
Bayesian Estimation with Artificial Neural Network
Sehyun Yun and Renato Zanetti

The University of Texas at Austin, Austin, Texas
Email: shyun@utexas.edu, renato@utexas.edu

Abstract—A nonlinear filter based on an artificial neural
network (ANN) is proposed to accurately estimate the state of
a nonlinear dynamic system. The ANN is trained to learn the
nonlinear mapping between the inputs and outputs of training
data. The proposed filter is computationally efficient for online
applications because estimation error can be directly estimated
once the ANN is trained offline. The unscented transformation
(UT) is employed in this filter to approximate the first two
moments of the estimate. Under the scenarios considered in this
paper, it is shown through numerical simulation that the proposed
filter leads to better performance than the extended Kalman filter
(EKF), unscented Kalman filter (UKF), and a state-of-the-art
nonlinear filter.

I. INTRODUCTION

State estimation refers to the process to estimate and predict
the state of a dynamic system from noisy sensor data. Tra-
ditionally, model-based estimation techniques are employed
which require a mathematical model of the dynamics and
measurements. The objective of optimal state estimation is to
minimize the error between the true and estimated state of a
system. One of the most used criteria for optimal estimation
is based on a minimum mean squared error (MMSE) perfor-
mance index and the optimal solution of the MMSE estimator
is the conditional mean [1]. For linear systems with additive
Gaussian noise, the Kalman filter is the optimal MMSE
estimator [2]. However, it is not typically possible to obtain
the closed-form solution of the MMSE estimator for practical
nonlinear estimation problems. Often, linear estimators for
nonlinear systems such as extended Kalman filter (EKF) [3]
and unscented Kalman filter (UKF) [4] are used for many
practical applications due to their simplicity and efficiency.

Linear estimators for nonlinear systems are based on the
linear MMSE (LMMSE) framework and can generally be
grouped into two types according to the approximations used
to estimate the first two moments (i.e., mean and covariance
matrix) required for the LMMSE estimate. As extensions of
the Kalman filter for nonlinear systems, the EKF and the
Gaussian second-order filter (GSOF) [5] are defined with a
local approximation (Taylor series) of the nonlinear dynamic
and measurement functions. Another class of linear estimators
for nonlinear systems rely on a set of deterministic regression
points for statistical linearization of the nonlinear functions
to obtain the first two moments. These estimators include
the UKF, the quadrature Kalman filter (QKF) [6], and the
cubature Kalman filter (CKF) [7]. These linear estimators
for nonlinear systems are easy by the assumed form of the
estimator function, i.e., the LMMSE estimator is an affine
function of the observation.

Several methods have been developed to account for the
nonlinearity of a system within the LMMSE framework [8]–
[10]. Lan and Li. [8] demonstrated that the nonlinear conver-
sion function of the measurement in a system can be included
in an estimator to improve its estimation performance. The
nonlinear conversion function in the estimator is designed to
augment the linear measurement space of the system. Servadio
and Zanetti. [9] proposed the Gaussian high-order polynomial
update filter (HOPUFG) which approximates the non-Gaussian
probability density function (PDF) using polynomial functions
of Gaussian random vectors. Morimoto and Doya. [10] applied
a machine learning (ML) algorithm to a nonlinear state esti-
mation problem. The so-called reinforcement learning state
estimator (RLSE) uses reinforcement learning (RL) to find an
appropriate gain of the LMMSE estimator.

Besides, data-driven state estimation techniques based on
variations of recurrent neural networks (RNNs) have recently
been developed [11]–[13]. Krishnan et al. [11] proposed the
deep Kalman filter (DKF) which replaces linear transforma-
tions on dynamic and measurement models into nonlinear ones
parameterized by a stochastic RNN. Karl et al. [12] focused
on improving the performance of the DKF by modeling state
transitions with parametric models, yielding deep variational
Bayes filters (DVBFs). Rangapuram et al. [13] presented a
prediction model by parametrizing a linear state space model
with a jointly-learned RNN. This study, however, focuses on a
hybrid model-/data-driven estimation method to estimate state
uncertainty.

