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ABSTRACT

The modified kernel-based ensemble Gaussian mixture filtering (EnGMF) has been recently proposed by Yun et al. [1]
to obtain accurate and fast orbit determination capabilities under the sparse observation environment. As a continuation
of the study, in this paper, the EnGMF is used in combination with the generalized labeled multi-Bernoulli (GLMB)
multi-target tracking filter to track and identify multiple space objects. Moreover, the bi-fidelity propagation and an
adaptive algorithm introduced in the previous study are also applied to the baseline algorithm (i.e., the GLMB with
the ENGMF) to reduce computational burden with an acceptable loss in accuracy. Through numerical simulations, the
performances of the proposed filters are evaluated and compared in terms of accuracy and computational speed.

1. INTRODUCTION

Space situational awareness (SSA) refers to the knowledge of the near-space environment, including the ability to track
and predict the states of space objects (SOs) orbiting Earth and Cislunar space. The majority of SOs in Earth orbits
are debris objects, such as used satellites and rocket fragments. As the space domain becomes more congested due to
the launching of new objects, it poses a serious threat to newly launched satellites and the risk of collision between
SOs considerably increases. Out of the more than 40,000 objects larger than 10cm in diameter tracked by the Joint
Space Operations Center, only about 4,000 are active payloads and a limited number of sensors are available and used
to estimate the states of these SOs . A multi-target tracking algorithm is proposed for sparse-data tracking by using
an efficient data association algorithm and an accurate and computationally efficient nonlinear estimation algorithm
for orbit determination. In this study, the modified kernel-based ensemble Gaussian mixture filtering (EnGMF) [1] is
used in combination with the generalized labeled multi-Bernoulli (GLMB) multi-target tracking filter [2] to track and
identify multiple SOs.

The GLMB filter is designed to provide estimates of object trajectories based on the labeled random finite set (RFS)
theory [2]. An RFS is a marked finite set containing a random number of random variables, and a labeled RFS includes
a unique label on each element to indicate identity. The GLMB density is a special case of labeled RFS density, which
provides an analytical solution to the Bayes multi-target filter recursion, and in the GLMB filter, multi-target state and
measurement set are modeled as an RFS. One of the challenges existing in the GLMB filter (and any hypothesis-based
multi-target tracker) is high computational cost due to the exponential increase of the number of components in the
filtering process; therefore, it requires a truncation strategy to remain computationally tractable [3]. To reduce the
computational cost, in this work the EnGMF is used as the single-target filter to reduce the overall computational
burden when compared to other state-of-the-art nonlinear estimators [1].

The EnGMF is developed to efficiently track SOs with short and sparse observation data (i.e., tracking passes are
short and sparse) [1]. The EnGMF takes the benefits of both particle filter (PF) [4] and Gaussian sum filter (GSF)
[5, 6]. The key idea of the algorithm is that the propagated particles of PF converted into Gaussian mixtures using
kernel density estimation (KDE) [7]. In other words, each and every sample is considered as a Gaussian component
with the same covariance (i.e., bandwidth) matrix. The bandwidth matrix can be selected by numerically solving an
optimization problem; however, in this study, Silverman’s rule of thumb [8] is employed to estimate the bandwidth
matrix to reduce the KDE computational cost. When the sampling distribution is Gaussian, the optimal bandwidth



matrix is obtained by Silverman’s rule of thumb based on the mean integrated squared error (MISE) as a performance
criterion. Moreover, in our previous work [1], we demonstrated that Silverman’s rule will result in conservative (large)
estimates even though the sampling distribution is not close to Gaussian, which means inaccuracies make the estimator
conservative rather than divergent.

In addition, a bi-fidelity approach to propagation and an adaptive algorithm are applied to the EnGMF to reduce its
computational cost with an acceptable loss in accuracy. The bi-fidelity approach employs both low- and high-fidelity
models to minimize computational cost for the propagation of the EnGMF, while maximizing the accuracy of orbit
uncertainty propagation [9]. Choosing the appropriate number of particles is also one key parameter of the EnGMF
to improve its computational complexity. Thus, an adaptive algorithm is employed to select an appropriate number of
particles of the EnGMF based on the convergence assessment [10] using a predictive observation probability density
function (PDF).

