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Abstract—Nonlinear estimation can be performed in many
ways, with the particle filter being one of the most common.
It is well known that ignoring the latest measurement value
in the choice of importance density can result in poor particle
filter performance for certain classes of challenging problems.
In this paper a novel particle filter with importance density
based on the linear minimum mean square error (LMMSE)
estimator is presented. Performance is evaluated using Monte
Carlo simulations of a highly nonlinear growth model. The
proposed algorithm is compared with existing particle filter
formulations using metrics for accuracy, consistency, and particle
diversity.

Index Terms—Nonlinear Estimation, Particle Filters, Sequen-
tial Monte Carlo Methods

I. INTRODUCTION

Estimation of complex dynamical systems has long been
a topic of interest in the science and engineering community.
These systems are often nonlinear and non-Gaussian in nature,
making the task of estimation difficult. For linear systems
with additive Gaussian noise, the Kalman filter provides the
optimal solution [1]. In this case, the Kalman filter is the linear
minimum mean square error (LMMSE) estimator: the optimal
linear (affine) filter that minimizes a mean squared error
(MSE) performance index. For systems that are nonlinear or
non-Gaussian, the LMMSE solution is not typically available
in closed form. Thus, approximations are necessary. Alterna-
tive formulations of the Kalman filter, such as the extended
Kalman filter (EKF), can be used for nonlinear systems but
do not provide an optimal solution [2]. If a system is highly
nonlinear, the EKF can diverge when the local linearization is
a poor representation of the true nonlinear function.

Other more robust approaches exist that employ the Kalman
filter framework to tackle the estimation of nonlinear systems;
these include the unscented Kalman filter (UKF) [3], quadra-
ture Kalman filter [4], and the cubature Kalman filter [5].
While the EKF relies on linearizations of the dynamics and
measurement models, these filters employ Gaussian statistical
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approximation of the nonlinear functions using a set of deter-
ministic regression points. They often produce good results,
but situations arise when the system is highly nonlinear and
the resulting probability density functions (PDFs) are highly
non-Gaussian.

Relaxing the requirement of a linear estimator results in the
optimal estimate, also in a MSE sense, being the conditional
mean. Calculation of the conditional mean in the presence of
nonlinearities is also not typically possible in closed form, and
approximations need to be made. One such approximation is
given by Monte Carlo methods in which PDFs are approx-
imated as a discrete set of random samples. Statistics (e.g.,
mean and covariance) can be calculated from these samples.
The main advantage of these methods is that they are not
subject to any linearity or Gaussianity assumptions [6]. If one
were able to sample directly from a posterior distribution,
then calculating the mean or covariance of that conditional
distribution at any time would be trivial. In practice, samples
are drawn from an importance distribution. Sequential impor-
tance sampling (SIS) is a recursive process in which samples
are drawn from an importance distribution and weights are
appropriately chosen to accompany each of the samples. The
main drawback of SIS is that sample degeneracy eventually
occurs, meaning that very few particles (possibly one) have
significant importance weight.

To combat this, sequential importance sampling with re-
sampling (SISR) employs a resampling step to diversify the
samples at a particular time step [7]. SISR algorithms are also
known as particle filters. Many particle filters rely on process
noise to diversify the samples, and hence the performance of
SISR algorithms are typically dependent on (1) the presence
of “enough” process noise, and (2) the choice of a good
importance distribution. One widely used particle filter is
the bootstrap particle filter (BPF) [8]. The BPF conveniently
uses the transition density as the importance density when
particle weights are updated. A consequence of this choice
is that the most recent measurement is not accounted for in
the importance distribution. Hence, the BPF’s performance is
adequate when there is “enough” measurement noise. Without



enough measurement noise, the BPF suffers from particle
impoverishment.

The auxiliary particle filter uses an intermediate auxiliary
variable in the selection of the importance distribution to ac-
count for the most recent measurement [9]. If particle diversity
is low after resampling, it may be increased by sampling small
perturbations from a continuous distribution. This is called a
regularized particle filter [10]. The regularization step can be
implemented regardless of the importance density chosen as
it is performed after particle weights are updated.