Unlike LMMSE estimators that only require the mean and
covariance matrix of the distribution (typically assuming it
to be Gaussian), MMSE estimators typically approximate the
complete distributions functions. These algorithms include the
Gaussian sum filter (GSF) [14] and particle filter (PF) [15].
At the cost of more computations, these nonlinear estimators
provide high accuracy for highly nonlinear systems. LMMSE
algorithms only use mean and covariance matrix and assume
a linear measurement update while MMSE algorithms approx-
imate the entire distribution and do not make any specific
assumption regarding the form of the estimator, they calculate
the mean of the approximated posterior distribution.

Approximating distributions as Gaussian provides a con-
servative approximation since the Gaussian distribution has
the maximum entropy (i.e. most uncertainty) out of any
distribution with a given covariance matrix. Hence if the mean
and the covariance matrix can be accurately approximated,
using a Gaussian distribution with those characteristics pro-
vides a conservative approximation of the actual distribution.

The Gaussian particle filter [16] leverages this property to
propose a nonlinear filter (a PF) that after the measurement
incorporation resamples the particles by making the Gaussian
approximation, hence loosing the knowledge of the actual
shape of the distribution but gaining in particle diversity.

In this study, we propose a novel nonlinear estimator that
approximates the posterior distribution as Gaussian. But rather
than calculating the nonlinear estimator function directly from
models via some approximation, e.g. sequential importance
sampling like the PF, we use supervised learning to learn
this nonlinear estimation function. An artificial neural network
(ANN) is used to capture the nonlinear relationship between
the inputs (i.e., prior state, covariance, and measurement in-
novation) and the corresponding outputs (i.e., posterior state).
The ANN is trained offline and when deployed it provides
an estimate efficiently calculated without having to carry
the mathematical models and without extensive computations.
We propose to use the unscented transformation (UT) to
approximate the first two moments (i.e., mean and covariance
matrix) of the estimate [4].

The remainder of the paper is organized as follows. Sections
II and III describe the LMMSE and the ANN algorithm,
respectively. Then, a new nonlinear algorithm with ANN is
proposed in Section IV. Section V presents simulation results
of the proposed algorithm, followed by some concluding
remarks on the new methodology and the results.

II. LINEAR MINIMUM MEAN SQUARED ERROR
ESTIMATION

The LMMSE estimator minimizes the mean squared error
(MSE) among all linear estimators [17], that is, its estimate x̂
is a simple linear function of the measurement y.

x̂ = a+Ky (1)

where a and K are a vector and matrix, respectively. The the-
oretically optimal value of the LMMSE estimator is expressed
as follow [17]:

x̂ = x̄+ PxyP
−1
yy (y − ȳ) (2)

Pee = Pxx − PxyP−1yy P
T
xy (3)

where Pee is the estimate error covariance matrix, and x̄, ȳ,
Pxy , Pyy, and Pxx are the first two moments of the state
and measurement: E [x] = x̄, E [y] = ȳ, Cov(x, y) = Pxy ,
Cov(y) = Pyy, and Cov(x) = Pxx. For linear measurements
yk = Ckxk + ηk where the measurement noise ηk is a zero
mean white sequence with covariance matrix Rk, the update of
the sequential LMMSE estimator is the Kalman filter, which
is given by:

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1) (4)

P xxk|k = P xxk|k−1 −Kk

(
CkP

xx
k|k−1C

T
k +Rk

)
KT
k (5)

Kk = P xxk|k−1C
T
k

(
CkP

xx
k|k−1C

T
k +Rk

)−1
(6)

where P xxk|k is the posterior state estimation error covariance
and Kk is the Kalman gain at time step k. Generally the values

of ȳ, Pxy , Pyy cannot be calculated exactly in the presence
of nonlinear measurements, and various approximations of
the optimal LMMSE estimator for nonlinear systems can be
obtained by approximating these quantities in different ways.
The UKF makes one such approximation and it is briefly
reviewed in this section.

