
AAS 22-146

CRATER NAVIGATION AND TIMING FOR AUTONOMOUS LUNAR
ORBITAL OPERATIONS IN SMALL SATELLITES

Z R. McLaughlin*, Rachael E. Gold*, Sofia G. Catalan*, Rahul Moghe*,
Brandon A. Jones†, and Renato Zanetti†

Efforts at NASA and in the commercial space sector seek to extend space oper-
ations into cislunar space, lunar orbit, and down to the Moon’s surface. Mission
concepts require the extension of infrastructure and support services into these new
regimes to enable comparable autonomous and safe operations seen in the near-
Earth environment. This paper presents research to develop a Crater Navigation
and Timing (CNT) technology capable of running in a 3U CubeSat that is consis-
tent with the operating conditions of the lunar environment. The CNT approach
requires three algorithms running on-board the spacecraft: detection of craters in
an optical image, identification of those surface features, and fusion of these obser-
vations with a predicted trajectory to produce a position, navigation, and timing
(PNT) solution. This paper will demonstrate the fusion of these algorithms and
show the PNT performance of the software under small satellite flight-like con-
straints.

INTRODUCTION

As the scope of space missions beyond Earth orbit widens, cislunar space has become an area
of increased focus for NASA, the DoD, and many other government and corporate agencies. The
potential for further technological advancement, planetary science opportunities, and space explo-
ration is high, but there is a clear need for new technologies to enable an autonomous set of missions
to achieve these goals.1 Among some of the most important capabilities necessary to enable future
missions of this type is the ability to navigate with accuracy and precision in lunar orbit.

Navigation in the Moon’s orbital environment poses a challenge different to that of navigation in
terrestrial orbits. Because of a lack of GNSS systems and the increased cost of ground-based com-
munication to lunar assets, there is a far greater cost in maintaining position and timing knowledge
of a spacecraft orbiting the Moon rather than the Earth. Due to limited resources and commu-
nication opportunities, the ability for such a spacecraft to gather measurement data to update its
knowledge would greatly increase the feasibility of deploying and managing more assets while po-
tentially enabling a network that could share this navigation and timing data with other spacecraft.
Crater Navigation and Timing (CNT) development is dedicated to the advancement of such lunar
technologies by achieving more precise navigation and timing solutions in lunar orbit using in-situ
measurements to improve and maintain a priori state knowledge.

*Graduate Research Assistant, Department of Aerospace Engineering and Engineering Mechanics, The University of
Texas at Austin, Austin, TX 78712

†Assistant Professor, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at
Austin, Austin, TX 78712.

1



One of the most readily available types of measurement data in the lunar environment are the
craters that populate the Moon’s surface. Terrain Relative Navigation (TRN) is a form of navigation
that uses the natural features of a body to provide measurements through identification and catalog
matching. This may be done by comparing information gathered from optical data to a catalog of
a body’s features. For this work, the craters on the Moon’s surface are used in conjunction with an
optical camera and a neural network to provide estimates of visual craters’ locations. These located
crater’s pixel values in an image may then be matched to a catalog of the Moon’s surface features
to provide a full measurement model and observation data for the spacecraft.

In the past, similar efforts to that of this project have been undertaken to utilize TRN-based
approaches in lunar orbit.2 Until recently, these efforts have utilized classical image processing
techniques such as fast Fourier transforms (FFTs), shadow modeling, and pixel intensity threshold-
ing in order to produce a centroid location. As technology has continued to advance in the field of
machine learning (ML), however, numerous advantages of ML-baed detection algorithms have been
identified, such as further robustness to crater irregularity, higher accuracy in a variety of lighting
conditions, and performance without geometric constraints. Robustness in cases like this have led
to a recent proliferation in other ML-based lunar navigation work,3,4 which may be more flexible
when considering the varying surface geometry and lighting conditions common to the craters on
the surface.

The CNT problem may be roughly broken down into three primary components; crater centroid
detection, catalog identification, and position and time estimation. The goal of this work is to
produce a stable final product which is able to produce a navigation solution with a root mean
square (RMS) position error of under 100 meters and an error in time under 100 milliseconds.
Current results provided in this paper show that each component element of the project is able to
perform with consistent accuracy for near circular and near equatorial low-lunar orbit test cases
(those having Keplerian orbital elements of inclination under 20 degrees and 0.001 eccentricity).
This paper also presents additional tests to indicate tentative success in integration between the
different component parts, with current tests showing successful navigation state estimation using
the machine learning detector for up to 3 orbit periods while meeting the position threshold accuracy.
Time bias estimation algorithms have also been added to the software and show that the initial target
of time estimation error within 100 milliseconds is possible, but further work here to compensate
for more realistic clock bias models is still underway.

CRATER DETECTION

Processing the terrain images taken by an on-board camera enables the subsequent state estima-
tion in this work. The obvious task of the crater detection method is to determine where craters
are in an image, however, the wide variety of what craters can look like presents a challenge to au-
tonomous processing. Lighting conditions, along with the crater size, shape, depth, and surrounding
terrain, greatly affect how a crater appears in an image, which is why the detection process requires
computer vision methods that are more complex than simple edge and circle detection.