The remainder of this paper is organized as follows. First, the GLMB multi-target tracking filter is described. Then, the
EnGMF developed for orbit determination with sparse observation data is introduced with the bi-fidelity propagation
and an adaptive algorithm in Section 3. In Section 4, simulation results are shown using the proposed algorithms
followed by some concluding remarks on the methodology and results.

2. GENERALIZED LABELED MULTI-BERNOULLI FILTER

The Bayes multi-target filter is a generalization of the single-target Bayes filter to estimate the trajectories of multiple
targets and the GLMB provides an analytical solution to the Bayes multi-target filter recursion while maintaining target
identity using a labeled RFS [2, 3]. The multi-target state ^: and observation .: are represented as a labeled RFS as
follow:

^: = {x1,x2, · · · ,x=: } = {(G1, ℓ1), (G2, ℓ2), · · · , (G=: , ℓ=: )} ⊂ X×L
.: = {H1, H2, · · · , H<: } ⊂ Y

(1)

where X and Y are respectively the single-target state and measurement space, L is a label space, and =: and <:
indicate the number of estimated states and observations, respectively, at time : . It is worth noting that =: may not
be equal to <: due to clutter and missed detections. Each element x of the RFS ^ is composed of the estimated
single-target state G and a distinct label ℓ of the state G. The observation RFS . consists of multiple measurement
vectors H scanned with a singe sensor. The GLMB filter then predict and update the multi-target density 0(^). To
derive an analytical solution to the Bayes multi-target filter, the formulation of 0(^) is described in the remainder of
this section.

Let L : X×L→ L be the projection L(G, ℓ) = ℓ from labeled RFSs to labels, then each possible target has a unique
label if and only if a finite subset set ^ of X×L and its labels L(^) = {L(x) : x ∈ ^} have the same cardinality, i.e.,
X |^ | ( |L(^) |) = 1 where

X�(�) ≡
{

1 if � = �
0 otherwise (2)

is a generalized delta function that supports sets and vectors. For simple notation,

Δ(^) , X |^ | ( |L(^) |) (3)

denotes a distinct label indicator.

An labeled multi-Bernoulli (LMB) RFS is parameterized by
{(
A (ℓ) , ? (ℓ)

)}
ℓ∈L, where A (ℓ) is the probability that target

ℓ exists and ? (ℓ) is its state-space PDF. The PDF of the LMB RFS is then described as follows:

0(^) = Δ(^)l (L(^)) ?^ (4)

where the multi-object exponential is
?^ ≡

∏
x∈^

?(x) (5)



and

l(!) =
∏
8∈L

(
1− A (8)

) ∏
ℓ∈!

1L (ℓ)A (ℓ)

1− A (ℓ)
(6)

?(G, ℓ) = ? (ℓ) (G) (7)

1�(�) ≡
{

1 if � ⊆ �
0 otherwise (8)

A GLMB density can be written as a mixture of multi-target exponentials based on the LMB density as follows:

0(^) = Δ(^)
∑
2∈C

l (2) (L(^))
[
? (2)

]^
(9)

where C is an index set that allows for multiple possible realizations for a set of target labels, each ? (2) is a PDF, and
the weights have to satisfy ∑

!⊆L

∑
2∈C

l (2) (L(^)) = 1 (10)

An alternative formulation known as a X-GLMB RFS is used for the GLMB filter in this work, which can be char-
acterized by a set of components (�, b� ) ∈ F (L) ×Ξ� , with associated weights l (� , b

� ) = l ( b
� ) (�). The function

F (L) represents the set of all finite subsets of L and a space Ξ� represents the history of measurement associations to
a given track. Therefore, the components (�, b� ) can be interpreted as the data association hypotheses with l (� , b

� )

being the probability that the hypothesis is true. The X-GLMB density is expressed as follows:

0(^) = Δ(^)
∑

(� , b� ) ∈F(L)×Ξ�
l (� , b

� )X� (L(^))
[
? ( b

� )
]^

(11)

Reference [2] shows that the X-GLMB RFS is conjugate with respect to the multi-object likelihood function as well as
being closed under the multi-object Chapman-Kolmogorov equation with respect to the multi-object transition kernel;
that is, it presents that the X-GLMB RFS provides a closed-form solution to the Bayes multi-target filter.