A. The Unscented Kalman Filter

Consider a general discrete-time nonlinear system given by

xk+1 = fk(xk) + νk (7)
yk = hk(xk) + ηk (8)

where k is the time step, xk is an nx × 1 vector, yk is an
ny × 1 vector, fk and hk are some nonlinear functions, and
the process noise νk and measurement noise ηk are zero
mean white sequence with covariance matrix Qk and Rk,
respectively, independent from all other random variables.

The UKF using UT approximates nonlinear functions with
statistical linearization using a set of deterministic sigma
points [18]. The most common schemes to effectively calculate
sigma points are to assume that all distributions are Gaussian
[19]. Suppose we have an augmented state and covariance
matrix as follows:

x̂ak|k =

x̂k|k0
0

 (9)

P ak|k =

P xxk|k 0 0

0 Qk 0
0 0 Rk+1

 (10)

Given an (2nx + ny) × (2nx + ny) augmented covariance
matrix P ak|k, we generate 2nx+ny+1 sigma points as follows:

X ak|k =
[
x̂ak|k, x̂

a
k|k ±

√
(L+ λ)P ak|k

]
(11)

where L is the dimension of the augmented state, 2nx + ny ,

X ak|k =

X
x
k|k
X νk|k
X ηk|k

 (12)

and λ = α2(L + κ) − L is a scaling parameter [20]. The
parameter α tunes the spread of the sigma points around x̂k|k
and it is usually set to a small positive number (10−4 ≤ α ≤
1). κ is a secondary scaling parameter which is usually set to
3 − nx. Based on the above sigma points, the corresponding
weights are calculated as follows:

Wm
0 =

λ

L+ λ
, W c

0 =
λ

L+ λ
+ (1− α2 + β) (13)

Wm
j = W c

j =
0.5

L+ λ
, for j = 1, · · · , 2L (14)

where the parameter β is used to include prior knowledge of
the distribution of x. With the above sigma points and weights,
the time update equations are expressed as follows:

X xj,k+1|k = fk(X xj,k|k) + X νj,k|k, j = 0, · · · , 2L (15)

x̂k+1|k =

2L∑
j=0

Wm
j X xj,k+1|k (16)

P xxk+1|k =

2L∑
j=0

W c
j

[
X xj,k+1|k − x̂k+1|k

] [
X xj,k+1|k − x̂k+1|k

]T
(17)

The measurement update equations are then expressed as
follows:

Yj,k+1|k = hk+1(X xj,k+1|k) + X ηj,k|k, j = 0, · · · , 2L

(18)

ŷk+1 =
2L∑
j=0

Wm
j Yj,k+1|k (19)

P yyk+1|k =

2L∑
j=0

W c
j

[
Yj,k+1|k − ŷk+1

] [
Yj,k+1|k − ŷk+1

]T
(20)

P xyk+1|k =

2L∑
j=0

W c
j

[
Xj,k+1|k − x̂k+1|k

] [
Yj,k+1|k − ŷk+1

]T
(21)

x̂k+1|k+1 = x̂k+1|k + P xyk+1|k

(
P yyk+1|k

)−1 (
yk+1 − ŷk+1

)
(22)

P xxk+1|k+1 = P xxk+1|k − P
xy
k+1|k

(
P yyk+1|k

)−1 (
P xyk+1|k

)T
(23)

where P yyk+1|k is the measurement innovation covariance,
P xyk+1|k is the cross covariance.