Mask R-CNN Detector

The crater detection method used in this paper expands on previous work that describes the use
of a Mask R-CNN model.5 While the prototyping and development of trained Mask R-CNN model
was done in the PyTorch framework6 and Python, the CNT software was developed in C++ with
an object-oriented programming structure. To integrate the crater detection model into C++, the

2



Open Neural Network Exchange (ONNX) format was used, along with their open sourced tools.7

ONNX enables the PyTorch-based model to be converted such that the C++ CNT code can run
the detector in the loop for further development and integrated testing. These machine learning-
based capabilities enable the crater detection method to handle the variability in lunar craters to
provide detections with an associated confidence value. The terrain images are passed through the
detector and each crater detection is tagged with a confidence value, which enables sorting out low
confidence craters with the goal of removing false detections. Following an ellipse fitting method
for each detected crater, a conversion process is done to compute the horizontal and vertical bearing
angles of the crater centroid relative to the camera boresight via

α = arctan

(
xc − 0.5N

f

)
and (1)

β = arctan

(
yc − 0.5N

f

)
, (2)

where (xc, yc) are the crater centroid pixel coordinates, N represents the image pixel length, f is
the camera focal length, and (α, β) are the horizontal and vertical angles respectively for an input
square image of the lunar terrain.

The integrated detector in this paper improves upon previous work5 with changes to enable more
accurate centroid estimation for craters that are partially in the field of view. This improvement adds
more crater detections to be processed by the identification step, which requires that the computed
centroid is within a specified threshold of the true catalogued crater. With this partial crater cen-
troiding capability, the estimation filter gains additional measurements that can be processed in the
measurement updates.

Image Generation and Datasets

Testing the crater detection method developed in this work requires lunar terrain images that
are representative of those taken by an orbiting spacecraft. Images taken by previous and ongoing
missions provide the data needed to produce simulated imagery, or in some cases, like for Apollo
and the Lunar Reconnaissance Orbiter, direct imagery from missions provide real images that can
be processed through the crater detection software. For algorithm development and evaluation,
the use of simulated imagery provides several advantages: (1) perfect knowledge of the spacecraft
trajectory and dynamics models, (2) configurable camera model, (3) idealized lighting conditions,
(4) known true crater locations, and (5) automated scripting for testing.

While testing individual images against crater detection methods provides insight on the crater
centroiding accuracy, the subsequent processes including the crater identification and spacecraft
state and time estimation can only be tested with a continuous set of images that are representative
of a spacecraft in orbit. Given a user-specified dynamics model, the generation of an input trajectory
can simply use a two-body orbit around the Moon or with higher fidelity models and numeric
integration of the equations of motion. Then, setting a camera model enables the generation of
terrain image sets that can be used to test the entire CNT workflow.

For the development of the crater detection method used in this paper and integrated CNT testing,
the primary data sources for generating images are the LROC Global Morphologic Maps8 and the
Robbins lunar crater database.9 With software tools developed in previous work, the LROC maps
and the crater database enable an automated capability to generate simulated datasets with contin-
uous trajectories.5 As the image set metadata contains truth information for where the craters are

3



located, the centroiding accuracy of the crater detection method and the true spacecraft state can be
compared against the computed values through the CNT process. Scripts using simulated imagery
are responsible for numerically validating the developed algorithms so that all inputs to the image
and trajectory generation software may be specified by a user.

Figure 1 shows an example set of images with highlighted crater detections from the LROC-based
simulated imagery. In future work, image generation through tools like PANGU10 and Blender11

will be explored to enable modeling different lighting conditions, terrain shadows, and more ac-
curate camera models along with the use of Apollo and LRO mission data to add further testing
capabilities for the CNT framework.

Figure 1: Simulated images from LROC Global Maps with crater detections

TIME BIAS ESTIMATION

Estimation of the time onboard a potential lunar asset is crucial in order to ensure the correct
use of ephemeris-based data to perform navigation filer time updates and to ensure that incoming
biased timestamps are not used as-is to perform updates to the navigation state. The CNT software
is currently capable of receiving an a priori PDF from a simulated ground station to estimate the
bias time. This may be done every certain number of measurements, or at any other time, so long
as the input states are thought to be at the same time (though the navigation time is in fact biased).
The time bias is

∆t = t− t∗, (3)

where t is the true time and t∗ is the time measured by the clock on the spacecraft. This work
seeks to estimate ∆t. In order to facilitate this process as it is being further developed, simplifying
assumptions are made by the CNT algorithms to allow for a smoother time estimation process:

• There is no error in the time tag of the ground-based ephemeris.

• The clock bias is estimated using one navigation solution rather than a batch.

• The potential uncertainty in the ground solution is not considered.

• The bias estimator considers the reference state to be true.

• The navigation covariance does not change over the bias period when propagating.

• The algorithm does not consider the velocity covariance in the navigation solution.

• The algorithm assumes that:

∂r (t∗ + ∆t)

∂∆t
≈ v (t∗ + ∆t) + (a (t∗ + ∆t))) ∆t (4)

4



In order to actually perform the bias estimation, the CNT software solves the nonlinear least squares
problem

∆̂t = arg min
∆t

(r(t)− r̂ (t∗ + ∆t))T P−1 (r(t)− r̂ (t∗ + ∆t)) . (5)

This illustrates that the algorithm attempts to converge on a ∆t which minimizes the difference
between the estimated filter solution, r̂ (t∗ + ∆t), and the ground epoch solution, r(t).

To independently verify this proof of concept, Monte Carlo trials was performed to test against
the accuracy limit of 100 ms. These results were gathered using a simple two-body propagation
scheme, though it is important to note that the propagator fidelity may be customized within the
CNT software and that further results have been gathered using a higher fidelity propagator with
gravity gradient perturbations.

For the test results included here, two different biases of one and ten seconds were used to set
the true and biased states apart. The scripts utilized a navigation solution at time t∗ along with the
true bias of one second to create 10,000 randomized realizations of the true state at the true time.
Each of these true states were used in the trial to produce the statistical performance of the time bias
estimation algorithm.

