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NAVIGATION USING SERENDIPITOUS STAR-TRACKER
OBSERVATIONS AND ON-BOARD DATA PROCESSING

Rachel Mamich*, Daniel Kucharski†, Renato Zanetti‡, Moriba K. Jah§,
Elvis D. Silva¶, Jacob D. Griesbach||, and Joshua Fine**

A majority of spacecraft are equipped with star trackers to estimate their attitude.
With the ever growing number of objects orbiting the Earth, these star trackers
often serendipitously capture space objects in the images that they take to estimate
the spacecraft’s attitude. This study aims to assess the feasibility of using these
measurements in order to estimate the state of an observer spacecraft. To do so,
the visibility of these space objects is analyzed as well as the performance of a
navigation algorithm written to utilize these measurements. The study found that
using serendipitous measurements of space objects is indeed feasible when the
observer is in an orbit where there are a large number of space objects that are
visible. Observers in low Earth orbits were shown to have success with this nav-
igation algorithm. Observers in approximately geostationary orbits have a fairly
limited number of space objects that are visible.

INTRODUCTION

The Global Positioning System (GPS) revolutionized spacecraft navigation by providing accurate
and inexpensive onboard localization. GPS navigation is ubiquitous, and can result in a single source
of failure of many satellite systems. Accordingly, an area of considerable current interest is what
to do when a satellite enters a GPS-denied or degraded environment. Reliance on ground-based
navigation is certainly an attractive backup solution, but it requires availability of tracking stations
which are currently oversubscribed by the rapid increase of the number of artificial satellites (ASOs,
Anthropogenic Space Objects) in Earth orbit. Alternatively, an onboard solution that is gaining
considerable interest is the use of optical navigation.1–3 Onboard situational awareness cameras
have been proposed for this use but they are often not designed for navigation purposes and might
not provide the accuracy required. Attitude cameras, such as star trackers, are an appealing solution
as they are often accurate to a few tens of arc-seconds.

To a star camera, ASOs look like dim stars, and can therefore be used as reference targets for
angles-only navigation. The attitude of the camera can be easily derived based on the stars captured
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in images, and the position and velocity can be determined from observing known ASOs whose
ephemeris are uploaded in an onboard catalog. This paper presents a feasibility study to evaluate
the viability and accuracy of this approach.

The analysis is developed in two parts: visibility and navigation. The visibility study focuses on
the detection of artificial satellites by a star camera sensitive element.

The navigation study evaluates the performance of an Extended Kalman Filter (EKF) to estimate
the position and velocity of an observing satellite given the estimated attitude of the observer, angles
only observations of ASOs, and the ASOs respective ephemeris information. While previous work
in this area has shown promise in establishing baseline feasibility,4 this study aims to add more
realism to the analysis and expected performance. We couple the EKF design and performance
study with a visibility and accuracy analysis starting from star camera parameters. Additionally,
this study aims to bring in state of the art uncertainty estimates for the ASO catalog used in the
algorithm to allow for more realistic error estimates on the observer’s state estimates.5

ASO VISIBILITY

The optical detection of the satellites by a space-based imaging sensor can be achieved if the
distant objects within the sensor’s Field-of-View (FOV) are sunlit and bright enough to exceed the
detection threshold of the receiver. The performance analysis and probability of the space object
detection has been analyzed in the literature6, 7 and, in the case of the space-based sensing, depends
on a series of factors describing the physical and optical properties of the observed objects, speci-
fication of the receiver as well as the range to the target and the geometrical configuration between
Sun-Satellite-Receiver. The irradiance of an incoming flux collected by the space-based sensor
I
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can be predicted by:

I = I0
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where I0 is the calibrated flux constant (Figure 1) calculated as an integral of the solar spectral
irradiance ESun (λ) over the detector’s spectral bandwidth from λ0 to λ1 at ∆λ = 1nm steps with
the wavelength dependent quantum efficiency ηq (λ) and the receiver optics efficiency ηD(λ):

I0 =

λ1∑
λ=λ0

ESun (λ) ηq (λ) ηD (λ)

ESun(λ) is defined by the reference profile ASTM G173-03 and represents intensity of the solar
flux arriving at the satellite (before reflection) at the distance of R0 = 1AU and has to be scaled to
the actual Sun - satellite distance R1 according to the inverse-square law.
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Figure 1: Spectral characteristics of the solar flux and the sensor. Solar Spectral Irradiance model
is given by ASTM G173-03 Reference Spectra.