III. ARTIFICIAL NEURAL NETWORK

The ANN employed (also known as feedforward network
and sometimes as back-propagation neural network) is a
function approximation algorithm that aims to replicate the
systematic relationship between the model input and the
corresponding output by training the network based on a
great number of data [21]. It is consisted of the information-
processing units called artificial neurons and the neuron model
is shown in Figure 1. The artificial neuron in the figure
has N inputs, x1, x2, · · · , xN , and these inputs are fully
connected to the neurons with different weights representing
the strength of the connection between input and output data.
The activation function f is a function that helps the network
learn complex patterns in the data; it can add nonlinearity
into a neuron. Popular types of activation functions include
sigmoid, hyperbolic tangent, and rectified linear unit (ReLU).
The bias b is used to adjust the output along with the weighted
sum of the inputs to the artificial neuron.

 f

b

N

i i

i

f x b

1

2

N

Output

Bias

Weight

1x

2x

Nx

Input

Activation
function f

Fig. 1. Artificial neuron

Input 1

Input 2

Input 3

Output 1

Output 2

Input
layer

2 Hidden
layers

Output
layer

Fig. 2. Architecture of ANN

ANN is made up of neurons and layers by connecting
the outputs of some neurons as input to the others and
the architecture of ANN is shown in Figure 2. This figure
describes a feedforward network with one input/output layer
and two hidden layers. To find the optimal weights and biases
in the ANN model, we need to first define a loss function
that measures how well the network predicts outputs. The loss
function is typically defined as MSE.

L =
1

NT

NT∑
i=1

(τi − oi)2 (24)

where NT is the number of training data, τ is the vector
of true labels and o is a vector of network predictions. To
minimize the loss, the gradient descent algorithm is often used;
it calculates the gradient of the loss function, then shifts the
weights and biases in the opposite direction of the gradient to
reduce the value of the performance index.

IV. ARTIFICIAL NEURAL NETWORK BASED FILTER

We propose an ANN-based filter (ANNF) to learn the
functional relationship between estimator input (notably the
measurement) and the estimator output (the estimated state).
This function is not known and hence we cannot generate
training data from it. However, we know the opposite rela-
tionship going from state to measurement, and we can use
that known mathematical model to generate training data.

The MMSE estimate x̂ = E {x|y} is a function of the
measurement outcome y as well as the conditional distribution
of the state given the measurement. We let the ANN learn this
function, specifically:

• The distribution of x is approximated by a Gaussian with
mean x̄ and covariance Pxx. The non-redundant elements
of the square root of the covariance are provided as inputs
to the ANN.

• The deviation between the measurement and its predicted
value rather than the measurement alone are provided as
inputs to the ANN.

• The output of the AANF is trained to predict the a priori
error, xTrue − x̄ rather than the true state itself.

The ANNF estimate is given by:

x̂ = x̄+OANN (25)

where OANN is the ANN output generated from the entered
input.

A. Offline Learning

1) Static System: In the offline learning phase, given a large
number of input/output training data, the ANN is trained to
imitate the nonlinear relationship between the input (learning)
and output (target) variables. In Eq. (25), the true a priori error,
xTrue − x̄, is expected to be reduced to improve the accuracy
of the estimator and hence chosen as the output variable.
The state covariance Pxx, and the measurement innovation
are chosen as the input variables in a static system. The
larger the input covariance the more the filter will rely on
the measurement innovation.

2) Dynamic System: The input variables of a static system
cannot represent the characteristics of a dynamic system.
Therefore, to include the state dynamics, the estimated states
at the previous and current time are added as input variables.
Figure 3 shows the concept of how to generate the input and
output training data in a dynamic system. In the figure, red
triangles represent the true states, green circles represent the
state estimates, each big ellipse/circle (dashed-line) is the 3
sigma bound (i.e., 99.7% confidence interval) at each time
step, t0 is the initial time, and tf is the final time of a simula-
tion. First, at the time step t0, each possible true state can be
sampled from the given initial mean x̄0 and covariance matrix
P0. Two possible true states (xTrue

0,0 and xTrue
0,1), for instance,

are sampled as shown in Figure 3. These two true states then
propagate according to Eq. (7), and each state estimate (x̄1,0

or x̄1,1) is sampled using the corresponding propagated true
state (xTrue

1,0 or xTrue
1,1) and possible covariance matrix (P1,0 or

P1,1). Various values are used for the covariance matrices to
create a variety of data and the range of the covariance values
for a dynamic system can be selected through try and error
method. Lastly, the above process is repeated up to the final
simulation time tf .