Another method to account for the most recent measurement
in the importance distribution is to treat each particle as the
mean of a Gaussian distribution that is propagated and updated
with Kalman filter equations. More specifically, this can be
accomplished by utilizing the EKF equations as was done in
[11] to arrive at the Extended Kalman Particle Filter (EKPF).
Instead of taking the propagated particles as the importance
distribution, as is done in the BPF, a Kalman update is
performed on each particle where its posterior distribution is
assumed to be Gaussian with mean and covariance given by
the EKF formulation. After this step, importance samples are
drawn from each of the Gaussian posteriors to calculate the
new values of the weights.

The authors of [11] noted that the EKPF did not have
adequate performance; thus, the Unscented Particle Filter
(UPF) was proposed [12]. In this formulation, each particle
is propagated using the UKF equations rather than the EKF
equations. The filter performance was observed to be signifi-
cantly improved over the EKPF. In both the EKPF and UPF
formulations, the choice of initial covariance of the particles
was left unspecified. In the associated open source code for
[11], the initial covariance of each particle is set to the initial
total covariance of the states. This is artificially large and
partially explains why the UPF outperforms the EKPF.

In this work we also propose using a LMMSE algorithm
to generate a Gaussian posterior used as the importance dis-
tribution. This new approach mitigates the need for “enough”
measurement noise. We will focus on the common scenario
where measurement and process noises are additive and Gaus-
sian and we will show that the derived algorithm is different
from the EKPF. The main contributions of this work are:

• The proposed algorithm does not carry covariance matri-
ces associated with each particle.

• The proposed importance sampling method is more com-
putationally efficient than those described in [13].

Ref. [14] describes an algorithm similar to ours without
including implementation details.

The remainder of this paper is structured as follows: Section
II presents a mathematical description of the proposed filter,
and Section III applies the filter to two nonlinear and/or
non-Gaussian systems. In each example, the proposed filter
is compared to the BPF and the UPF using accuracy and
consistency criteria. Finally, concluding remarks are presented
on the results of the experiments.

II. PARTICLE FILTER WITH LMMSE IMPORTANCE
SAMPLING

Throughout this paper we consider discrete-time nonlinear
dynamics and measurement model. The dynamics are given
by

xk = fk(xk−1) + νk (1)

where fk is some nonlinear function and νk is the process
noise with PDF pνk

(νk) and covariance matrix Qk. The
measurements are given by

yk = hk(xk) + ηk (2)

where the nonlinear measurement model is hk(xk) and ηk

is the measurement noise with PDF pηk
(ηk) and covariance

matrix Rk. It is assumed that process and measurement
noise are white sequences, uncorrelated from each other, and
uncorrelated from x0.

Initializing the filter consists of first drawing N i.i.d sam-
ples, or particles, from the known initial probability density
px0

(x0), with particle weights initialized as

wi =
1

N
. (3)

Each particle is propagated forward in time as done in the
bootstrap particle filter. For each propagated particle the
LMMSE equations below are now applied,

x̂ = E {x}+ΣxyΣ
−1
xy (y − E {y}) (4)

P = Σxx −ΣxyΣ
−1
yyΣyx (5)

where Σxx, Σxy, Σxy are the covariance of the prior den-
sity, cross-covariance of prior and measurements, and the
covariance of the measurements respectively. Many choices
of approximations exist to calculate E {y}, Σxy, and Σxy

(linearization, unscented transformation, Gaussian quadrature,
etc.). Assuming the process noise covariance Qk is small
enough such as linearization of hk is valid for any likely
outcome of xi

k, the EKF formulation can be used as specified
below for each particle:
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where
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Importance samples xi
k are then drawn from the importance

distribution π (xk|xk−1,yk) defined as a Gaussian distribution
parameterized by the mean and covariance above

π
(
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i
k

)
. (12)



The importance weights are calculated as:

wi
k ∝

p
(
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)
p
(
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where

p
(
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k

)
= pηk

(
yk − hk(xik)

)
(14)

and

p
(
xik|xik−1

)
= pνk

(
xik − fk(xik−1)

)
. (15)

The unnormalized importance weights wi
k are then normal-

ized to calculate the state estimate and associated covariance
as follows:

x̂k = ΣN
i=1w̃

i
kx

i
k (16)

Pk = ΣN
i=1w̃

i
k

[
xi
k − x̂k

] [
xi
k − x̂k

]T
(17)

where w̃i
k are the normalized weights. A resampling scheme

of the user’s choice is then implemented and all the particle
weights are reset to 1/N before commencing the next time
time step of the filter. An important note is that unlike the
EKPF and UPF, the particles’ covariance is not kept for
the next filter time step and is effectively reset to 0, with
the process noise covariance, Qk, impacting the a priori
uncertainty of each particle. Additionally, while this approach
shares some commonality with [13], the proposed algorithm
is different from the 3 algorithms introduced in [13]. Only
the third algorithm of [13] used importance sampling but
unlike the algorithm proposed here it did not condition the
distribution on the value of the state at the previous time
(x̂i

k−1) resulting in a different and much more computationally
intensive algorithm.