The calibrated flux constant for the given characteristics of the optical sensor over the spectral
response range 300-1100 nm equals to I0 = 1001.698 W

m2 at 1AU at the Beginning-of-Life (BOL).
When solar irradiation impacts a satellite surface, a fraction of the incident flux can be reflected to-
wards the receiver located at the distance R from the sunlit object. In this work the satellite is mod-
elled as a Lambertian sphere of a diffuse reflection coefficient Cd and a cross-sectional area A. The
historical radar cross-section (RCS) records of 32081 satellites (http://www.celestrak.com/satcat)
allow constructing a statistical representation of RCS with respect to the orbital apogee (Figure 2);
assuming a cannonball model, the RCS curve can represent a physical cross-section A.

Figure 2: Mean radar cross-section of 32081 satellites at the apogee altitudes up to 40,000 km above
Earth surface.

The intensity of a Lambertian reflection depends on the phase reflection function6 :

Ψ =
Cd
π

(sin (α) + (π − α) cos(α))
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where α is the phase angle between the satellite centered direction vectors towards the Sun and the
imaging sensor. The visual magnitude of a satellite within the receiver’s FOV can be predicted by:

magsat = magSun − 2.5log

(
I

ISun

)
where the Sun apparent magnitude is magSun = −26.74, and the solar constant ISun = 1362 W

m2 .
In the simulations the reflection coefficient Cd is set constant at 0.2.

The detection thresholds used in this work are those of real sensor hardware. Specifically, the
investigated space sensor can detect magsat = 8.7 at 98 ms exposure time and magsat = 12.7 at
the long exposure of 5 s.

For long exposure times, as LOS pointing during sensor integration periods misalign with targets
and background stars, their respective signatures will “streak” across the focal plane and hence,
the resulting image. Since streaking results in signal energy residing across multiple pixels, the
overall per pixel energy signal-to-noise-ratio (SNR) is reduced as it divides (roughly evenly). For
single (best) pixel detection algorithms, streaking can produce a significant degradation to tracking
low-SNR targets (and stars).

To counter the degraded SNR effects associated with signal streaking, velocity matched filtering
(VMF),8, 9 can be employed to effectively compensate for signal motion within a frame (intra-frame
motion) and/or across multiple frames (inter-frame motion). VMF works by postulating a family
of motion hypotheses for potential targets located/centered at any given image pixel. Each motion
hypothesis translates to a specific streak direction and rate that, if a target were present with such
motion, would define how that target energy would manifest across pixels and frames. With this, the
motion hypothesis is convolved with the sensor’s point spread function (PSF) to produce a replica of
the expected target energy as it would be expected. This replica response is equivalent to a matched
filter that is then convolved across the image/frame data (after background noise normalization is
performed). The results of this convolution can be simply per pixel thresholded for detection, where
the detection with maximum SNR is chosen over all the motion hypotheses.

VMF can produce detections that would normally not be visible for target streaks that have SNR
beneath the image noise floor. By integration SNR accumulated over multiple pixels and frames,
VMF can pull signal energy above detection thresholds.

Because many motion hypotheses are usually necessary, VMF can be very computationally com-
plex to implement. However, dedicated onboard FPGAs can be implemented to host the necessary
replica generation and convolutions.

While VMF can be used for star detection as well as ASO detection, VMF is generally not needed
for stars, as typically SDA sensor FOVs are wide enough to detect a sufficient number of stars for
frame registration without VMF. If VMF is to be used for star detection, typically the LOS motion
relative to sidereal motion is known, and can then be implemented with far fewer, perhaps even a
single, motion hypothesis.