We can now generate training input and output data using
the above samples. The input variables at the time step
tk+1 are the state x̄tk,iN , the propagated state fk(x̄tk,iN),
the covariance matrix Ptk,iN , and the innovation yk+1,iN −
hk+1 (fk(x̄tk,iN)) where iN = 1, · · · , NT and NT is the
number of training dataset at each time step. The output vari-
able at the time step tk+1 is the estimation error, xTrue

tk+1,iN
−

fk(x̄tk,iN). For example, Figure 4 shows the input and output

t0

0x

0,0
Truex

0,1
Truex

,03 fP

03 P

1,03 P

t1 tf

,13 fP1,13 P

1,1x
,1fx

1,1
Truex

,1
True
fx

1,0
Truex ,0

True
fx

,0fx
1,0x

Fig. 3. The concept of generating training data in a dynamic system

ANN
kP

 1 1 1k k k k ky y h f x

 1 1
True

k k k kx x f x

 k kf x

kx

Fig. 4. Input and output variables in a dynamic system

variables for a dynamic system at the time step tk+1. Finally,
the total training data set for a dynamic system consists of the
generated data at the time series t1, t2, · · · , tf .

In this study, two hidden layers with hyperbolic tangent
activation function is used and Xavier initialization [22] is
applied for the weights and biases initialization in the ANN
model. Xavier initialization is designed to initialize the biases
to zero, and the weights such that the variance of the inputs and
outputs of the neurons stay the same across every layer, which
mitigates the vanishing and exploding gradients problems [22].
Moreover, the Cholesky factor of the covariance matrix is used
as an input variable instead of the covariance matrix itself.

B. Online State Estimation

The UT is used to calculate the first two moments of the
estimate undergoing the nonlinear ANN transformation. A
recursive algorithm is used and the distribution p(xk−1|yk−1)
at the prior time is assumed a Gaussian distribution. Given
the estimate and covariance matrix, the sigma points and
weights are calculated by Eq. (11) – Eq. (14). The sigma
points are then propagated through Eq. (15). We now have
input data for the trained ANN algorithm: X xk|k, X xk+1|k, P xxk|k,
and Yk+1|k−ŷk+111×(2L+1), where 11×(2L+1) is an indicator
function. In the same way as in the offline learning phase, the
Cholesky factor of the covariance matrix is used instead of
the covariance matrix itself. Using the input data, the ANN
provides 2L + 1 outputs, OANN

k+1 , and the sigma points are
updated with the outputs as follows:

X̂ xj,k+1 = X xj,k+1|k +OANN
j,k+1, j = 0, · · · , 2L (26)

Finally, the estimate and covariance matrix are calculated as
follow:

x̂k+1|k+1 =

2L∑
j=0

Wm
j X̂ xj,k+1 (27)

P xxk+1|k+1 =

2L∑
j=0

W c
j

[
X̂ xj,k+1 − x̂k+1|k

] [
X̂ xj,k+1 − x̂k+1|k

]T
(28)

They are then used as a starting point for the next iteration.

V. NUMERICAL RESULTS

To evaluate the proposed algorithm in this paper, two
different examples are considered: a simple scalar problem
(used in Ref. [9]) and a Lorenz96 system (used in Refs. [9],
[23], [24].

A. Scalar Problem

Consider the following simple scalar problem [9]. A uni-
variate normal random vector x is distributed as

x ∼ n (x; µ, P) = n (x; 0, 0.1) (29)

and a measurement is available and given by

y = arctan(x) + η (30)

where
η ∼ n (η; 0, R) = n (η; 0, 0.0001) (31)