III. NUMERICAL SIMULATION

To evaluate the the performance of the proposed algorithm, a
numerical simulation is conducted. A Monte Carlo analysis is
used to gather sample performance statistics of the proposed
filter. The two main metrics that are used to determine the
filter’s performance are accuracy and consistency. Accuracy
is the measure of how close the filter state estimate is to the
true state. Consistency on the other hand, is the measure of
how close the filter’s predicted covariance is to the true error
covariance which can be found from Monte Carlo simulation.

To measure the accuracy, the Monte Carlo averaged root
mean square error (RMSE) is used,

RMSE(k) =

√√√√ 1

Nm

Nm∑
j=1

∥∥∥xjk − x̂j
k

∥∥∥2
2

(18)

where Nm is the number of Monte Carlo simulations, xjk are
the true states and x̂j

k the estimated states, both referenced to
the jth Monte Carlo run and kth time step.

For the evaluation of consistency, the noncredibility index
(NCI) is used [13] [15]. The index is defined as,

NCIk =
1

Nm

Nm∑
j=1

[
10 log10((x

j
k − x̂j
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T (Pj

k)
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k))

−10 log10((x
j
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k))
]

(19)

where Pj
k is the filter’s error covariance at the jth Monte

Carlo run and kth time step. Σk is the ideal error covariance
calculated from the samples of the Monte Carlo simulations.
When the filter is consistent (the difference between the true
and predicted covariance is small) the NCI will tend towards
zero.

Additionally, the number of effective particles during each
time step is also evaluated using the below formulation.

Neff =
1∑Nm

j=1

(
w̃i

k

)2 (20)

If the number of effective particles is low, this is an indicator
the particle impoverishment is occurring where a very small
number of particles have much of the weight.

A. Univariate Nonstationary Growth Model

The following highly nonlinear univariate dynamic system
and measurement model have often been used to evaluate
nonlinear filters’ performance [13] [8] [16]

xk =
xk−1

2
+ 25

xk−1

1 + x2
k−1

+ 8 cos(1.2(k − 1)) + νk−1 (21)

yk =
x2
k

20
+ ηk (22)

where νk−1 and ηk are the process and measurement noises,
respectively. These independent noises are distributed as fol-
lows,

νk−1 ∼ N (0, 1) (23)

ηk ∼ N (0, 1) (24)

and the initial state of the system is assumed to be a Gaussian
distribution with µ0 = 0 and P0 = 1.

For this example, 200 Monte Carlo simulations were per-
formed for a time span of k = [0, 50] and the bootstrap
particle filter, the unscented particle filter, and the LMMSE
particle filter were tested. Each filter uses 100 particles. An
important note is that for all filters, resampling is conducted
after each time step using the same systematic resampling
algorithm [17]. Figure 1 shows a time history of the RMSE
of the 200 simulations. The LMMSE PF outperforms the BPF
throughout a large majority of the time span. Figure 2 shows
the consistency of the filters. For nearly the entire span of the
simulation, the LMMSE PF’s NCI value is the closest to zero,
which is indicative that the predicted filter covariance is closer
to the actual observed Monte Carlo covariance than the BPF
and the UPF. Finally, Figure 3 shows that for all time, the
LMMSE PF has a greater number of effective particles than
the BPF and the UPF, meaning particle diversity is higher.



Fig. 1. Time history of Monte Carlo averaged RMSE for 200 random
realizations

Fig. 2. Time history of Monte Carlo averaged absolute NCI for 200 random
realizations

In Table I a summary of the results for this Monte Carlo
simulation can be seen. These are calculated by time averaging
the data displayed on the time history figures and show the
same trends.

