
Celestial Mechanics and Dynamical Astronomy manuscript No.
(will be inserted by the editor)

Dealing with Uncertainties in Angles-Only Initial Orbit
Determination

Roberto Armellin · Pierluigi Di Lizia ·
Renato Zanetti

Received: date / Accepted: date

Abstract A method to deal with uncertainties in initial orbit determination
(IOD) is presented. This is based on the use of Taylor differential algebra
(DA) to nonlinearly map the observation uncertainties from the observation
space to the state space. When a minimum set of observations is available,
DA is used to expand the solution of the IOD problem in Taylor series with
respect to measurement errors. When more observations are available, high
order inversion tools are exploited to obtain full state pseudo-observations at
a common epoch. The mean and covariance of these pseudo-observations are
nonlinearly computed by evaluating the expectation of high order Taylor poly-
nomials. Finally, a linear scheme is employed to update the current knowledge
of the orbit. Angles-only observations are considered and simplified Keplerian
dynamics adopted to ease the explanation. Three test cases of orbit determi-
nation of artificial satellites in different orbital regimes are presented to discuss
the feature and performances of the proposed methodology.

1 Introduction

Orbit determination is typically divided into two phases. When the number
of observation is equal to the number of unknowns, a nonlinear system of
equations need to be solved. This problem is known as initial (or preliminary)
orbit determination (IOD). When more observations are available, accurate
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orbit determination can be performed. IOD typically delivers a single solution
(or a limited number of solutions) that exactly produces the available obser-
vations. In addition, in IOD simplified dynamical models are often used (e.g.
Keplerian motion) and measurement errors are not taken into account (the
problem is deterministic). When more observations are available the approach
becomes stochastic, because the additional observations include noise. This
problem is usually set as an optimization one, in which the (optimal) solution
is the one that minimizes the observation residuals. The solution is obtained
via batch estimation, e.g. weighted nonlinear least squares, or a sequential
estimation, e.g. extended Kalman Filtering.1

In this paper we focus our attention on the orbit determination of resident
space objects (RSO) observed on a single passage with optical sensors. Thus,
the problem is the one of an angles-only orbit determination. In order to
determine, the orbit an IOD problem is solved followed by a procedure to
update the initial solution based on the additional observations.

Angles-only IOD is an old problem. Gauss’2 and Laplace’s3 methods are
commonly used to determine a Keplerian orbit that fits with three astromet-
ric observations. These methods have been revisited and analyzed by a large
number of authors (e.g. 4–6) and new ones introduced more recently. The Dou-
ble r-iteration technique of Escobal7 and the approach of Gooding8 are two
examples of angles-only methods introduced for the IOD of RSO.

In 2012 Armellin at al.9 proposed a IOD solver based on the solution of
a Lambert’s problem (between the second and the third observations) and
a Kepler’s problem (between the first and second observation). The method
iterates on the slant ranges at the second and third observations in order to
drive to zero the observational defects at the first observation. The iterations
were carried out with a high-order extension of Newton’s method enabled
by differential algebra (DA). In addition, high order Taylor expansions were
exploited to nonlinearly map the uncertainties from the observation space to
the state space.

In this work a modified version of the method is proposed, in which all the
three slant ranges are the problem unknowns. The approach is based on the
solution of two Lambert’s problems and using the continuity of the velocity
vector at the central observation as constraint. The method has no restrictions
on the geometry of the observations and it can deal with both short and
long gaps. As in the previous work, the solution is obtained with a high-
order Newton’s iteration scheme enabled by DA. This approach allows the
algorithm to both converge in few iterations and map uncertainties form the
observation space to the state space. Thus, the initial orbit is already provided
with statistical information.

When multiple observations on the same passage are available the IOD
solution is updated. Instead of adopting a classical least squares approach
(which employs the linearization of the dynamics and of the measurement
functions10) high order inversion tools available in DA are exploited to nonlin-
early map group of observations to the state space at a common epoch, thus
producing full state pseudo-observations. The mean and covariance of these
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pseudo-observations are nonlinearly computed by evaluating the expectation
of the related high order Taylor polynomials. Finally, a linear updating scheme
is utilized to update the current knowledge of the state mean and covariance.

The paper is organized as follows. A brief introduction on the DA tools used
for the implementation of the algorithm is given first. This covers the meth-
ods to expand the solution of ordinary differential equations (ODE), compute
the expansion of the solution of parametric implicit equations, and the algo-
rithm to map statistics through nonlinear transformations. The following sec-
tions describe the main algorithms developed in this work, i.e. the angles-only
IOD solver and the updating scheme. Simulated observational scenarios for a
Geosynchronous Transfer Orbit (GTO), a Geosynchronous Orbit (GEO) and
a Molniya are used to assess the performances of the implemented methods.
Some final remarks conclude the paper.