NAVIGATION DESIGN

The algorithm employed for this feasibility study is an Extended Kalman Filter (EKF).10 EKFs
are widely accepted as an industry standard as a great compromise between computational sim-
plicity and performance in the presence of mild nonlinearities. The full state vector x includes the
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observer’s position r and velocity v, the rotation vector parameterization of the attitude error about
the camera head units (CHU) of the two star trackers θ1 and θ2, and the estimated error of the
observed ASOs’ positions εi, i = 1...8. The observer spacecraft is assumed to have two separate
CHUs with a 90◦ separation as this is a common industry practice. The number of ASO processed
at any one time is limited to no more than eight. The position and velocity of the observer spacecraft
and the estimated error about the observed ASOs’ positions are expressed in the inertial frame. The
parameterization of the attitude error about the camera head units (CHU) of the star trackers are
expressed in the CHU1 and CHU2 frames respectively.

The position and velocity of the observer are initialized based on the last known position and
velocity of the spacecraft, for example from a ground update or prior to loss of GPS, their initial 1σ
uncertainties are set to 100 m and 0.1 m

s , respectively. The inertial attitude of each star camera is
assumed to be determined from the stars in its field of view and used as is from the EKF. To account
for the star camera attitude errors the EKF design includes the effects of attitude errors by including
them as “consider” state.11 The filter’s attitude error state is initialized to be zero at the beginning
of each run and its associated 1σ uncertainty 50 arc-seconds along bore-sight and 17 arc-seconds
cross-bore-sight. The “true” error of each star camera measurement is simulated as a first order
Gauss-Markov process with a time constant of 60 s.

The catalogue from ASTRIAGraph5 with its associated uncertainties is used by the EKF. The
“true” catalogue error is drawn once per ASO.

The EKF algorithm is composed of two different phases, the time propagation and the measure-
ment update. Measurements are assumed to be available once per second, the propagation section
carries the estimated of state and covariance matrix forward in time by one second using a fourth
order Runge-Kutta (RK) algorithm. The dynamics model employed by the filter to propagate the po-
sition and velocity includes central gravity as well as J2, J3, and J4 zonal harmonics. The equations
that govern this motion can be found below.
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Additionally, the estimated error about the observed ASOs’ positions is held constant at zero in

the propagation step.
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The covariance matrix is propagated using the state transition matrix. In this study, the prop-
agation time is small enough that the state transition matrix can be approximated by the matrix
exponential Φ = e−A∆t. Where A is the Jacobian of the state propagation function with respect to
the state space. Then the covariance is propagated using the equation below.

P−(k + 1) = ΦP+(k)ΦT +Q

A higher fidelity dynamics is used to simulate the “true” orbit and the difference between the two
is accounted for by including into the filter process noise with power spectral density of 1e-6m2/s3

for low Earth orbit cases and 1e-7m2/s3 in the radial and transverse directions and 1e-12 m2/s3 in
the normal direction for the near geostationary case discussed further in the numeric results section.

The measurement update function is called only if at least one ASO is visible for at least one
CHU. The measurements used in the filter are the angles describing the ASO’s location in the field
of view with respect to the bore-sight center. The equations for the measurements can be found
below in Equation .

A = arctan

(
ρ̂x
ρ̂z

)
B = arctan

(
ρ̂y
ρ̂z

)
Where ρ̂ is the unit vector defined in the star tracker frame that defines the relative position vector

of the ASO with respect to the observer. ρ can be found using the equation below.

ρ = Cci (rASO − r)

Where Cci is the direction cosine matrix that defines the change of coordinates from the inertial
frame to the camera frame of the star tracker, rASO is the inertial position vector of the observed
ASO propagated to the time of measurement using the latest information in the catalog, and r is
the inertial position vector of the observer spacecraft. Cci is calculated by taking the inertial attitude
estimate with respect to the body frame and rotating it to the known offset of the CHU camera frame
for the CHU that took the observation.