The solutions of the EKF, UKF, optimal LMMSE estimator,
proposed filter (ANNF), and the true joint distribution of x
and y are shown in Figure 5 where 105 samples are used. The
optimal solution of the MMSE estimator is the conditional
mean which is the centerline of the joint distribution of x and
y (blue points). Both the EKF and UKF are based on the
LMMSE framework and use different approximation methods
to calculate the estimates. Their solutions are therefore linear
functions with different slopes as shown in Figure 5 where
each slope of the lines is their Kalman gain. To calculate
the Kalman gain, the local linearization of the nonlinear
measurement function around the prior mean is used in the
EKF, whereas the statistical linearization through a set of
sigma points is used in the UKF. The LMMSE estimate is
obtained by Eq. (2) and the first two moments of the state
and measurement are calculated using the 105 samples of the
true joint distribution of x and y. In the figure, it is shown
that the solution of the UKF is closer to the LMMSE estimate
than that of the EKF. On the other hand, the ANNF provides a
curve solution since the ANN model can capture the nonlinear
relationship between the inputs (the cholesky factor of the
covariance matrix and the innovation) and the output (the
estimation error). In this example, the ANNF uses the ANN
model with 1 hidden layer with 3 neurons. The figure shows
the ANNF provides the closest solution to the optimal MMSE
estimator among the others.

Fig. 5. Representation of the true joint distribution of the state and measure-
ment and of the estimates from different estimators

0.0319

0.0255

0.021

0.011

EKF UKF LMMSE ANNF

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

R
M

S
E

Fig. 6. RMSE for 105 samples

Moreover, the estimators are compared based on the root
mean square error (RMSE) given by

RMSE =

√∑Nsmaples
i=1 (xi − x̂i)2
Nsamples

(32)

Figure 6 shows the RMSE results of the estimators. The
RMSEs of the EKF and UKF are higher than that of the
LMMSE estimator and the best performance is obtained with
the ANNF. From the results, it is shown that the ANNF is the
best approximation of the MMSE for this example among the
other estimators.

B. Lorenz96 System

In this example, a Lorenz96 system [9], [23], [24] is used
to evaluate the performance of the proposed filter. The system
models of the Lorenz96 system are expressed as follows:

ẋi(t) = xi−1(t) (xi+1(t)−xi−2(t))−xi(t)+F +νi(t) (33)

yk = H X(tk) + ηk, Hi,j =

{
1, j = 2i− 1
0, otherwise ,

for i = 1, 2, j = 1, 2, 3, 4

(34)

where xi(t), i = 1, 2, 3, 4 are the elements of the 4th-
dimensional vector X(t). In the dynamics equation, the fol-
lowing conventions for the state variables are used: x−1 =
xN−1, x0 = xN , and x1 = xN+1. The term F in the dynamics
equation is a constant external force and it is set to 8 to cause
a chaotic behavior in the system. The dynamics is propagated
for 40 s at 2 Hz with a Runge-Kutta 7-8 integrator. The process
noise remains constant over each 0.5 s interval with zero
correlation between the intervals. The discrete measurements
are available at 2 Hz. The measurements are linear and include
only the elements with odd indices of the state vector. The
process noise and measurement noise are assumed to be uncor-
related, white, zero mean, and covariance matrices are given
by Q = 10−6 and R = 0.25I2×2, respectively. The initial
state of the system is a multivariate Gaussian distribution with
µ0 = [F, F, F + 0.01, F]T and P0 = 10−6I4×4.

In this example, a Monte Carlo analysis is performed with
100 simulations and the performance results of the each state
of the ANNF is shown in Figure 7. For training the ANN
in the ANNF, the input and output data of the Lorenz96
system are generated by changing the possible true state
and prior covariance matrix at each time step as shown in
Figure 3. Diagonal covariance matrix is only used to generate
the training data and the each diagonal term of the covariance
matrix is a log uniform random variable with the range of
10−6 up to 10−1. The number of training samples at each
time step is 5 × 105 and the total number of training dataset
is 4× 107. The ANNF uses the following tuning parameters:
α = 10−3, β = 1, and κ = 0, for its sigma points spread.
In Figure 7, the gray lines are the estimation errors of 100
Monte Carlo simulations. The green line represents the filter’s
predicted error standard deviation of each state (3σ values) and
the blue line represents the sample error standard deviation
of each state (3σ values). The consistency of the ANNF is
decided by the close values of the predicted (green line) and
sample (blue line) standard deviation and the result shows the
estimator is consistent. Finally, the black line represents the
sample mean of the each estimation error and the ANNF is
slightly biased over the simulation time. The reason is that the
ANNF is based on Gaussian assumption since it uses UT to
calculate the first two moments of the estimate.