2 Differential Algebra tools

DA supplies the tools to compute the derivatives of functions within a com-
puter environment.11 More specifically, by substituting the classical imple-
mentation of real algebra with the implementation of a new algebra of Taylor
polynomials, any function f of v variables is expanded into its Taylor polyno-
mial up to an arbitrary order n with limited computational effort. In addition
to basic algebraic operations, operations for differentiation and integration can
be easily introduced in the algebra, thusly finalizing the definition of the differ-
ential algebra structure of DA.12,13 Similarly to algorithms for floating point
arithmetic, also in DA various algorithms were introduced, including methods
to perform composition of functions, to invert them, to solve nonlinear sys-
tems explicitly, and to treat common elementary functions.14 The differential
algebra used for the computations in this work was implemented in the soft-
ware COSY INFINITY.15 The reader may refer to Di Lizia et al.16 for the DA
notation adopted throughout the paper.

2.1 High-order expansion of the solution of ODE

An important application of DA is the automatic high order expansion of the
solution of an ODE in terms of the initial conditions.14,16 This can be achieved
by replacing the operations in a classical numerical integration scheme, includ-
ing evaluation of the right hand side, by the corresponding DA operations.
This way, starting from the DA representation of an initial condition x0, DA
ODE integration allows the propagation of the Taylor expansion of the flow
in x0 forward in time, up to any final time tf . Any explicit ODE integration
scheme can be rewritten as a DA integration scheme in a straight-forward way.
For the numerical integrations presented in this paper, a DA version of a 7/8
Dormand-Prince (8-th order solution for propagation, 7-th order solution for
step size control) Runge-Kutta scheme is used. The main advantage of the
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DA-based approach is that there is no need to write and integrate variational
equations in order to obtain high order expansions of the flow. It is therefore
independent of the particular right hand side of the ODE and the method is
quite efficient in terms of computational cost.

2.2 Expansion of the solution of parametric implicit equations

Well-established numerical techniques (e.g., Newton’s method) exist, which
can effectively identify the solution of a classical implicit equation

f(x) = 0 (1)

with f : <n → <n. Suppose an explicit dependence on a vector of parameters
p can be highlighted in the vector function f , which leads to the parametric
implicit equation

f(x,p) = 0. (2)

Suppose the above equation is to be solved, whose solution is represented by
the function x(p) returning the value of x solving (2) for any value of p. Thus,
the dependence of the solution of the implicit equation on p is of interest.
DA techniques can effectively handle the previous problem by identifying the
function x(p) in terms of its Taylor expansion with respect to p. This result
is achieved by applying partial inversion techniques as detailed in 16.

The final result is

[x] = x+Mx(δp), (3)

which is the k-th order Taylor expansion of the solution of the implicit equa-
tion. For every value of δp, the approximate solution of f(x,p) = 0 can be
easily computed by evaluating the Taylor polynomial (3). Apparently, the so-
lution obtained by means of the polynomial map (3) is a Taylor approximation
of the exact solution of Eq. (2). The accuracy of the approximation depends
on both the order of the Taylor expansion and the displacement δp from the
reference value of the parameter.

2.3 Nonlinear mapping of the estimate statistics

Consider a random variable x ∈ <n with probability density function p(x)
and a second random variable y ∈ <m related to x through the nonlinear
transformation

y = f(x). (4)

The problem is to calculate a consistent estimate of the main cumulants of the
transformed probability density function p(y). Since f is a generic nonlinear
function, this formulation includes a wide range of problems involving un-
certainty propagation (uncertainty propagation through nonlinear dynamics,
uncertainty propagation through nonlinear coordinate transformations, etc.).
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The Taylor expansion of y with respect to deviations δx can be obtained
automatically by initializing the independent variable as a DA variable and
evaluating (4) in DA framework. For each component yi of y, this procedure
delivers

[yi] = fi([x]) = yi +Myi(δx) =
∑

p1+···+pn≤k
ci,p1...pn · δxp11 · · · δxpnn , (5)

where in this expression yi is the zeroth order term of the expansion map, and
ci,p1...pn are the Taylor coefficients of the resulting Taylor polynomial

ci,p1...pn =
1

p1! · · · pn!
· ∂

p1+···+pnfi
∂xp11 · · · ∂xpnn

. (6)

The evaluation of (5) for a selected value of δx supplies the k-th order Taylor
approximation of yi corresponding to the displaced independent variable. Of
course, the accuracy of the expansion map is function of the expansion order
and can be controlled by tuning it.