3. MODIFIED KERNEL-BASED ENSEMBLE GAUSSIAN MIXTURE FILTERING

The EnGMF has been recently proposed by Yun et al. [1] to efficiently track SOs with short and sparse observation
data (i.e., tracking passes are short and sparse). As a single-target nonlinear filter, the EnGMF algorithm is briefly
introduced in this section and the details of the algorithm are explained in [1].

As a recursive algorithm, the knowledge of the distribution ?(G:−1 |H:−1) at the prior time is assumed and approximated
by # independent and identically distributed (i.i.d.) samples G (8)

:−1 such that

?(G:−1 |H:−1) ≈
#∑
8=1

1
#
X(G:−1− G (8):−1) (12)

where X(·) is the Dirac delta function. As in the bootstrap particle filter (BPF) [4], in the time update step, a set
of samples at the next time step is generated using the Markov transition kernel ?(G: |G:−1). The Markov kernel
represents the dynamics of a system and it is assumed in this work that all estimators use the true dynamic model
without process noise.

The propagated samples are then converted into Gaussian mixtures using kernel density estimation (KDE). In other
words, each and every sample is considered as a Gaussian component with the same covariance (i.e., bandwidth)
matrix. The approximated GMM of the propagated samples is expressed as follows:

?(G: ) ≈
#∑
8=1

1
#
=(G: ;G (8)

: |:−1, �) (13)



where the bandwidth matrix � can be calculated by [11]

� = V%̂: |:−1 (14)

where V is the bandwidth parameter, 0 ≤ V ≤ 1, and %̂: |:−1 is the sample covariance matrix calculated from the
propagated samples. The means of Gaussian components are obtained from each particle x (8)

: |:−1 and all GMM weights
are equal to 1/# . The bandwidth matrix can be selected by numerically solving an optimization problem; however, in
this study, to reduce the KDE computational cost, Silverman’s rule of thumb [8] is employed to estimate the bandwidth
matrix �( as follows:

�( = V( %̂: |:−1 = ℎ(

(
4

=G +2

) 2
=G+4

#
− 2
=G+4 %̂: |:−1 (15)

where ℎ( is a tuning parameter and =x is the dimension of the state. When the sampling distribution is Gaussian and
ℎB = 1, the optimal bandwidth matrix is obtained by Silverman’s rule of thumb based on the mean integrated squared
error (MISE) as a performance criterion. Therefore, in this study, the equinoctial orbital elements [12] are used instead
of Cartesian coordinates to make the SO dynamics nearly linear. Moreover, in our previous work [1], we demonstrated
that Silverman’s rule will result in conservative (large) estimates even though the sampling distribution is not close
to Gaussian, which means inaccuracies make the estimator conservative rather than divergent. In addition, the tuning
parameter, ℎ( ≤ 1, can be tuned according to a system to improve the filter’s performance.

Finally, the measurement information is incorporated by updating the means, covariance matrices, and the weights of
all # Gaussian components in the same way as the measurement update of the GSF. In the measurement update step,
each Gaussian component may be updated using the extended Kalman filter (EKF) [13] or unscented Kalman filter
(UKF) [14]. # i.i.d. samples are then drawn from the GMM representation of the posterior distribution and they are
used as a starting point for the next iteration.

The remainder of this section presents the bi-fidelity propagation and an adaptive algorithm for selecting an appropriate
number of particles being applied to the EnGMF to reduce its computational cost with an acceptable loss in accuracy.
The details of these algorithms are explained in [1].