In the measurement update it is assumed that the measurements have already been associated
with a cataloged ASO object. The data association algorithm is left as future work. When a new
ASO object enters the field of view, the algorithm retrieves an estimate of the covariance of the
uncertainty associated with the ASO’s ephemeris. When applying the measurement update to the
system it should be noted that many of the state elements are treated as consider parameters and
thus were not updated with the measurement. The only states that are indeed updated during the
measurement update step are the position and velocity of the observer spacecraft. This was achieved
by zeroing the rows of the Kalman gain matrix that corresponded to the consider parameters. The
calculation of the Kalman gain matrix can be seen below.

K = P−(k + 1)HT (k + 1)Pyy(k + 1)−1

K[7 :, :] = 0
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Where Pyy(k+1) is the residual covariance and K[7:, :] corresponds to rows 7-36 of the Kalman
gain matrix. In summary, only position and velocity are estimated, all other states are considered.12

It should be noted that underweighting was utilized in order to reduce the update of the covariance
bounds to compensate for nonlinear effects.13 While there are more refined methods of applying
underwriting, a common ad hoc method implementation is to add 0.2HPHT to the residual covari-
ance. This can be seen below.

Pyy(k + 1) = (1 + 0.2) H(k + 1)P−(k + 1)HT (k + 1) +R(k + 1)

This increases the residual covariance and thus causes a smaller change to be affected into the
state update, underweighting the measurement. The measurements themselves are corrupted by
zero-mean, additive Gaussian white noise with standard deviation 1/3 pixels. This is a conservative
value chosen for simplicity. In reality the measurement noise will between 1/3 and 1/10 of a pixel
depending on the SNR of the received target detection; i.e., brighter ASOs will have smaller error
than dim ones. After the underweighting and consider parameter adjustments are made, the state
update is carried out as it is done in a traditional EKF. This can be seen below.

x+(k + 1) = x−(k + 1) +Ky

Where y is the measurement residual and x−(k+ 1) is the propagated state prior to the measure-
ment update. The covariance update is carried out using the Joseph form to avoid numeric precision
issues. This can be seen below.

P+(k + 1) = (1−KH(k + 1))P−(k + 1)(1−KH(k + 1))T +KR(k + 1)KT

NUMERICAL RESULTS

In order to assess the validity of using serendipitous observations of cataloged ASOs for navi-
gational purposes, a truth model is required. In the truth model the observer spacecraft is assigned
initial orbital elements and propagated using a variable time step RK45 propagator. The dynamics
equations passed to the RK45 include a full 8x8 gravitational model for the Earth, drag effects, solar
radiation pressure, and third body effects from the sun and moon. These are some of the most dom-
inant perturbing forces acting on spacecraft in orbit around the Earth. This dynamics propagation is
used to generate “truth” trajectories. The maximum number of measurements for a single time step
allowed is 8, this is done to keep the size of the state vector manageable.

In order to develop a baseline to compare against, a nominal trajectory is selected. The nominal
trajectory for this study is a nearly circular, low Earth orbit (LEO) with an inclination of 45◦, right
ascension of the ascending node of 0◦, and argument of perigee of 0◦. This orbit is at a common
altitude ( 1000km) and eccentricity (1e-6) as satellites in LEO orbits typically have nearly circular
orbits due to drag effects. This nominal orbit is first used to establish what the ideal placement of the
star cameras relative to the orbit frame and by extension the body frame (assuming the spacecraft
keeps a constant attitude with respect to the orbit frame). The results of this test can be seen in
Figure 3.
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Figure 3: Total position errors over time for varying star tracker orientations with the observer in
its nominal orbit.

The different total position errors in Figure 3 are as follows:

• One CHU: 8sat, one star tracker with its bore-sight pointed in the radial direction. A maxi-
mum of 8 ASOs measurements are processed at any time.

• pm45, one star tracker with its bore-sight pointed 45◦ forward with respect to the radial di-
rection, in the orbital plane and the other pointed -45◦ with respect to the radial direction. A
maximum of 4 ASOs measurements per star camera are processed at any time.

• rn, one star tracker with its bore-sight pointed in the radial direction and the other pointed
in the orbit normal direction. A maximum of 4 ASOs measurements per star camera are
processed at any time.