The Taylor series in the form (5) can be used to efficiently compute the
propagated statistics.17,18 The method consists in analytically describing the
statistics of the solution by computing the l-th moment of the transformed
pdf using a proper form of the l-th power of the solution map (5).

For a generic scalar random variable x with pdf p(x) the first four moments
can be written as 

µ = E{x}
P = E{(x− µ)2}
γ =

E{(x− µ)3}
σ3

κ =
E{(x− µ)4}

σ4
− 3,

(7)

where µ is the mean value, P is the covariance, σ is the standard deviation, γ
and κ are the skewness and the kurtosis, respectively,19 and the expectation
value of x is defined as

E{x} =

∫ +∞

−∞
xp(x)dx. (8)

The moments of the transformed pdf in (4) can be computed by applying
the multivariate form of Eq. (7) to the Taylor expansion (5). The result for
the first two moments becomes
µyi = E{[yi]} =

∑
p1+···+pn≤k

ci,p1...pnE{δxp11 · · · δxpnn }

P yiyj = E{([yi]− µi)([yj ]− µj)} =
∑

p1+···+pn≤k,
q1+···+qn≤k

ci,p1...pncj,q1...qnE{δxp1+q11 · · · δxpn+qnn },

(9)
where ci,p1...pn are the Taylor coefficients of the Taylor polynomial describing
the i-th component of [y]. Note that in the covariance matrix formula the
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coefficients ci,p1...pn and cj,q1...qn are updated to include the subtraction of the
mean. The coefficients of the higher order moments are computed by imple-
menting the required operations (e.g. ([yi]−µi)([yj ]−µj) for the second order
moment) on Taylor polynomials in the DA framework. The expectation values
on the right side of Eq. (9) are function of p(x). It follows that if the initial
distribution is known, all of the moments of the transformed pdf p(y) can be
calculated. The number of monomials for which it is necessary to compute the
expectation increases with the order of the Taylor expansion and, of course,
with the order of the moment we want to compute. Note that, at this time, no
hypothesis on the initial pdf has been made. Thus, the method can be applied
independently of the considered variable distribution.

We now consider the case in which x is a Gaussian random variable (GRV),
x ∼ N (µ,P ), in which µ is the mean vector and P the covariance matrix. An
important property of Gaussian distributions is that the statistics of a GRV
can be completely described by the first two moments. In case of zero mean,
the expression for computing higher-order moments in terms of the covariance
matrix is due to Isserlis.20 In physics literature, Isserlis’s formula is known as
the Wick’s formula.

Let s1 to sn be nonnegative integers, and s = s1 + s2 + · · ·+ sn. Then the
Wick’s formula suggests that

E{xs11 xs22 . . . xsnn } =

{
0, if s is odd

Haf(P ), if s is even
(10)

where Haf(P ) is the hafnian of P = (σij), which is defined as

Haf(P ) =
∑
p∈∏s

s
2∏
i=1

σp2i−1,p2i , (11)

and
∏
s is the set of all permutations p of {1, 2, . . . , s} satisfying the property

p1 < p3 < p5 < . . . < ps−1 and p1 < p2, p3 < p4, . . . , ps−1 < ps.
21

We observe that the expectation value terms of Eq. (9) can be computed
using Eq. (10), and the resulting moments can be used to describe the trans-
formed pdf.

3 DA-based angles-only IOD

In the classical angles-only IOD problem, three optical observations at epoch
ti, with i = 1, . . . , 3 are available. The observations consist in three couples
of right ascension and declination angles, (αi, δi). These observations provide
us with three inertial light of sights ρ̂i, i.e. the unit vectors pointing from the
observer (on the Earth’s surface) to the observed object.

Assume to have first guess values of the slant ranges ρi or equivalently for
the orbit radii ri (e.g. from the solution of Gauss’ 8th degree polynomial). We
present a high order iterative procedure with the following objectives: a) refine
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the values of ρi assuming Keplerian dynamics, and b) express the functional
dependence of the solution of the IOD problem with respect to observation
uncertainties in terms of a high-order Taylor polynomials.