100 75 50 25 0 25 50 75 100
Time Bias Estimation Error [ms]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

D
en

si
ty

True Bias: 1 sec
 Pos 3-sigma RMS Error: 100 m

75 50 25 0 25 50 75
Time Bias Estimation Error [ms]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175
D

en
si

ty

True Bias: 10 sec
 Pos 3-sigma RMS Error: 100 m

Figure 2: Monte Carlo time bias results

Figure 2 shows that the time bias estimator is able to successfully track the difference in the
biased and real times in order to apply the differential to the estimated state. Additionally, these
results show that the algorithm is capable of doing so consistently with an error less than 100 ms.

Although the time bias estimation software has been fully integrated with the simulation, detec-
tion, and filtering capabilities of the CNT software, at this point in time the realism of the clock bias
simulation could be improved significantly. The time bias is currently simulated as a constant offset
value to the true timestamps, so there is no walk in each timestamp as continued measurements are
received by the filter.

NAVIGATION FILTER

Estimating the state of a spacecraft in low lunar orbit is the principle goal of the CNT project.
Both the time bias estimation capabilities and the crater identification and matching algorithms are
meant to bolster and enable the software’s ability to maintain a robust navigation solution. The
navigation filter implemented in the CNT software utilizes these elements in conjunction with data

5



provided by the crater detector in order to update and propagate the a priori state’s probability distri-
bution function (PDF). A slightly modified extended Kalman filter (EKF) is used in this software in
order to ensure on-board tractability when implemented on flight hardware compatible with a small
satellite. The position estimator part of the CNT software is compatible with a variety of different
propagators, with a range available from simple two-body models to those including solar radiation,
gravity gradient perturbations, and drag models to those performing ephemeris-based propagation.
Any change to the propagator choice is reflected across the other CNT applications, such as the time
bias estimation software.

The navigation algorithm works in two discrete parts, the time update and the measurement up-
date, with a few important steps in between to ensure the timely processing and matching of the
detections and craters. This section outlines each of these components in order to illustrate how
they fit together to produce an updated PDF. The time update for the CNT object is performed
before crater matching and identification; this update is responsible for receiving the timestamp
of the incoming image measurement, applying the estimated time bias to that image to attempt to
correct the onboard clock bias, and propagating forward to the estimated image time. After this
point, further processing is required in order to prepare for the measurement update. First, a local
crater catalog must be generated based off of the estimated position and attitude of the spacecraft,
which is assumed to be provided from an external source, such as an IMU on board. After crater
identification and matching, a measurement update is performed. The measurement model used in
the filter classifies bearing angles, denoted as α and β as the observation vector. This information
is calculated using the pixel values of the estimated centroids and the MCI position of the crater
centroid calculated from the corresponding latitude and longitude of the crater determined through
matching. The measurement update itself is a modified version of a classical EKF update, with an
underweighting factor to account for nonlinearities as well as an iterative update which uses every
matched crater to accumulate a proposed change to the a priori state before finally summing and ap-
plying those changes to the a priori mean and covariance. The latter parts of this section describes
each of these three key processes; the catalog creation and crater matching, the measurement model
used in the filter, and the measurement update.

Local Catalog Creation and Crater Matching

The CNT software is built to receive a measurement in the form of an image. This means that the
only immediately available information is the image timestamp and a collection of pixel centroids
which may be retrieved from the Mask R-CNN detector. This information by itself is of no help
to the spacecraft, meaning that further knowledge is required to utilize those detections towards a
state update. This information can be retrieved by use of a surface feature catalog, in this case the
Robbins lunar crater catalog. This database, pre-truncated for crater size based on camera field of
view and orbit regime, is used to create a local catalog at each time step by projecting the spacecraft
camera’s field of view pointing downward towards the surface according to the spacecraft’s body
frame. For this work, the body frame is the North-East-Down down frame (though this may be
otherwise specified as an input to the CNT software by the user).

After a local catalog is created, the CNT algorithm utilizes the Munkres or Hungarian Matching
algorithm12,13 in order to identify craters based on entries in the crater catalog. In the Munkres
algorithm, assignment is determined based on a cost matrix, C. The entries in the cost matrix
are filled with the 2-norm of the distances, d, in pixel space, between the craters detected by the

6



detector, rdetected, and the craters in the catalog, rcatalog via:

C(i, j) = ‖d(i, j)‖2 = ‖rdetected(i)− rcatalog(j)‖2 (6)

where i = 1 : n, j = 1 : m. Assignment is then determined by finding the minimum of:

π̂ = arg min
π∈Π

[
n∑
i=1

min (c,C(i, π(i)))

]
(7)

where Π is the set of all assignments of detected to cataloged craters, π, and c is the cutoff value for
assignment. For the CNT algorithm, the cutoff value is chosen to be the maximum value of C(i, j)
shown in Eq. 6, which mitigates the risk of false identification of craters.

Measurement Model

The measurement model utilized in the CNT framework relies on bearing angles for observations.
These bearing angles, denoted as α and β, represent the location of the crater centroid compared to
the center of the image in horizontal and vertical field of view (FOV) space, respectively. Figure 3
shows the localized camera attitude reference frame and how the bearing angles are represented in it.
The bearing angles can be calculated directly using the vector from the camera to the crater centroid

Figure 3: Camera Axes and Bearing Angles

represented in the camera frame as shown in Eq. 8. In order to perform this calculation, the transfor-
mation matrix TMCI

CAM denoting the transformation from the Moon-centered Inertial reference frame
(MCI) to the camera frame (CAM) must be calculated, shown in Eq. 9.