• rt, one star tracker with its bore-sight pointed in the radial direction and the other pointed in
the transverse direction. A maximum of 4 ASOs measurements per star camera are processed
at any time.

It can clearly be seen that the configurations where the star trackers are placed in the radial and
orbit normal directions have the smallest total error on average. This makes sense as the transverse
direction is approximately in the velocity direction of the observer and thus tends to be the largest
contributor to the total position uncertainty. With the optical measurements used here, there is no
observability in the direction of the bore-sight. This means placing the star trackers in the radial and
orbit normal directions allows the observers’ transverse direction to be observable with measure-
ments from both star trackers. Thus the RN configuration is the most desirable configuration and is
set to be the nominal star tracker configuration.

After the nominal configuration is established, three separate tests are conducted. The first is
a Monte Carlo test that varied the initial state estimate of the system, the noise applied to each
measurement, and the noise about the attitude estimate of the star trackers. The next test is an error
budget analysis to gain a better understanding of the sources of error included in the covariance
values around the observers’ state. The last The last test is to analyze the number of objects in the
field of view when the visual magnitude is limited to a certain thresholds. To gain an understanding
of how useful this algorithm will be for varying capabilities of different star trackers.
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Nominal Trajectory Results

Figure 4: Position component errors and filter’s
predicted 3σ uncertainty from a 100 run Monte
Carlo.

Figure 5: Velocity component errors and filter’s
predicted 3σ uncertainty from a 100 run Monte
Carlo.

In Figures 4 and 5 it can be seen that the 3σ uncertainty about the position and velocity of the
observer can be estimated down to about 50 m and 0.1 m/s in each direction during most of the
orbit, but an occasional drop in visible ASOs at around 6000 seconds of simulation time causes the
uncertainty to grow.

In Figure 6 it can be seen that during times where measurements are plentiful, the sources of error
for the position are fairly evenly matched, and during times of measurement sparseness the process
noise is the dominant term. This is a good indication that the filter is tuned properly.

An important design decision is the aperture time used in the camera image. While a longer time
allows for detecting dimmer objects up to magnitude 12.7 with a few seconds of aperture, it also
creates streaking and hence reduces measurement accuracy.

Figure 7 shows the EKF’s accuracy when restricting the magnitude of the visible ASOs from 8.7
to 12.7. It can be seen that there is not a large difference in the total position error when restricting
the visual magnitude to be brighter than 12.7 compared with restricting the visual magnitude to be
brighter than 11.7. Additionally, there is not a huge jump once the brightness is restricted to be
brighter than 10.7 or below. Figure 8 depicts the magnitude of the ASOs as seen by the star camera
and processed by the EKF as measurements. It should be noted that the measurement noise is kept
at 1/3 pixel (1σ) for all cases, which is pessimistic for brighter objects as they can be seen with
shorter exposure times and hence less streaking and more accuracy.
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Figure 6: Total position error over time for the
nominal orbit.

Figure 7: Error budget plot for various thresh-
olds of visibility for measurements.

Figure 8: Plots of the number of objects in view over the test as well as the corresponding visual
magnitude’s of each observation.

Rotated Nominal Trajectory

To be sure that the nominal trajectory is not a unique edge case, the nominal trajectory is taken
and effectively rotated about the Earth by changing the initial right ascension of the ascending node
of the observer.
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Figure 9: RMS position error over time for the rotated nominal orbits.

The legend in Figure 9 indicates the initial right ascension of the ascending node in degrees. It
can be seen that the nominal trajectory has very similar behavior to the other similar orbits tested.
All of the peaks in the various total position errors correspond to gaps in the measurement set and/or
the dynamics causing the uncertainty to grow. This amount of variation is to be expected and the
overall trend is fairly consistent.

Sun Synchronous Trajectory Results

The sun synchronous orbit is placed in a similar altitude to the nominal orbit, but to be a sun
synchronous orbit, the inclination is adjusted according to the equation below.

i = arccos

(
−2a

7
2 Ω̇(1− e2)2

3R2
EarthJ2

√
µ

)
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Figure 10: Position component errors and error
bounds from a 100 run Monte Carlo.