We start by initializing the observations as DA variables:

[α] = α+ δα
[δ] = δ + δδ,

(12)

in which we have grouped the observations in two homogeneous vectors, α =
(α1, α2, α3) and δ = (δ1, δ2, δ3), and δα and δδ accounts for measurement
uncertainties. The line of sight vectors at t1, t2 and t3 become

[ρ̂1] = ρ̂1 +Mρ̂1
(δα1, δδ1)

[ρ̂2] = ρ̂2 +Mρ̂2
(δα2, δδ2)

[ρ̂3] = ρ̂3 +Mρ̂3
(δα3, δδ3),

(13)

where Mρ̂i
is an arbitrary order Taylor polynomial that describes the effect

of an observation uncertainty on the line of sight.
Similarly, we initialize DA variables on the topocentric distances at t1, t2

and t3
[ρ1]1

−
= ρ1

−

1 + δρ1
[ρ2]1

−
= ρ1

−

2 + δρ2
[ρ3]1

−
= ρ1

−

3 + δρ3,

(14)

or in more compact form

[ρ]1
−

= ρ1
−

+ δρ, (15)

where the superscript 1− indicates the first step of the iterative procedure,
and ρ1

−

1 , ρ1
−

2 , and ρ1
−

3 are the guess values for the slant ranges.
The spacecraft position vectors can be written (by summing the known

observer’s locations) as

[r1] = r1 +Mr1(δα1, δδ1, δρ1)
[r2] = r2 +Mr2(δα2, δδ2, δρ2)
[r3] = r3 +Mr3(δα3, δδ3, δρ3).

(16)

A DA-based Lambert’s problem22 can be solved between [r1] and [r2], and
between [r2] and [r3]. Using the DA-implementation of Lambert’s problem we
obtain two polynomial approximations for the velocity vector at t2

[v−2 ] = v−2 +Mv−
2

(δα1, δδ1, δα2, δδ2, δρ1, δρ2)

[v+2 ] = v+2 +Mv+
2

(δα2, δδ2, δα3, δδ3, δρ2, δρ3)
(17)

Note that the above expressions of the velocity vector are different for two
reasons. First, the starting values of the slant ranges are not the solution of
the IOD problem; secondly, they have different functional dependence on the
observation angles. The goal is thus a) to find the values of the slant ranges
such that the velocity vector is continuos at the midpoint, i.e., we want to
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find the exact values of ρ1, ρ2, and ρ3, and b) to approximate the spacecraft
state at t2 as a Taylor polynomial in the observation uncertainties. We start
by defining the Taylor map of the defects

[∆ṽ2] = [v+2 ]− [v−2 ] = ∆ṽ2 +M∆ṽ2(δα, δδ, δρ). (18)

Note that, for the exact values of ρ1, ρ2 and ρ3, the constant part of maps
(18), ∆ṽ2, would be zero. We now need to find the variations δρ necessary to
cancel out these constants and to express r2 and v2 as Taylor polynomials in
δα and δδ only. The first step is to work with an origin preserving map

[∆v2] = [∆ṽ2]−∆ṽ2 =M∆v2
(δα, δδ, δρ) (19)

and to build an augmented Taylor polynomial by adding identities in obser-
vation deltas ∆v2δα

δδ

 =

M∆v2

Iα
Iδ

 δαδδ
δρ

 . (20)

This polynomial map can be inverted using ad-hoc algorithms implemented in
COSY INFINITY, yielding δαδδ

δρ

 =

M∆v2

Iα
Iδ

−1 ∆v2δα
δδ

 . (21)

Extracting the three last lines we obtain

[
δρ
]

=
[
Mρ

] ∆v2δα
δδ

 . (22)

We now evaluate the map (22) in [∆v2] = −∆ṽ2, obtaining

[ρ]1
+

= ρ1
+

+Mρ(δα, δδ) (23)

where the subscript 1+ indicates the Taylor polynomial of the corrections of
the topocentric distances to be applied at the end of the first iteration. This
last step is the high-order counterpart of classical Newton’s method.

The second iteration starts with the Taylor polynomials of the topocentric
distances given by

[ρ]2
−

= [ρ]1
−

+ [ρ]1
+

= ρ2
−

+Mρ(δα, δδ, δρ) (24)

where now the explicit dependence on the entire set of observables appears.
Thus, from the second iteration, the Taylor polynomials (16)–(17) depend
on all (δα, δδ, δρ). The iterative procedure ends when the values of ∆ṽ2 are
smaller than a prescribed tolerance. The Taylor polynomials of the topocentric
distances at the last iteration k are

[ρ] = [ρ]k
−

+ [ρ]k
+

= ρ+Mρ(δα, δδ) (25)
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Using these expressions, the spacecraft position and velocity vectors at t2
assume the form

[r2] = r2 +Mr2(δα, δδ)
[v2] = v2 +Mv2(δα, δδ).