[
rCAMsf

]
CAM

= [x y z ] = TMCI
CAM

(
[rsf ]MCI − [rorb]MCI

)
(8)

TMCI
CAM = T S

CAMTB
S T

MCI
B (9)

The B and S subscripts in Eq. 9 represent the body frame and the structure frame, respectively.
By taking the x, y, and z components of the

[
rCAMsf

]
CAM

vector from Eq. 8. The bearing angles
are

7



α∗ = arctan
(x
z

)
and (10)

β∗ = arctan
(y
z

)
. (11)

The partial derivatives of the bearing angles in the MCI frame can be defined as

∂α∗

∂[rorb]MCI

=
∂α∗

∂[rsf ]MCI

∂[rsf ]MCI

∂[rorb]MCI

=
∂α∗

∂[rsf ]MCI

TMCI
CAM

[
rCAMsf

]
CAM

and (12)

∂β∗

∂[rorb]MCI

=
∂β∗

∂[rsf ]MCI

∂[rsf ]MCI

∂[rorb]MCI

=
∂β∗

∂[rsf ]MCI

TMCI
CAM , (13)

where the partials with respect to the surface features in the MCI may be first calculated as

∂α∗

∂[rsf ]MCI

=

[
− z

z2 + x2
0

x

z2 + x2

]
and (14)

∂β∗

∂[rsf ]MCI

=

[
0 − z

z2 + y2

y

z2 + y2

]
(15)

in order to more feasibly compute the full partial derivatives with respect to the orbital state. The
partial derivatives of the bearing angles with respect to the orbital velocity of the satellite are simply
zero vectors for both α∗ and β∗.14

Measurement Update

Now that the crater identification and matching algorithm and measurement model have both been
defined, the measurement update may be dictated clearly. As previously mentioned, an EKF is the
filter responsible for performing measurement updates in the software. This EKF has two primary
modifications to the traditional algorithm; one is the way in which the filter uses the calculated
residuals to produce a deviation to alter the state, and the other in the measurement underweighting
included in the algorithm.

The measurement underweighting used in this filter closely follows the presentation of under-
weighting methods described by NASA’s Navigation Filter Best Practices handbook.15 In particu-
lar, the software contains options describing the simplest underweighting procedure — scaling the
measurement error covariance matrix — or underweighting following their presentation of Lear’s
method, which is currently in use in the CNT filter algorithm, to produce an altered Kalman gain
Kk,

Kk = P−kH
T
k

(
(1 + γ)HkP

−
kH

T
k + Rk

)−1
, (16)

which is scaled by the factor γ. Here, P−k denotes the a priori covariance, Hk is the Jacobian matrix
of the measurement model, and Rk is the measurement covariance matrix. Underweighting was
included in the filter due to the linearization error incurred by the adoption of the EKF in solving
nonlinear problems; it is possible that the a posteriori uncertainty as computed by the filter does not
represent the truth to an accurate enough extent such that the estimated covariance is inconsistent
with the errors in the state. This can be a valid area of concern for the CNT problem because of
the large fluctuation in the number of detections per image; a period of sparse detections can cause
the a priori uncertainty to grow quite large. In such a case, a measurement with many accurately

8



identified caters may actually reduce the size of the covariance too rapidly, negatively affecting filter
performance. With the inclusion of the underweighting scheme, it is possible to mitigate this issue.

One further change from a standard EKF is that the measurement update processes a batch of
measurements which should all be able to adjust the a priori mean with equal weight. The CNT filter
does this by accumulating a deviation in the mean for each measurement loop before modifying the
a priori. In other words, an individual a posteriori mean is not calculated and then updated again
for and by each centroid measurement; rather, the difference that each measurement would apply
to the mean is accumulated across each measurement while the covariance is adjusted during each
individual update. After all updates have been processed, the final deviation is applied to the state,
thus completing the generation of the a posteriori distribution.

The filter’s process noise covariance, Q, is generated using the linear process noise model,16 as

Q =

[
1
4∆t4q ∗ I3

1
2∆t3q ∗ I3

1
2∆t3q ∗ I3 ∆t2q ∗ I3

]
, (17)

where q = [q1 q2 q3] is a vector of constants which can be tuned as needed, ∆t is the change in
time from the previous measurement to the current measurement, and I3 is a three by three identity
matrix. The results presented in this paper use process noise values of q1 = q2 = q3 = 10−15.

Finally, the filter also makes use of measurement editing to ensure that only measurements that
result in a distribution statistically consistent with a chi-squared distribution are used in the state
estimate. This is done by checking the squared Mahalanobis distance,

m2
r = ∆zTk (P+

k )−1∆zk, (18)

where ∆zk is the pre-fit residual and P+
k is the a posteriori covariance. When mr is less than the

inverse of the cumulative distribution function of the χ2 distribution of the order of the degrees of
freedom of the observations.15 Since the bearing angles α and β are the measurements, the order of
the chi-squared distribution is two and the boundary for them2

r is 5.9915 for 95 percent confidence.

RESULTS

This section details the results produced by the CNT algorithms, both with and without the ma-
chine learning detector in the loop. All of the CNT software meant for eventual flight-compatible
implementation is implemented in C++ and C, while the simulation utilities are primarily housed
in Python scripts. The simulation architecture developed for this work also allows for a variety of
propagator fidelities to generate true states. This propagator selection wraps the same utilities used
for propagation on in CNT algorithms. These scripts maintain a data pipeline which is responsible
for handling a given test case and then generating all of the required information to run the CNT
software. This information consists of a true trajectory file for comparison and a crater centroid de-
tections file which is written for several different sub-cases; simulated detections with and without
measurement noise and with and without a lunar dark side effect for each of the noise cases, where
those craters which are not illuminated are not “seen” by the detector. In addition to the simulated
detections file, a file is also generated from the Mask R-CNN detector using ONNX with the same
trajectory and attitude information used to generate the simulated trajectory. This information is
used in concert with the LRO maps to produce an analog to the simulated detections file which uses
previously discussed simulated lunar surface imagery to truly test the CNT algorithms and how well
they perform.