Figure 11: Velocity component errors and error
bounds from a 100 run Monte Carlo.

Figure 12: Total position error over time for the
sun synchronous orbit.

Figure 13: Error budget plot for various thresh-
olds of visibility for measurements.

In Figures 10 and 11 it can be seen that, similar to the nominal case, the uncertainty about the
position and velocity of the observer can be estimated down to about 50 m and 0.1 m

s in each
direction.

In Figure 12 similar behavior to to the nominal case can be seen. During times where measure-
ments are plentiful, the sources of error for the position are fairly evenly matched, and during times
of measurement sparseness the process noise is the dominant term. This is a good indication that
the filter is tuned properly.

In Figure 13, it can be seen that there is not a large difference in the total position error when
restricting the visual magnitude to be brighter than 12.7 compared with restricting the visual mag-
nitude to be brighter than 9.7. This behavior is slightly different than the behavior seen in 7. This
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is likely due to a higher density of measurements available in the sun synchronous orbit. In Figure
14 it can be seen that while being able to detect ASOs with low visibility (a high visual magnitude)
is advantageous in that it allows for a greater number of ASOs to be utilized, there are still a large
number of ASOs that are fairly bright with a visual magnitude of 8.7 or below.

Figure 14: Plots of the number of objects in view over the test as well as the corresponding visual
magnitude’s of each observation.

Near-Geosynchronous Trajectory Results

The near-geosynchronous orbit tested is an orbit just below geosynchronous. The drift rate per
day was set to be approximately 1.5◦/day. From this orbit geosynchronous ASOs can be seen in
the field of view of the radial star tracker.

Figure 15: Position component errors and error
bounds from a 100 run Monte Carlo.

Figure 16: Velocity component errors and error
bounds from a 100 run Monte Carlo.

13



Figure 17: Total position error over time for the
near geosynchronous orbit.

Figure 18: Error budget plot for various thresh-
olds of visibility for measurements.

Figure 19: Plots of the number of objects in view over the test as well as the corresponding visual
magnitude’s of each observation.

In Figures 15 and 16 it can be seen that, the observer’s state error is not reduced over the test
period. This is likely due to the fact that there are not very many measurements taken over the test
interval. Especially when comparing to the number of observations that are available in the LEO
scenarios. This can clearly be seen comparing Figures 8 and 14 with Figure 19.

In Figure 17 is can be seen that the position errors primarily grow over time with an exception
of a drop around 6000s where there are a larger number of ASO observations captured. The initial
covariance of the system is one of the most dominant factors in the total error over time leading one
to believe that this navigation technique may not be applicable to near geosynchronous orbits.
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In Figure 19 it can be seen that the total number of satellites in the field of view never gets above
4. Additionally, there are a number of ASOs that are very dim, a visual magnitude over 14. When
these are thrown out, the number of satellites in the field of view drops to only one satellite on
average. In Figure 18, it can be seen that the position errors tend to increase over the testing period.
That being said, this navigation algorithm may not be well suited for GEO or near GEO spacecraft
due to limited numbers of ASOs in the field of view.

CONCLUSIONS

This study shows that when there are sufficient serendipitous observations available, they can
indeed be used to estimate the state of the observer spacecraft. Spacecraft in LEO regimes are more
likely to be able to utilize this approach due to there being a larger number of spacecraft in the field
of view of the star trackers while keeping their boresights pointed away from the Earth to avoid
dazzling the star trackers. Additionally, it was shown that this methodology will not provide useful
results for observers in orbits with few visible spacecraft, as in the near geosynchronous orbit. That
being said, this was a preliminary feasibility study. In future work, there are a variety of different
avenues for improvement. First, and most obviously, the data association filter should be written to
give the algorithm a more realistic view on which ASOs it can accurately matched to those in the
catalog. Next, the algorithm should be tested over various altitudes in order to see when the number
of objects in the field of view ceases to be useful. Finally, improvements to make the algorithm more
realistic in weighting brighter measurements (and thus easier to find the centroid of for streaking
purposes) should be made to see how trusting brighter observations would alter the outcome.
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