(26)

or more compactly
[x2] = x2 +Mx2

(δα, δδ), (27)

where x2 = (r2,v2).
As a result of the iterative procedure, r2 and v2 exactly satisfy (in the

two-body model) the nominal observation set (α, δ). Furthermore, for any dis-
placed value of the observables, the solution of the preliminary determination
problem is computed by evaluating the polynomial (26) in the corresponding
values of (δα, δδ). Map (27) is an arbitrary order Taylor polynomial in δα and
δδ, which maps the uncertainties from the observable space to the spacecraft
state space. In particular, using the approach described in Section “Nonlinear
mapping of the estimate statistics” we can compute the statistical moments
of x, given the statistics of the measurements.

4 DA-inversion IOD

When more than three optical observations are available, the solution (refer-
ence state and associated statistics) of the IOD problem needs to be updated
to include the additional information. This is carried out through a high-order
filtering technique based on nonlinear mapping of statistics and linear up-
date scheme, in which only the pdf of the measurements is constrained to be
Gaussian.

The optimal linear estimate of a state x based on a measurement y is given
by

x̂ = µx + P xyP
−1
yy(ỹ − µy) (28)

where µx is the state mean, P xy is the joint covariance of the state and the
measurement, and P yy is the covariance of the measurement. For a general
non-linear measurement with additive noise ỹ = h(x) + η, calculating µy
and the covariance matrices requires full knowledge of the distribution of the
state. This requirement has two consequences: first it means that the state
and its uncertainty need to be propagated forward to the measurement time,
and second that statistics of the measurement need to be calculated through
a nonlinear transformation of the current state. In this work we propose ad-
dressing this issue in a different way. The state is always estimated at a fixed
epoch time, and the nonlinear map to transport it to any other epoch is cal-
culated with the DA framework. Instead of working with y as a function of x,
a full pseudo-measurement of the state is generated from y; the inverse of the
non-linear map from the state to the measurement is readily available from
COSY INFINITY. The advantage of this approach is that only the distribu-
tion of the measurement noise is assumed Gaussian while the distribution of
the state is left unconstrained.
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Consider a time span [t0, tf ] and let xk be the state variable at some
time tk ∈ [t0, tf ]. Consider also a set of N measurements ỹi given at times
ti ∈ [t0, tf ] with i = 1, . . . , N . Given the current estimate of the state x̂−k
and the related error statistics, we can always define the estimated state as a
DA variable and compute the predicted measurement at ti in the DA frame-
work. The relation between state and measurement is a nonlinear map that
accounts for the forward propagation of the initial condition and the measure-
ment function. Under proper conditions this relation can be inverted to map
the observation space at ti into the state space at tk. The main cumulants of
the resulting map can be computed as described in the previous section, with
the assumption that the statistics of the measurement errors is Gaussian. The
computed mean and covariance are exploited to update the knowledge of xk
using a linear update scheme. This can be done for groups of measurements
for which the dimension of measurement vector yi is equal to the dimension
of the state vector, and the map is invertible.

The resulting method can be made recursive and summarized as follows.
From the IOD algorithm we start from an initial value of the state estimate
and covariance, x̂−k = µ−xk

and P−xkxk
(in general tk = t2, the epoch of the

central observation in the IOD problem.) Define the current estimate at time
of interest tk as a DA variable; i.e.,

[xk] = x̂−k + δxk. (29)

and propagate it to time ti when a measurement becomes available. The result
assumes the form of the following high-order Taylor expansion map

[xi] = x̂i +Mxi
(δxk). (30)

Note that the constant part of this map, i.e. x̂i, is not the predicted mean at
time ti due to the nonlinearities of the dynamics (the relation x̂i = µxi

holds
true only if the state transition matrix is used). Then, use the measurement
equation to compute

[yi] = h([xi]) = ŷi +Myi
(δxk), (31)

where h represents the measurement function. Figure 1(a) can be used by the
reader to better understand the meaning of Maps (30)–(31).