9



Test Cases and Data Generation

Table 1: Test cases

Cases a (km) e i (rad) Ω (rad) ω (rad) ν (rad)

0 1837.4 0.0 0.0 0.0 0.0 0.0
1 1837.4 0.001 0.0 0.0 0.0 0.0
2 1837.4 0.0 0.3 0.0 0.0 0.0
3 1837.4 0.001 0.3 0.0 0.0 0.0

This initial publication considers four different test cases. Case zero is an equatorial and circular
orbit, case one is an eccentric and equatorial orbit, case two is a circular and inclined orbit, and case
three is an eccentric and inclined orbit. Between all of these, the discrepancies between performance
between orbit types can be more easily identified. For example, due to the LRO maps projection
from a 3D surface to a 2D plane, more distortion is present for images further from the equator.
Including slightly inclined cases in the algorithm is a way to test responses to this issue and to
see how the filter may respond to image distortion, which would create a mismatch between the
pixel location of the centroid and the corresponding latitude and longitude of the same crater on the
surface.

Simulating detections rather than using the neural network alone provides a way to debug the
filter without worrying about measurement errors and inconsistencies. Because noise can be added
at will, the filter may be tested across a variety of different scenarios to better understand its per-
formance. In the simulated detections case, imagery is completely bypassed and the true crater
locations from the Robbins catalog are used and edited to create a set of false measurements based
on the true trajectory of the simulated spacecraft. The detections are generated by first finding
the field of view (FOV) given the position of the satellite assuming a North-East-Down attitude.
Equation 19 calculates the FOV,

FOV = 2 arctan

(
L

2h

)
, (19)

where h is the altitude in relation to the Moon and L is the length of the edge of the FOV in
kilometers. Note here that the FOV of a camera onboard an actual spacecraft would likely be fixed
— this calculation of the FOV is an artifact of simulation constraints. The reason for this is to be
compliant with an initial image dataset from LROC wherein each image covered 3 degrees latitude
and 3 degrees longitude in either direction. Because the altitude of the spacecraft is not fixed, yet
the image size is, a variable field of view is simulated in order to ensure compatibility with the
image data. Equation 19 currently assumes a square, flat FOV. Future work will include algorithms
to combat the distortion from a 3D surface to a 2D camera projection, but this has not yet been
implemented. After the FOV is calculated, it is projected into the camera frame of the satellite via

u = v = h tan

(
FOV

2

)
, (20)

where u and v represent the distance in the planar directions in the Camera frame. Using u, v,
and h, the boundaries for the FOV can be transformed into lunar latitude, longitude, and altitude
coordinates. At this point, the craters in the Robbins catalog that lie within the boundaries are
modified through the addition of Gaussian white noise to simulate the expected noise from the
sensor and crater detection process.

10



Simulated Detections Results

All four cases are tested with the simulated detections which are shown in Table 1. All cases
have detections generated with both ideal lighting, where no craters on the surface are shadowed,
and with the simulation accounting for the shadowed area of the Moon, considered to be between
between true anomalies of π/2 and 3π/2. Additionally, the true position and the filtered position
are propagated with gravity perturbations calculated using a spherical harmonics model from Lunar
Prospector. The ephemerides of the Moon are provided by the JPL DE 421 file for the truth and DE
405 file in the filter propagator.17,18

The filter has been tested for consistency with 100 Monte Carlo runs. The Monte Carlo runs are
generated by keeping the initial a priori in the filter constant and randomly sampling that same a
priori distribution to find an initial state for the the true trajectory. The true trajectory is then used to
generate a new set of simulated detections. The MCI state error results for the Monte Carlo runs for
Case 3 are shown in Fig. 4 under ideal lighting and Fig. 5 with the dark side of the Moon simulated.
In these plots, the two different 3σ bounds are generated from the mean 3σ bound output from the
filter and also three times the standard deviation calculated from the 100 Monte Carlo runs. The
root mean square error (RMS) for the position for a single run of all cases is shown in Table 2. In
each case, the position accuracy target of 100 meters is met consistently for a case with no gaps
in measurements caused by lack of surface lighting. For the cases which simulate the spacecraft
in shadow, the state error occasionally peaks over 100 meters in some individual Monte Carlo runs
before quickly converging towards zero as new measurements become available.

Figure 4: Monte Carlo results for Case 3 with ideal lighting

Time Bias

Test cases 0 and 3, representing the circular and equatorial and the eccentric and inclined cases,
respectively, have been used to generate results in the presence of a clock bias. The CNT software
models this bias by applying an offset to the incoming image timestamps according to a bias value
and a standard deviation that may be altered by the user. Because the software cannot be directly
sensitive to random perturbations in the bias outside of the use of process noise in the filter, the

11



Figure 5: Monte Carlo results for Case 3 with simulated shadow

Table 2: Root mean square error for one Monte Carlo trial of all simulated cases

Cases RMSx (km) RMSy (km) RMSz (km) RMS3D (km)

Ideal 0 0.011 0.017 0.004 0.021
Ideal 1 0.005 0.005 0.005 0.009
Ideal 2 0.010 0.010 0.007 0.016
Ideal 3 0.015 0.011 0.005 0.020
Dark Side 0 0.044 0.041 0.009 0.061
Dark Side 1 0.032 0.045 0.040 0.069
Dark Side 2 0.078 0.076 0.050 0.120
Dark Side 3 0.079 0.078 0.024 0.114

time bias estimation algorithm has only been tested in the loop with a deterministic bias or with
very small (on the order of 1E-3 seconds) standard deviation values. These tests show that with
process noise as earlier described and with the time bias estimation software in the loop, the CNT
software may estimate a constant or near-constant on board clock bias while providing a position
estimate with under 100 meters of error. These results also show that a timing solution of under
100 milliseconds of accuracy is within reach, but that it cannot be guaranteed for each individual
simulation at this time.