3.1 Bi-Fidelity Uncertainty Propagation

This research focuses on the use of the bi-fidelity approaches [15, 16] to reduce the computational complexity for the
propagation of the EnGMF. The bi-fidelity approach uses both low- and high-fidelity models to reduce computational
cost for the propagation of the estimator while maximizing the accuracy of orbit uncertainty propagation.

Likewise to the EnGMF, the process of the bi-fidelity propagation starts from the knowledge of the prior distribution
?(G:−1 |H:−1) which is a multivariate Gaussian distribution with mean Ĝ:−1 |:−1 and covariance matrix %GG

:−1 |:−1. For
the next step, # i.i.d. samples are drawn from the prior distribution as follows:

G:−1 (b (8) ) = Ĝ:−1 |:−1 +
(
%GG
:−1 |:−1

)1/2
b (8) , 8 = 1,2, · · · , # (16)

where b (8) denotes the random inputs to the system which follows a standard multivariate normal distribution. A
set of low-fidelity samples G! (b) ∈ X is then obtained using a low-fidelity propagator. Given a set of random inputs
Ξ = {b (8) }#

8=1, the low-fidelity propagated samples can be expressed in the form of matrix as follows:

-! (Ξ) ≡
[
G! (b1) · · · G! (b# )

]
∈ R=0×# (17)

In the case of orbit-state uncertainty propagation, =0 should be increased by considering the state trajectory, i.e., G! (b)
should be the state vector G0 (b) propagated to the time of interest C using the low-fidelity propagator [9]. The samples
then define a subset of X

X! (Ξ) ≡ span
(
-! (Ξ)

)
= span

[
G! (b1) · · · G! (b# )

]
⊆ X, (18)

which is a function of Ξ. The matrix -� (Ξ) and space X� (Ξ) for the high-fidelity samples also has a similar
definition. Based on the stochastic collocation method (e.g., see Chapter 20 of [17]), the propagated samples are
approximated via the surrogate

G! (b) ≈ Ĝ! (b) =
A∑
;=1
2; (b)G! (b̄;) (19)



where 2; are expansion coefficients, b̄; are the random inputs for the collocation points (or called as important points)
in the expansion, and A is the rank of the surrogate with A � # . The set of the random inputs corresponding to
the collocation points, Ξ̄ ≡ {b̄;}A

;=1, is identified using the low-fidelity model. The high-fidelity samples are then
approximated as follows:

G� (b) ≈ Ĝ� (b) =
A∑
;=1
2; (b)G� (b̄;) (20)

In brief, in the bi-fidelity approach, the coefficients 2; and the important points b̄; are computed using the low-fidelity
samples and this approach includes three assumptions [18]:

• -! (Ξ) allows for identifying the A samples required for Eq. (20),

• The A high-fidelity samples produce a sufficiently accurate basis for G� (b) ≈ Ĝ� (b), and

• Coefficients 2; of the expansion in Eq. (19) are sufficiently accurate to be leveraged in Eq. (20).

Reference [9] shows through several Earth-orbit test cases that the above three assumptions are reasonable in the
context of orbit determination.

The coefficients 2; and important points b̄; are simultaneously calculated in a single algorithm using the following
optimization problem:

Ξ̄ = argmin
Ξ

inf
H∈X! (Ξ)

‖G! (b) − H‖ (21)

By solving the optimization problem in Eq. (21), we build a space with basis vectors G! (b̄;) for ; = 1, · · · , A which
minimizes the distance between the points in -! (Ξ) and the space X! (Ξ̄); however, it is generally not tractable [16].
A greedy algorithm is therefore used to generate Ξ̄ by leveraging a solution to the pivoted Cholesky decomposition
and the details of the algorithm are explained in [9] and [16].

3.2 Adapting the Number of Particles

An adaptive algorithm is also used to reduce the computational complexity of the proposed algorithm. It is desirable
for the EnGMF to have a small enough covariance matrix such that nonlinear measurement functions can be accurately
approximated by linearization in the support of each Gaussian component. In the EnGMF, each component has the
same covariance matrix and its magnitude becomes smaller as the number of particles increases, thus the more particles
the more accurate the EnGMF performance. This work employs an adaptive algorithm to select an appropriate number
of particles and the adaptation rule is based on the convergence assessment method [10].