The next step consists in defining an origin preserving map

δyi = [yi]− ŷi =Mδyi
(δxk). (32)

This polynomial map can be inverted if two conditions are satisfied: the map
must be square and all the measurements must be independent. If these re-
quirements are satisfied, we can invert the polynomial map (32) using algo-
rithms implemented in COSY INFINITY, obtaining

δxk =Mδxk
(δyi). (33)
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δxk

δyi

x̂−
k x̂i +Mxi

(δxk)
x̂i

ŷi

ŷi +Myi
(δxk)

(a) Direct maps representation

ỹi

x̂−
k

ŷi

ỹ i
− ŷ i

x̂
−
k
+
M z k

(δ
y i
)

µzk

z̃k

z̃k − µzk

(b) Inverse map representation

Fig. 1: Sketch of the Taylor maps involved in the construction of the DA-base
map inversion nonlinear filter.

We now replace δxk in (29) with its expression from (33), yielding

[xk] = x̂−k +Mxk
(δyi). (34)

This map now represents the pseudo-measurement of state xk based on the
observation ỹi, so it is renamed as

[zk] = x̂−k +Mzk
(δyi). (35)

By construction the constant part of Eq. (35) is equal to the state estimate
at step k, i.e. x̂−k , but its statistical moments are different to those of xk, due
to the nonlinear contribution of Mzk

(δyi) (as highlighted in Fig. 1(b)). We
can now apply Eq. (9) to Taylor expansion (35) to compute the statistics of the
random variable zk and, in particular, the first two moments µzk

and P zkzk
.

The computed mean can be treated as the “predicted measure” of the state at
time tk, with measurement error defined by P zkzk

. Thus, we can update the
initial estimate and error covariance, using the least squares method. This can
be done using the Kalman filter update equations that, applied to the current
problem, read

K =P−xkxk

(
P−xkxk

+ P zkzk

)−1
, (36)

x̂+
k =x̂−k +K

(
z̃k − µzk

)
, (37)

P+
xkxk

= (I −K)P−xkxk
(I −K)

T
+KP zkzk

KT , (38)

where x̂+
k is the updated estimate at time tk and P+

xkxk
the related updated

covariance matrix. When another measurement becomes available, we can de-
fine the state at time tk as a new DA variable, centered in the new estimate
x̂+
k , and iterate the process. Note that z̃k is the true state-measurement at

ti mapped to time tk, which is readily available by evaluating Map (35) for
δyi = ỹi − ŷi.

We said that the polynomial map in Eq. (32) must be square in order to be
invertible. It follows that if the measurement vector has smaller dimension than
the state vector, after the first measurement is received we can not proceed
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with the update, but we have to wait for additional measurements (i.e. in
the optical case three observations are needed). When the number of scalar
measurements equals the dimension of the state variable, we can define an
augmented measurement vector that can be used to build Maps (31) and (32).

Once the final estimate of the state at time tk is obtained, the statistics
of the solution can be computed at any time via propagation and DA-based
expectation evaluation.

5 Test Cases

The algorithms for IOD are run considering single-pass optical observations of
three objects as listed in Table 1.

Table 1: Test cases: orbital parameters

Test Case A B C

Orbit type GEO GTO Molniya
SSC 26824 23238 40296

Epoch JED 2457163.2824 2457167.1008 2457165.0708
a km 42143.781 24628.972 26569.833
e – 0.000226 0.699849 0.723221
i deg 0.0356 3.962 62.794
Ω deg 26.278 315.676 344.538
ω deg 42.052 240.885 271.348
M deg 72.455 13.735 347.726

The observations are all simulated from Teide Observatory, Tenerife, Ca-
nary Islands, Spain (observation code 954). The simulation windows are sum-
marized in Table 2. For all the cases 15 equally spaced optical observations
are simulated within the observation window. The spacecraft is considered ob-
servable when its elevation is above 10 deg, is in sunlight, and the Sun has an
elevation lower than -7 deg. As a result, different observation gaps are con-
sidered, ranging from 522 s for the GTO case to 2160 s for the GEO case.
The GTO object is observed before the apogee for an arc length of approxi-
mately 20.7 deg. The average separation between observations is 1.5 deg, with
maximum and minimum values of 1.9 and 1.3 deg, respectively. The Molniya
object is observed before the apogee on an arc length of 13.4 deg. In this case
the mean, maximum, and minimum observation separations are 1, 1.1, and
0.8 deg. Finally, for the GEO case the observed arc has a length of 127.4 deg
(with uniformly spaced observations).

For all the cases the central observations, i.e. observation ID 7, 8, and 9,
are used for the IOD; thus, x̂8 = (r̂8, v̂8) and P−x8,x8

are the output of the IOD
problem. The remaining observations are used for the update of x̂8 and P−x8,x8

.
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Finally, pertaining to the accuracies, we consider Gaussian measurement noises
with standard deviation of 0.5 arcsec.