Figures 6 and 7 show the error in the position estimate over time for cases 0 and 3, respectively.
For all of the time bias test cases, a 5 detection cap was used for each image measurement to ensure
similarity with the Mask R-CNN detector outputs. Each of these two scenarios has two different
bias cases; one with a simulated clock bias of 2 seconds and another that has a clock bias of 20
seconds. An a priori update from the ground is provided every 1000 seconds in this proof of concept
demonstration. The software models the ground reference state to be accurate to 1E-5 kilometers
in position and 1E-8 kilometers per second in velocity to the true spacecraft state. At this time, the
CNT software does not utilize covariance information along with the ground update. These tests
show that the performance of the CNT software with a constant clock bias is within the goal of a
position error less than 100 meters.

12



-1.0E-01

0.0E+00

1.0E-01

r x
 k

m

Error
3

-4.0E-01

-2.0E-01

0.0E+00

2.0E-01

4.0E-01
r y

 k
m

Error
3

0 50 100 150 200 250 300 350
Time (minutes)

-1.0E-01

0.0E+00

1.0E-01

r z
 k

m

Error
3

(a) 2 second bias, ground update every 1000 seconds

-1.0E-01

0.0E+00

1.0E-01

r x
 k

m

Error
3

-4.0E-01

-2.0E-01

0.0E+00

2.0E-01

4.0E-01

r y
 k

m

Error
3

0 50 100 150 200 250 300 350
Time (minutes)

-1.0E-01

0.0E+00

1.0E-01

r z
 k

m

Error
3

(b) 20 second bias, ground update every 1000 seconds

Figure 6: Position state errors with clock bias estimation: case 0

-4.0E-01

-2.0E-01

0.0E+00

2.0E-01

4.0E-01

r x
 k

m

Error
3

-1.0E-01

0.0E+00

1.0E-01

r y
 k

m

Error
3

0 50 100 150 200 250 300 350
Time (minutes)

-2.0E-01

-1.0E-01

0.0E+00

1.0E-01

2.0E-01

r z
 k

m

Error
3

(a) 2 second bias, ground update every 1000 seconds

-4.0E-01

-2.0E-01

0.0E+00

2.0E-01

4.0E-01

r x
 k

m

Error
3

-1.0E-01

0.0E+00

1.0E-01

r y
 k

m

Error
3

0 50 100 150 200 250 300 350
Time (minutes)

-2.0E-01

-1.0E-01

0.0E+00

1.0E-01

2.0E-01

r z
 k

m

Error
3

(b) 20 second bias, ground update every 1000 seconds

Figure 7: Position state errors with clock bias estimation: case 3

Table 3 shows the root mean square error for the estimated position of the spacecraft over time
for all four runs shown in Figs. 6 and 7. The results here show an acceptably low RMS compared to
the results presented in Table 2. The difference in the final time, ∆tf , shown in the table, which is
the difference between the on board Julian date and the true Julian date at the final time in seconds,
shows that the error at the end of the run is under 100 milliseconds for 3 of the runs, but that
it is slightly over for case 3 with a 2 second bias. This value changes between runs due to the
performance of the filter, the different realizations of noise, and a different initial a priori offset
from the truth. These values are only meant to serve as examples that show the goal for time bias
estimation is within reach.

Mask R-CNN Detections Results

While the tests using simulated detections provide a method of inspecting the filter performance
without the detector in the loop, the tests outlined in this subsection include cases using the sim-
ulated image generation and the crater detection for an end to end software evaluation. Figure 8
compares the results from the simulated detections and the Mask R-CNN detection outputs for a
3-orbit test case with initial conditions matching Test Case 0 in Table 1 with dynamics models
matching the previous simulation setup for both the true trajectory and the CNT time update model.
These plots reflect the differences between the crater detection inputs that result in larger state errors
with the detector in the loop. In this section, the results will only include position errors and their

13



Table 3: Root mean square error for time bias tests and final time difference (tf,true − t̂f )

Cases RMSx (km) RMSy (km) RMSz (km) RMS3D (km) ∆tf (ms)

Case 0, 2 second bias 0.009 0.01 0.005 0.014 - 99.840
Case 0, 20 second bias 0.012 0.017 0.006 0.021 72.777
Case 3, 2 second bias 0.008 0.011 0.016 0.021 -137.426
Case 3, 20 second bias 0.01 0.011 0.016 0.022 25.864

respective 3σ covariances for clarity. Table 6 summarizes the resulting RMS values for these tests.

Figure 8 shows much larger errors with the detector in the loop compared to those of the sim-
ulated detections. The figure also shows that the mean position error exceeds the 3σ covariance
bounds periodically. This result indicates that while the simulated detection outputs emulate the
expected measurement error of the real detector, there are other potential differences between the
construction of the simulated data to the detector outputs that are not accounted for in the current
configuration. The primary advantage of using simulated detections is runtime, since it does not
include the generating images and running the Mask R-CNN model, which are slow processes com-
pared to the execution of the navigation filter. Improved modeling of the real detector through the
simulated detection generation is planned for future work, however, differences in the number of
detections and an observed residual bias are explored in the subsections below.