In this example, the EKF and UKF diverge, which mean
they fail to estimate the state of the system. Therefore, instead
of linear estimators for nonlinear systems, the estimation
performance of the HOPUFG-2-2 is compared to that of
the ANNF. The HOPUFG-2-2 is a quadratic estimator with
nonlinear functions approximated by the second-order Taylor
series expansion [9]. Their estimation performances are com-
pared based on the root sum squared (RSS) of the predicted
and sample covariance matrix. For example, the RSS of the
predicted covariance matrix is calculated as the square root
of its trace: σ̄ =

√
tr(P xx), and of the sample covariance

0 5 10 15 20 25 30 35 40

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

E
rr

o
r 1

Error

Sample mean

Sample error standard deviation (3)

Filter's perdicted error standard deviation (3)

0 5 10 15 20 25 30 35 40

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
rr

o
r 2

0 5 10 15 20 25 30 35 40

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4
E

rr
o

r 3

0 5 10 15 20 25 30 35 40

Time [s]

-0.6

-0.4

-0.2

0

0.2

0.4

E
rr

o
r 4

Fig. 7. 100 runs Monte Carlo performance test for the ANNF

matrix is derived from the Monte Carlo analysis. Figure 8
shows the comparison of the predicted and sample covariance
matrix of the HOPUFG-2-2 and the ANNF. In the figure, the
solid and dashed lines are respectively the RSS of the predicted
and sample covariance matrix, and the red lines (ANNF) lie
below the blue lines (HOPUFG-2-2), which means the ANNF

0 5 10 15 20 25 30 35 40

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

HOPUFG-2-2 sample

HOPUFG-2-2 predicted

ANNF sample

ANNF predicted

Fig. 8. Covariance comparison: HOPUFG-2-2 vs ANNF

provides the better performance than the HOPUFG-2-2 in
terms of accuracy.

VI. CONCLUSION

In this paper, a novel estimator with the artificial neural
network is proposed to account for the nonlinearity of a
system. The neural network is used to capture the nonlinear
relationship between the inputs and the corresponding outputs.
The true a priori error is selected for the output variable
based on the linear minimum mean squared error estimator.
The a priori covariance matrix and the innovation are chosen
as the input variables for a static system since the statics
of the prior and the measurement are strongly related to the
output variable. The states at the previous and current time are
added to the input variables for a dynamic system to include
the statistical properties of dynamics. Moreover, the estimator
employs unscented transformation to approximate the first
two moments of the estimate. Two numerical examples show
that the proposed filter provides better performance than the
linear estimators for nonlinear systems such as the extended
Kalman filter and unscented Kalman filter, and a state-of-the-
art nonlinear filter named HOPUFG in terms of accuracy.

REFERENCES

[1] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Appli-
cations to Tracking and Navigation: Theory Algorithms and Software.
Wiley, 2001.

[2] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Basic Engineering, vol. 82, no. Series D, pp.
35–45, March 1960, doi:10.1115/1.3662552.

[3] A. Gelb, Ed., Applied Optimal Estimation. Cambridge, MA: The MIT
press, 1974.

[4] S. J. Julier and J. K. Uhlmann, “New extension of the kalman
filter to nonlinear systems,” SPIE Proceedings, vol. 3068, 1997,
doi:10.1117/12.280797.

[5] P. S. Maybeck, Stochastic Models, Estimation, and Control, Volume 2.
New York, NY: Academic Press, 1982.