The adaptive algorithm is based on the predictive PDF of the observations of the EnGMF

?(H: |. �:−1) =
∫

?(H: |G: )?(G: |. �:−1)3G:

≈
#∑
8=1

?(H: |G (8): )?(G
(8)
:
|. �:−1)

=
1
#

#∑
8=1
=
(
H: ;ℎ:

(
G
(8)
: |:−1

)
, �
(8)
:
�(�

(8)T
:
+':

)
(22)

where � (8)
:

is the Jacobian of the measurement evaluated at the prior mean G (8)
: |:−1 and . �

:−1 is the collection of all
measurement vectors up to and including the current time, . �

:−1 = H1, · · · , H:−1. It is proven that the approximated
predictive observation PDF converges almost surely to the true one as the number of particles tends to infinity [19].
Based on this convergence assessment, an adaptive algorithm for selecting the appropriate number of particles is
described below.

The first step is to generate � fictitious observations at each time step : , {H̃ ( 9)
:
}�
9=1, through Eq. (22). Fictitious

observations ỹ ( 9)
:

are generated using the following two steps:

1. Draw � samples D ( 9) from the discrete uniform distribution {1,2, · · · , #}.



2. For each 9 , draw H̃
( 9)
:

from the GMM, 1
#

∑#
9=1 =

(
H: ;ℎ: (G (D

( 9) )
: |:−1), �

(D ( 9) )
:

�(�
(D ( 9) )T
:

+':
)
.

These sampled fictitious observations are then compared with the actual observation value H: for the next step. A
1-dimensional observation is assumed here for the sake of simplicity and the same method can be repeatedly applied
over each observation element for a multi-dimensional case. The number of the fictitious observations smaller than
the actual one is calculated as follows:

�:,# ,� =

���{H ∈ { ỹ ( 9)
:
}�9=1 : H < H: }

��� ∈ {0,1, · · · ,�} (23)

where �:,# ,� is a random variable and | · | represents the number of elements of a set. The value of the random
variable �:,# ,� indicates the relative position of the actual observation in the fictitious observations. Note that, when
the number of particles tends to infinity, the probability mass function (PMF) of �:,# ,� almost surely converges to
the discrete uniform distribution on {0,1, · · · ,�} under mild assumptions [10].

Finally, a chi-squared test [20] is conducted after a set of, consecutive statistics, (: = {0:−, +1,# ,� , 0:−, +2,# ,� , · · · ,
0:,# ,� }, has been obtained from the random variable �:,# ,� , which is to check whether (: is a sequence of samples
from the uniform distribution on {0,1, · · · ,�}. The chi-squared statistic is calculated as follows:

j2
: =

�∑
9=1

($ 9 −� 9 )2

� 9
(24)

where $ 9 is the frequency of the actual observations being in the 9-th relative position in the window size , and � 9
is the expected frequency under the null hypothesis, i.e., �2 =,/(� +1). By comparing the p-value associated with
the chi-squared statistic ?:,� with a preassigned threshold ?; , the number of particles of the EnGMF is adaptively
selected. If ?:,� is less than or equal to the significance level, we can conclude that the sequence (: is not sampled
from the uniform distribution on {0,1, · · · ,�}. Therefore, if ?:,� < ?; , we increase the number of particles to increase
the accuracy.