Table 2: Test cases: observation windows

Test Case Observation Window ∆t σα,δ
yr mo day0 dayf hr0 hrf hr arcsec

A 2015 MAY 22 23 21.000 05.400 0.600 0.5
B 2015 JUN 02 02 03.550 05.580 0.145 0.5
C 2015 MAY 22 22 20.600 23.400 0.200 0.5

All simulations are run on a MacBook Air with a 1.8 GHz Intel i5 CPU
and 4 GB RAM.

5.1 DA-based angles-only IOD

The IOD algorithm is run 100 times for each of the three test cases described
in Tables 1 and 2. The observation geometries are described in Figures 2(a),
2(c), and 2(e). For all the cases 6-th order computations are carried out. The
DA-based IOD algorithm converges in all cases in, on average, three itera-
tions (convergence is achieved when the euclidean norm of the velocity vector
discontinuity at the central observation is less than 1 × 10−12 km/s). In all
cases, the real solutions of the Gauss’ 8th-degree polynomial are taken as first
guesses for the unknown slant ranges.

The result of the DA-based IOD algorithm is the Taylor polynomial [x8]
(see Eq. (27)) that maps the observation uncertainties into uncertainties in the
state space. This map is employed to compute the starting state estimate x̂−8
and covariance P−x8x8

, evaluating the expectation of the monomials by assum-
ing Gaussian statistics for measurement noise. Figures 2(b), 2(d), and 2(f)
show the absolute value of the observation residuals associated to x̂−8 (nor-
malized by the observations standard deviation) at the different observation
epochs and for all the 100 simulations. As expected the residuals are minimal
at the epochs of the IOD (i.e. ID 7, 8, and 9), whereas they steeply increase
far from the central observations. In addition, note that x̂−8 does not exactly
satisfy the IOD, as it is acually the constant part of the associated Taylor
polynomial, [x8], that does it (with an accuracy that depends on the thresh-
old selected for algorithm convergence). The maximum differences between the
constant part of the map and the computed mean are given in the first two
columns of Table 3, where the contributions are split in position and velocity
components. It is apparent that the nonlinearities play a minor role for the
test case A, and this is confirmed by the fact that the residuals are minimal
at observations 7, 8, and 9 for this test case (see Figure 2(b)).
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(a) Test case A: geometry
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(b) Test case A: residuals

(c) Test case B: geometry
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(d) Test case B: residuals

(e) Test case C: geometry
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(f) Test case C: residuals

Fig. 2: Observation geometry and residuals
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In all the cases the estimated covariance P−x8x8
is stretched along the line of

sight directions as shown in the zoomed portions of Figures 2(a), 2(c), and 2(e).
Higher nonlinearities affect test cases B and C, for which the uncertainty set is
much more stretched. To quantify this, the maximum of the square root of the
position and velocity covariance matrix eigenvalues (indicated with maxσr8
and maxσv8

) are reported in Table 3.

Table 3: IOD: uncertainty set description.

Test Case max ||r8 − r̂−
8 || max ||v8 − v̂−

8 || maxσr8 maxσv8

km m/s km m/s

A 0.045 0.003 26.528 1.976
B 7.579 0.349 340.993 14.611
C 22.435 1.312 573.765 30.675

5.2 DA-based inversion IOD

The results obtained by applying the updating scheme presented in Sec. “DA-
inversion IOD” are presented in this section. 100 simulations are run for each
test case and all the computations are carried out at order 6, as for the DA-
based IOD.

As we are considering 15 equally spaced optical observations, the maximum
number of iterations (including the IOD using observations 7, 8, and 9) is 5.
The updating scheme is stopped whenever the maximum number of iteration
is reached or when the variation in the estimated state gets bigger than 5 times
the maximum eigenvalues of the starting state covariance (this is considered
as an anomaly in the updating scheme).

For all the cases a set of 4 plots is presented. In the first one the difference
between the current state estimate and the true state (indicated as ||r̂8 − r∗8||
for position and ||v̂8 − v∗8|| for velocity) is plotted as function of the iteration
number. Mean, maximum and minimum values for the considered 100 simu-
lations are shown with different markers. In the second figure the maximum
(over the 100 simulations) of the maximum position and velocity eigenvalues
of the estimated covariance matrix are plotted as a function of the iteration
number. Thus, the first two figures can be used to extract informations on state
accuracy estimation and size of the estimated final uncertainty set. The third
and fourth figures are about the observations residuals. More specifically, in
the third figure the evolution of the mean residuals with the iteration number
is highlighted using markers in gray scale (black markers for the last iteration);
whereas in the fourth figure we plot the mean, maximum, and minimum values
of the residuals (absolute value) at the the fifth iteration only.