(a) Simulated detections test (b) Detector in the loop test

Figure 8: Position state errors (without setting a maximum number of craters processed or bias
corrections)

Number of detections

The simulated detections contain more craters per image compared to the detector outputs. Since
the simulated craters do not have an associated confidence threshold, all detections produced in the
simulation would be processed by the estimation filter. In comparison, the detector’s outputs are
parsed down based on the threshold and if the identification method fails to find a matching crater,
the set of detections will be further reduced. In some cases, the simulated detections include >100
craters in an image, whereas the detector might have around 10 or fewer craters.

To better compare the state errors between the simulated and real detections, a maximum number
of craters per image can be set in the test scenario. This enables further inspection of the effect of
fewer processed measurements in the estimation filter, where Fig. 9 shows the resulting state errors
when only 3 measurements are used in each image. For the detector in the loop test, the detections

14



are sorted by confidence to keep the 3 highest confidence craters, but the detections must also pass
through the 0.8 confidence threshold set in previous testing. Compared to the observed errors when
all detections are processed, the resulting plots show a higher frequency periodic covariance change
for both cases and the mean errors from processing the real detections are now bounded by the 3σ,
indicating that the filter obtains a more consistent state solution.

(a) Simulated detections test (b) Detector in the loop test

Figure 9: Position state errors with a maximum of 3 detections per image, without bias correction

Measurement bias

Running a test case in which the true states are used as the filter’s a priori mean enables inspection
of potential measurement biases in the detector outputs. With the detections used to generate the
previous test case in Fig. 9 and the true states, Fig. 10 shows the residual outputs for the simulated
and real detector tests and the output statistics are shown in Table 4. The non-zero means for
the prefit residuals in the detector test suggest that there are unmodeled measurement biases that
may cause the larger state errors when compared to those from the simulated detections that have
negligible residual means for α and β.

(a) Simulated detections test (b) Detector in the loop test

Figure 10: Residual outputs with a maximum of 3 detections per image and using the true state as
the filter a priori

While the source of the observed measurement bias requires further investigation, one method to
reduce the error caused by the bias is to apply a correction to the observation model provided in Eq.

15



Table 4: Residual output statistics with a maximum of 3 detections per image and using the true
state as the filter a priori

ᾱ (rad) ασ (rad) β̄ (rad) βσ (rad)

Simulated detections -1.01E-7 0.0038 -1.02E-5 0.0038

Mask R-CNN detections -3.67E-4 0.0025 -0.0016 0.0027

1 and 2. This bias correction is applied to reprocess the Mask R-CNN detector outputs via

α = tan−1

(
xc − 0.5N

f

)
− ᾱ and (21)

β = tan−1

(
yc − 0.5N

f

)
− β̄, (22)

where (ᾱ, β̄) corresponds to the mean bias values from Table 4 for the respective bearing angles.
After the bias correction is applied to the detector’s observation outputs, the resulting errors show the
improvements to the state error outputs in Fig. 11. Since the observed β bias is much larger than the
α bias, the first test in Fig. 11a shows the resulting state errors when only the β correction is applied.
After the bias correction is applied, the state errors are lower. In particular, the initial estimate of
the Z-component is more accurate. However, additional periodic effects are also shown after the
β bias correction. The second test in Fig. 11b shows further reduction in the errors when both
α and β biases are subtracted, particularly by inspecting the amplitudes of the periodic variation
compared to the errors when only the β correction is applied. Table 5 summarizes the residual
statistics corresponding to the tests in Fig. 11, where the bias corrections effect can be observed
primarily in the reduction of the β mean value.

(a) Detector in the loop test, with β correction only (b) Detector in the loop test, with α and β correction

Figure 11: Position state errors with bias correction applied

In these tests, the measurement noise covariance matrix Rk was increased for the test cases us-
ing the Mask R-CNN detector. This was done to account for image generation issues encountered
when using the LROC Global Maps for trajectory simulations. The issues with the image generation
are likely contributing factors to the observed measurement biases that were previously discussed.
While using the Robbins crater catalog together with the LROC maps enabled the automated dataset
generation and training for the Mask R-CNN detector model, analysis with the current software

16



pipeline shows the need for further testing of this dataset to validate its use to generate simulated
terrain images from an orbiting camera. This analysis is an ongoing effort, along with work towards
integrating Blender and PANGU into the image generation pipeline to enable variations in light-
ing conditions, orbits, and spacecraft attitude that further test the robustness of the CNT methods
outlined in this paper.

Table 5: Residual output statistics with a maximum of 3 detections per image, with bias correction

ᾱ (rad) ασ (rad) β̄ (rad) βσ (rad)

Mask R-CNN detections
with β correction

1.02E-4 0.0025 1.26E-6 0.0027

Mask R-CNN detections
with α and β correction

9.01E-5 0.0025 3.85E-5 0.0027

Table 6: Root mean square error for detector in the loop tests

Cases RMSx (km) RMSy (km) RMSz (km) RMS3D (km)

Simulated detections, all craters 0.006 0.007 0.004 0.009
Simulated detections, 3 craters 0.014 0.013 0.010 0.022
Mask R-CNN, all craters 0.041 0.047 0.065 0.091
Mask R-CNN, 3 craters 0.061 0.056 0.027 0.087
Mask R-CNN, 3 craters, β correction 0.035 0.047 0.043 0.073
Mask R-CNN, 3 craters, α & β correction 0.017 0.022 0.031 0.042

CONCLUSION

The goal of this work is to demonstrate a proof of concept for semi-autonomous terrain relative
navigation in lunar orbit with under 100 meters of error in an estimated position solution and under
100 milliseconds of error in an estimated time solution using data and algorithmic constraints com-
patible with implementation on a small satellite form factor. Current results indicate that under ideal
conditions, a position solution within this error threshold is achievable. The time estimation algo-
rithms developed for this work show in preliminary results that time bias estimation to this degree
of accuracy is possible, but this capability does not yet meet requirements standard.