4. NUMERICAL RESULTS

The performance of the GLMB filter with the EnGMF is evaluated through simulations of multi-target tracking prob-
lem with sparse observation data. In the simulations, 10 SOs in geosynchronous Earth orbit (GEO) are considered; the
orbits of them are shown in Fig. 1 and the initial orbital elements are listed in Table 1. This table shows that some of
them are close in the measurement space, which causes many data association hypotheses. The initial uncertainty of
each object in Cartesian coordinates is %0,8 = diag{10−2,5×10−2,2×10−3,5×10−10,10−9,5×10−11}, 8 = 1,2, · · · ,10.
The birth and death of targets are not considered in this study. The dynamics model employed here includes the grav-
itational perturbation due to non-spherical effect of the Earth gravity, the third-body perturbations of the Moon and
the Sun, and acceleration perturbation due to solar radiation pressure (SRP). For this study, the EGM2008 [21] gravity
model is used for the Earth and 70× 70 degrees and order are applied for gravity modeling. The planetary and lunar
ephemeris DE430 [22] is selected to calculate the location of the Moon and Sun and the cannonball model is assumed
for the acceleration due to SRP. The simulation epoch is 31-December-2014 at 12:00:00 UTC. It is assumed that the
shape of each SO is a sphere with a cross-sectional area of 1m2 and a mass of 100 kg. The coefficient of reflectivity
of each SO is set to be 1.5. The system dynamic equations are numerically integrated with an embedded Runge-Kutta
8(7) method [23]. Right ascension, declination, time rate of change of right ascension, and time rate of change of
declination measurements are simulated using a ground station located at the top of Haleakala in Maui (latitude =
20.71◦, longitude = -156.26◦, and altitude = 3.5086 km). Measurements are corrupted by additive zero-mean Gaussian
white noise with standard deviations of 0.5 arc-seconds for each angle measurement and 0.05 arc-seconds per second
on each angle-rate measurement. Clutter and missed detection are not considered in this study.

The first goal is to demonstrate and assess the GLMB with the EnGMF ability to handle multi-target tracking problem
with short and sparse observation data. The performance of the estimator is evaluated by using a metric called Op-
timal Sub-Pattern Assignment (OSPA)-on-OSPA, or OSPA(2) [24]. This metric includes localization error as well as
cardinality error. The cut-off, order, and window length are set to be ? = 2, 2 = 1 km, and F = 12. This simulation has
one short measurement pass every 12 hours and the measurements are available every 10 seconds with a pass lasting
only 2 minutes, i.e., 12 measurements per pass. The tuning parameter ℎ( for Silverman’s rule of thumb of the EnGMF



Fig. 1: The orbits of the 10 SOs in the ECI frame, km

Table 1: Initial Keplerian elements for the ten objects

# Semi-maj. axis (km) Ecc. Incl. (deg) RAAN (deg) Arg. Periapsis (deg) Mean Anomaly (deg)
1 42165 0.0003 0.006 81.343 0 91.049
2 42175 0.0003 0.012 81.043 0 91.441
3 42165 0.0003 0.8 80.493 0 89.321
4 42155 0.0003 0.1 81.143 0 90.532
5 42175 0.0003 0.6 81.343 0 91.888
6 42175 0.0003 0.3 98.857 0 91.359
7 42165 0.0014 0.8 99.657 0 89.926
8 42165 0.0003 0.8 99.507 0 89.694
9 42175 0.0006 0.4 98.657 0 91.468

10 42165 0.0014 0.8 80.343 0 89.926

is set to be 1 for long propagation and 0.1 for a short measurement pass. A Monte Carlo analysis is performed with
100 simulations and the EnGMF uses 500 particles in the simulations.

Fig. 2 shows the time history of the Monte Carlo averaged OSPA(2) distance of the GLMB with the EnGMF from the
100 Monte Carlo runs. It is worth nothing that the GLMB with a linear filter for nonlinear systems such as the EKF or



the UKF fails (i.e., completely diverges) under this challenging scenario. In the figure, the OSPA(2) distance (blue line)
is exactly same as the localization error (red line) and the cardinality error (black line) is zero over time, which means
the proposed filter can accurately estimate the number of targets at all times. Moreover, the figure indicates that the
proposed filter is able to retain steady state, which means the filter accurately estimates the states of the multiple SOs.
The average computation time per filtering run in a C++ implementation on a 3.2 GHz single-core Ubuntu operating
system is also evaluated and it is 114.47 seconds for this scenario.
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Fig. 2: The OSPA(2) performance for 100 Monte Carlo simulations

