︸ ︷︷ ︸
,Zk

= wk−2 +M †oMwwk−1 − F̂M †oMwwk−2︸ ︷︷ ︸
,Wk

+

F̂M †oMvvak−2
− vk−2 −M †oMvvk−1︸ ︷︷ ︸

,Vk

+M †oEk+1 − F̂M †oEk︸ ︷︷ ︸
,Ek

(33)
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Note thatWk, Vk, and Ek are zero mean, uncorrelated and their covariance matrices are constant in
time. Hence, the covariance of Zk is also time invariant and is given by the following.

Cov(Zk) = Cov(Wk) + Cov(Vk) + Cov(Ek) (34)

The left hand side of Eq. (35) can be calculated on-line using the measurements up to time-step k.
The right hand side is a strictly stationary time series with the process and measurement noises as
inputs. The covariance of vk can be estimated using the following equation.

Cov(Z)k − Cov(W)− Cov(E) = A1Q̂akA
T
1 +A2Q̂akA

T
2 (35)

wherein, Cov(Z)k is the sample covariance of Z , A1, A2 are the coefficients of the noise terms
wk−1,wk−2, and Q̂ak is the estimate of Qa at the kth time-step. Using our previous results,10 it
can be proved that the estimate Q̂ak converges to Qa in probability. Note that here, a check has to
be performed for the positive definiteness of Q̂ak to be used in the filter. Therefore, the most recent
positive definite value of Q̂ak is used in the filter.

SIMULATIONS

As a simulated example, consider a calibration procedure for the accelerometer placed on top of a
flat table revolving around the center of the table. The accelerometer is assumed to have no angular
velocity about the center of the table. The acceleration profile in the x and y directions is given
in Fig. (1). Eqs. (17) and (8) are used as the dynamics and the measurement model. Assume that

0 200 400 600 800 1000

-4

-2

0

2

4

Figure 1. Acceleration of the accelerometer when spinning on the table top

T = 0.1 sec, τx = 3600 sec, and τy = 3600 sec. The true noise covariance matrices mentioned
above have the following values.

Svx = 10−6 m2/s3, Svx = 10−6 m2/s3, Qbx = 5.55× 10−11 m2/s4, Qby = 5.55× 10−11 m2/s4

R =


10−8m2 0 0 0

0 10−6m2/s2 0 0

0 0 10−8m2 0

0 0 0 10−6m2/s2


Here, the initial estimate is taken to be Ŝvx0 = 2 × 10−6 m2/s3 and Ŝvy0 = 2 × 10−6 m2/s3.
The values mentioned above are for the chosen value of T and differ with varying the frequency of
observation. However, the convergence of the algorithm is guaranteed regardless of this frequency.
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Figure 2. x and y position estimation error (m) vs. time along with the 3σ bounds.

Figure 3. x and y velocity estimation error (m/s) vs. time along with the 3σ bounds.

Figure 4. x and y bias estimation error (m/s2) vs. time along with the 3σ bounds.
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Figure 5. Acceleration estimation error in the x and y directions.

0 2000 4000 6000 8000 10000

0

1

2

3

4

5

6

Figure 6. Norm of the error in the estimate Q̂ak
and Q vs. time for 20 simulations.

The constant regions of the profile are the times when the measurements resulted in
Q̂ak

that was not positive definite and hence, the most recent positive definite Q̂ak
was

used to propagate.
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Figs. (2), (3) and (4) show the state estimation error of the system stays within their respective 3σ
bounds for a single simulation. The regions where the error is outside the 3σ bound shows that the
state error covariance propagated using the estimated Q̂ak is incorrect in the transients but converges
to the true value once Q̂ak converges. Fig. (5) shows the estimation error of acceleration. Fig. (6)
shows that the error norm of the estimate Q̂ak for 20 simulations.

CONCLUSION AND FUTURE WORK

A recent Covariance Matching Kalman Filter (CMKF) is used to calibrate the accelerometer bias
using noisy accelerometer measurements while simultaneously estimating the velocity random walk
of the accelerometer. The bias is assumed to follow an exponentially correlated random process with
an zero-mean additive noise having a known time constant and steady-state variance. A numerical
simulation example demonstrates convergence of all the quantities to be estimated. Future work
includes deriving a filter for attitude dynamics using gyroscope measurements for rigid-body rota-
tional dynamics.
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