[6] I. Arasaratnam, S. Haykin, and R. J. Elliott, “Discrete-time non-
linear filtering algorithms using gauss-hermite quadrature,” Pro-
ceedings of the IEEE, vol. 95, no. 5, pp. 953–977, 2007,
doi:10.1109/JPROC.2007.894705.

[7] I. Arasaratnam and S. Haykin, “Cubature kalman filters,” IEEE Trans-
actions on Automatic Control, vol. 54, no. 6, pp. 1254 – 1269, June
2009, doi:10.1109/TAC.2009.2019800.

[8] J. Lan and X. R. Li, “Nonlinear estimation based on
conversion-sample optimization,” Automatica, vol. 121, 2020,
doi:10.1016/j.automatica.2020.109160.

[9] S. Servadio, R. Zanetti, and B. A. Jones, “Nonlinear filtering with a
polynomial series of gaussian random variables,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 57, no. 1, pp. 647–658, 2021,
doi:10.1109/TAES.2020.3028487.

[10] J. Morimoto and K. Doya, “Reinforcement learning state estima-
tor,” Neural Computation, vol. 19, no. 3, pp. 730–756, 2007,
doi:10.1162/neco.2007.19.3.730.

[11] R. G. Krishnan, U. Shalit, and D. Sontag, “Deep kalman filters,” arXiv
preprint arXiv:1511.05121, 2015.

[12] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt, “Deep variational
bayes filters: Unsupervised learning of state space models from raw
data,” In International Conference on Learning Representations (ICLR
2017), 2017.

[13] S. S. Rangapuram, M. Seeger, J. Gasthaus, L. Stella, Y. Wang, and
T. Januschowski, “Deep state space models for time series forecasting,”
Proceedings of the 32nd International Conference on Neural Information
Processing Systems (NIPS 2018), pp. 7796–7805, 2018.

[14] D. Alspach and H. Sorenson, “Nonlinear bayesian estimation us-
ing gaussian sum approximations,” IEEE Transactions on Au-
tomatic Control, vol. 17, no. 4, pp. 439–448, August 1972,
doi:10.1109/SAP.1970.270017.

[15] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
2002, doi:10.1109/78.978374.

[16] J. H. Kotecha and P. M. Djuric, “Gaussian particle filtering,” IEEE
Transactions on Signal Processing, vol. 51, no. 10, pp. 2592–2601, Oct
2003, doi:10.1109/TSP.2003.816758.

[17] X.-R. Li and V. P. Jilkov, “A survey of maneuvering target tracking:
approximation techniques for nonlinear filtering,” vol. 5428, August
2004, pp. 537–550, doi:10.1117/12.553357.

[18] T. Lefebvre, H. Bruyninckx, and J. D. Schutter, “Comment on “A New
Method for the Nonlinear Transformation of Means and Covariances
in Filters and Estimators”,” IEEE Transactions on Automatic Control,
vol. 47, no. 8, pp. 1406–1408, 2002, doi:10.1109/TAC.2002.800742.

[19] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” Proceedings of the IEEE, vol. 92, no. 3, pp. 401–422, March
2004, doi:10.1109/JPROC.2003.823141.

[20] E. A. Wan and R. V. D. Merwe, “The unscented kalman filter for
nonlinear estimation,” Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications, and Control Symposium, 2000,
doi:10.1109/ASSPCC.2000.882463.

[21] J. R. Rabuñal and J. Dorado, Artificial Neural Networks in Real-Life
Applications. Idea Group Publishing, 2006, doi:10.4018/978-1-59140-
902-1.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and Statistics, vol. 9, pp.
249–256, 2010.

[23] S. Yun and R. Zanetti, “Sequential monte carlo filtering with gaus-
sian mixture sampling,” Journal of Guidance, Control, and Dynamics,
vol. 42, no. 9, pp. 2069–2077, 2019, doi:10.2514/1.G004403.

[24] D. Raihan and S. Chakravorty, “Particle gaussian mix-
ture filters-i,” Automatica, vol. 98, pp. 331–340, 2018,
doi:10.1016/j.automatica.2018.07.023.