Future Work

While the CNT software is on track to meet its targets, there are several areas in which further
work is needed. First, bias estimation algorithms must be improved. The simulation of the random
walk and the time bias when coupled with the existing CNT simulation and filtering framework must
be investigated further and compared to real-world bias estimation paradigms. The introduction of
more realistic models of clock bias and of random walk in the timestamps would provide added
realism to the project and allow for improved results when modeling time bias alongside errors in
the measurements and dynamical perturbations. Additionally, further work is currently underway to
build and run the CNT software on a NVIDIA Jetson computer, a small satellite compatible piece
of hardware. Additional hardware and software constraints will be applied to the software build
in order to increase runtime performance. Improving the software’s ability to compensate for the
detector bias is also a key component of planned work in the short-term future. In addition to this,

17



improving the data the detector is receiving is important to improving the simulation’s realism and
to better estimate potential real-world performance.

ACKNOWLEDGEMENTS

Work completed at The University of Texas at Austin was conducted under NASA cooperative
agreement 80NSSC20M0087. The authors would like to thank Alexander Chiu for his contributions
to the CNT software presented in this work.

REFERENCES
[1] F. Chandler, D. Israel, and S. A. Townes, “NASA Technology Roadmaps: TA 5: Communications, Nav-

igation, and Orbital Debris Tracking and Characterization Systems,” Tech. Rep. 20546-0001, National
Aeronautics and Space Administration (NASA), NASA Headquarters, Washington DC, 2015.

[2] F. C. Hanak, Lost in low lunar orbit crater pattern detection and identification. PhD thesis, The Uni-
versity of Texas at Austin, 110 Inner Campus Drive, MAI 101, Austin, TX 78712, 5 2009.

[3] L. M. Downes, T. J. Steiner, and J. P. How, “Neural Network Approach to Crater Detection for Lunar
Terrain Relative Navigation,” Journal of Aerospace Information Systems, 2021, pp. 1–13.

[4] E. Emami, G. Bebis, A. Nefian, and T. Fong, “Automatic Crater Detection Using Convex Grouping and
Convolutional Neural Networks,” 12 2015, pp. 213–224, 10.1007/978-3-319-27863-6 20.

[5] S. G. Catalan, J. S. McCabe, and B. A. Jones, “Implementation of Machine Learning Methods for
Crater-based Navigation,” AAS/AIAA Astrodynamics Specialist Conference, No. AAS 21-519, Big Sky,
MT Virtual, August 2021.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al., “Pytorch: An imperative style, high-performance deep learning library,” Advances in
neural information processing systems, Vol. 32, 2019, pp. 8026–8037.

[7] J. Bai, F. Lu, K. Zhang, et al., “ONNX: Open Neural Network Exchange,” https://github.com/
onnx/onnx, 2019.

[8] E. Speyerer, M. Robinson, B. Denevi, et al., “Lunar Reconnaissance Orbiter Camera global morpho-
logical map of the Moon,” Lunar and Planetary Science Conference, No. 1608, 2011, p. 2387.

[9] S. J. Robbins, “A New Global Database of Lunar Impact Craters >1–2 km: 1. Crater Locations and
Sizes, Comparisons With Published Databases, and Global Analysis,” Journal of Geophysical Research:
Planets, Vol. 124, No. 4, 2019, pp. 871–892, https://doi.org/10.1029/2018JE005592.

[10] S. Parkes, I. Martin, M. Dunstan, and D. Matthews, “Planet surface simulation with PANGU,” Space
ops 2004 conference, 2004, p. 389.

[11] Blender Online Community, Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018.

[12] J. Munkres, “Algorithms for the Assignment and Transportation Problems,” Journal of the Society for
Industrial and Applied Mathematics, Vol. 5, No. 1, 1957, pp. 32–38.

[13] K. G. Murty, “Letter to the Editor—An Algorithm for Ranking all the Assignments in Order of Increas-
ing Cost,” Operations Research, Vol. 16, No. 3, 1968, pp. 682–687.

[14] B. A. Jones, “Surface Feature Navigation in Low Lunar Orbit,” 18th Annual AAS/AIAA Space Flight
Mechanics Meeting, Galveston, Texas, January 28 - 31, 2008.

[15] R. J. Carpenter and C. N. D’Souza, “Navigation Filter Best Practices,” Tech. Rep. TP–2018–219822,
National Aeronautics and Space Administration (NASA), NASA Engineering and Safety Center, Hamp-
ton, Virginia, April 2018.

[16] B. E. S. Byron D. Tapley and G. H. Born, Statistical Orbit Determination. Elsevier Academic Press,
1st ed., 2004.

[17] W. Folkner, J. Williams, and D. Boggs, “The Planetary and Lunar Ephemeris DE 421,” Interplanetary
Network Progress Report, Vol. 42–178, August 2009.

[18] E. M. Standish, “The Planetary and Lunar Ephemerides DE/LE 405,” Interoffice Memorandum, August
1998.

18

https://github.com/onnx/onnx
https://github.com/onnx/onnx

	Introduction
	Crater Detection
	Mask R-CNN Detector
	Image Generation and Datasets

	Time Bias Estimation
	Navigation Filter
	Local Catalog Creation and Crater Matching
	Measurement Model
	Measurement Update

	Results
	Test Cases and Data Generation
	Simulated Detections Results
	Time Bias
	Mask R-CNN Detections Results
	Number of detections
	Measurement bias

	Conclusion
	Future Work

	Acknowledgements