16 Roberto Armellin et al.

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

Iteration #

||
r̂
8
−

r
∗ 8
||
[k
m
]

 

 

mean min max

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

Iteration #

||
v̂
8
−

v
∗ 8
||
[m

/
s]

 

 

mean min max

(a) Estimation error
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(b) Estimated covariance size
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(c) Observation residuals convergence
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(d) Final observation residuals

Fig. 3: Test case A

Figures 3, 4, and 5 show all a similar behaviour of the relevant quantities.
The accuracy of the estimation improves with iteration number, and the size
of the estimated state covariance reduces accordingly. The observation residu-
als decrease and become more homogeneous with the iteration number. More
accurate predictions are obtained for the Test Case A, thanks to both a longer
observed arc and lower eccentricity of the orbit. In this case all the 100 simu-
lations reach the 5-th iteration, with a mean final average estimation error of
0.164 km on position and 0.022 m/s on velocity. These errors increase to 3.353
km and 0.439 m/s for Test Case B, and to 8.520 km and 1.481 m/s for the
Test Case C. Note that the 96% of the simulations reach the fifth iteration for
the GTO case, and this number further reduces to 90% for the Molniya orbit.

Finally, in Figure 6 the results of 100 simulations using first order Taylor
expansions are shown to highlight the effect of nonlinearities. It can be noticed
that for the GEO case (Figure 6(a) and 6(b)) the updating algorithm is still
convergent (although the average estimation error doubles with respect to 6-
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(a) Estimation error
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(b) Estimated covariance size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−2

10
0

10
2

10
4

Observation #

∆
 α

 [
σ

]

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

−2

10
0

10
2

10
4

Observation #

∆
 δ

 [
σ

]

 

 

it #1 it #2 it #3 it #4 it #5

it #1 it #2 it #3 it #4 it #5

(c) Observation residuals convergence
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(d) Final observation residuals

Fig. 4: Test case B

order expansion) as both the estimation errors and the residuals decrease with
the iteration number. This is not the case for both Test Case B and C, where
the estimation errors and residuals decrease only up to the third iteration
(i.e. when nine optical observations are used). Thus, in these cases a linear
approximation is not sufficiently accurate in mapping, to the central epoch,
the observations taken at the boundary of the visibility windows.

6 Conclusions

In this paper the problem of dealing with observation uncertainties in IOD is
addressed. A fully nonlinear method for IOD is implemented based on the high
order Taylor expansions delivered by DA computation. The method, based on
the solution of two Lambert’s problems, delivers the solution of IOD problem
and nonlinearly maps uncertainties from the observations space to the state
space already when the minimum (three) number of optical observations are
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(a) Estimation error

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

Iteration #

m
a
x
σ
r
8
[k
m
]

1 2 3 4 5
10

−4

10
−2

10
0

10
2

10
4

Iteration #

m
a
x
σ
v
8
[m

/
s]

(b) Estimated covariance size
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(c) Observation residuals convergence
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(d) Final observation residuals

Fig. 5: Test case C

considered. The algorithm converges for all the cases considered within, on
average, three iterations. The average computational time is 3.6 s when 6-th
order computations are carried out.

A linear scheme for updating the state’s first two statistical moments is
proposed when more optical observations are available in a single passage.
This scheme is based on the generation of full state pseudo-observations at
a common epoch, taking advantage of polynomial inversion tools available in
DA. The required expectation are computed on high order Taylor polynomials,
limiting the Gaussian assumption to the observation noises only. The updating
scheme is shown to improve the accuracy of state estimation when short-
dense observation arcs are available. The average computational time for the
updating scheme is 1.91 s at order 6.

In the present work simplified keplerian dynamics are used. The algorithms
can be easily extended to arbitrary dynamics by using the DA-based tools for
the Taylor expansion of the solution of ODEs (see 17 for details) and by
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(a) Estimation error (Test Case A)
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(b) Observation residuals convergence (Test
Case A)
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(c) Estimation error (Test Case B)
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(d) Observation residuals convergence (Test
Case B)
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(e) Estimation error (Test Case C)
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(f) Observation residuals convergence (Test
Case C)

Fig. 6: Update results for 1st order computations
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replacing the Lambert’s solver with a DA-based algorithm for expanding the
solution of two-point boundary values problems (as illustrated in 16). The
authors plan to apply the algorithms to real observations including the case
of short-dense radar observations.
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