TABLE I
UNIVARIATE NONSTATIONARY GROWTH MODEL RESULTS

RMSE NCI Neff

LMMSE PF 2.616 5.184 77.707
Unscented PF 3.458 9.309 55.705
Bootstrap PF 2.814 6.300 59.848

The benefits of the new algorithm when compared with the
BPF are evident when the value of the measurement noise
variance is reduced to R = 0.1. With this value of the
measurement noise, the BPF’s likelihood function occasionally
underflows (i.e. after a measurement update, all the new

Fig. 3. Time history of Monte Carlo averaged absolute number of effective
particles for 200 random realizations

weights are zero) with a 64 bit float representation. The
LMMSE PF rarely underflows, since it is able to maintain a
higher particle diversity. In each algorithm, when the weights
underflow, they are all reset to 1/N ; effectively causing the
filter to ignore the measurement.

B. Univariate Dynamics with Non-Gaussian Process Noise
and Non-stationary Observation Model

The second numerical example is that used in Ref. [11] to
show the performance advantages of the UPF over the BPF.
The dynamics are

xk = 1 + sin(ωπ(k − 1)) + ϕ1xk−1 + vk−1 (25)

where ω = 4e − 2, ϕ1 = 0.5, and vk−1 is a process noise
drawn from a gamma distribution:

vk−1 ∼ Γ(3, 2) (26)

The non-stationary observation model is

yk =

{
ϕ2x

2
k + nk t ≤ 30

ϕ3xk − 2 + nk t > 30
(27)

where ϕ2 = 0.2, ϕ3 = 0.5, and nk is an observation noise
drawn from a Gaussian distribution:

nk ∼ N (0, .00001) (28)

In this observation model, the measurement equation changes
after the first 30 time steps.

For this model, 100 Monte Carlo simulations were per-
formed for the UPF, the BPF, and the LMMSE PF for a time
span of k = [0, 60]. All three filters use 200 particles. Figure
4 shows an example trajectory with each filter’s tracking
performance.

The initial state x0 is chosen randomly from a Gaussian
distribution x0 ∼ N (1, 0.75). All the filters are initialized with
x̂0 = 1. After the first time step, the UPF and the LMMSE



Fig. 4. Sample trajectory with filter performance

PF achieve near-perfect tracking performance. The BPF falters
when the state changes too quickly but recovers at the next
time step. Figure 5 shows the RMSE performance of each
filter over 100 Monte Carlo runs.

Fig. 5. Time history of Monte Carlo averaged RMSE for 100 realizations of
the system (25)-(28)

It is clear from Figure 5 that on average, the LMMSE PF
outperforms the UPF in the first half of the simulation. Later,
their performance is similar. The BPF performs the worst
throughout, although its performance also improves slightly
on average in the latter half of the simulation.

Figure 6 compares absolute NCI values for each filter.
Once again, the LMMSE PF more closely matches the true
covariance of the system than the BPF. The absolute NCI
values of the UPF are visibly worse than those of the LMMSE
PF in the first 30 time steps. Their NCI values are comparable
in the second half of the simulation. Table II summarizes the
results in this example.

Fig. 6. Time history of Monte Carlo averaged absolute NCI for 100
realizations of the system (25)-(28)

TABLE II
UNIVARIATE DYNAMICS WITH NON-STATIONARY OBSERVATION MODEL

RESULTS

RMSE NCI

LMMSE PF 0.085 0.039
Unscented PF 0.118 0.234
Bootstrap PF 0.428 0.636

Table II emphasizes that while the LMMSE PF slightly
outperforms the UPF in terms of estimation error, it shows
remarkable improvement over the UPF in terms of absolute
NCI.

IV. CONCLUSIONS

The importance of accounting for the measurement outcome
in the importance distribution of a particle filter (PF) is
well known and implemented in several algorithms such as
the Auxiliary PF (APF), Extended Kalman PF (EKPF), and
Unscented PF (UPF). In this paper, a new linear minimum
mean square error particle filter is proposed to account for the
measurement value in the importance distribution. An EKF
approximation of the LMMSE equations is used for each
particle where the prior iteration’s particle covariances are not
kept.

A Monte Carlo simulation was performed to test the efficacy
of the proposed algorithm for a highly nonlinear growth
model. The LMMSE particle filter outperformed the bootstrap
particle filter in terms of accuracy and more significantly
for consistency and particle diversity metrics. In the second
example, a Monte Carlo simulation was performed to compare
the proposed algorithm with the UPF and the BPF for a system
with non-Gaussian process noise and a non-stationary obser-
vation model. The proposed algorithm demonstrated higher
accuracy and better covariance approximation than both the
UPF and the BPF.
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