In addition, another simulation example under an even sparse observation data condition is used to compare the
performances of the GLMB when using: the EnGMF, the EnGMF with bi-fidelity propagation, and the adaptive
EnGMF with bi-fidelity propagation. A Monte Carlo analysis is performed with 100 simulations when the gap between
measurement passes is increased to 24 hours. In this scenario, the GLMB with the EnGMF with 500 particles diverges
in 2 out of 100 simulations. Thus, for the GLMBs with the EnGMF and the EnGMF with bi-fidelity propagation,
each target estimator uses 1000 particles, and for the GLMB with the adaptive EnGMF with bi-fidelity propagation,
each target first uses 500 particles and if more than two p-values ?:,� are below the preassigned threshold ?; then it
uses 1000 particles again. The significance level of p-value is set to be 0.15, ?; = 0.15. In this scenario, it employs 5
fictitious observations C = 5 and 12 window size W = 12. Likewise the previous simulation, the tuning parameter ℎ(
for Silverman’s rule of thumb of the EnGMF is set to be 1 for long propagation and 0.1 for a short measurement pass.
The low- and high-fidelity models are summarized in Table 2.

Table 2: Low and high-fidelity dynamic model for the numerical simulations

Dynamic Model Low-Fidelity High-Fidelity
Primary Body Gravity Two body and �2 70×70

Third-Body Perturbations None Sun and Moon
Solar Radiation Pressure None Cannonball

Fig. 3 displays the time history of the Monte Carlo averaged OSPA(2) distance of the proposed filters and the average
computation time of the 100 simulations, and the averaged OSPA(2) distances are listed in Table 3. The result shows
that the GLMB with the EnGMF provides slightly better performance than those of the other two filters in terms of
accuracy; however, comparing to the GLMB with the EnGMF, the GLMB with the EnGMF with bi-fidelity propagation
reduces the computation time by 70.70% and the GLMB with the adaptive EnGMF with bi-fidelity propagation reduces
the computation time by 82.49%. As a result, it is demonstrated that the GLMB with the EnGMF with bi-fidelity
propagation or with the adaptive EnGMF with bi-fidelity propagation can significantly reduce computational time
compared to the GLMB with the EnGMF with an acceptable loss in accuracy.



0 0.5 1 1.5 2 2.5 3 3.5

0.16

0.18

0.2
O

S
P

A
(2

)  M
e
tr

ic

0 0.5 1 1.5 2 2.5 3 3.5

Time (day)

-1

0

1

C
a
rd

in
a
lit

y
 E

rr
o
r

GLMB w/ EnGMF

GLMB w/ EnGMF w/ Bi-Fidelity Prop.

GLMB w/ Adaptive EnGMF w/ Bi-Fidelity Prop.

(a) The OSPA(2) performance

GLMB w/
EnGMF

GLMB w/
EnGMF w/

Bi-Fidelity Prop.

GLMB w/
Adaptive EnGMF w/

Bi-Fidelity Prop.

(b) The average computation time per filtering run

Fig. 3: The OSPA(2) performance and the average computation time per filtering run for 100 Monte Carlo simulations

Table 3: Averaged OSPA(2) and computation time for 100 simulations

OSPA(2) Computation time (sec)
GLMB with EnGMF 0.1762 347.46

GLMB with EnGMF with Bi-Fidelity Prop. 0.1832 101.81
GLMB with Adaptive EnGMF with Bi-Fidelity Prop. 0.1880 60.85

5. CONCLUSIONS

The modified kernel-based ensemble Gaussian mixture filtering with the bi-fidelity propagation and an adaptive al-
gorithm is applied to the generalized labeled multi-Bernoulli multi-target tracking filter to track and identify multiple
space objects. The performances of the proposed algorithms are analyzed through numerical simulations with a chal-
lenging estimation problem of multiple space objects tracking in geosynchronous Earth orbit and it is demonstrated
that the proposed filters can accurately estimate targets’ states as well as the number of targets. Moreover, it is also
shown that the bi-fidelity propagation and the adaptive algorithm can be applied to the baseline algorithm to reduce
computational burden with an acceptable loss in accuracy.
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