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THE INITIAL ORBIT DETERMINATION (IOD) PROBLEM WITH
RANGE, RANGE-RATE AND ANGLES

Christopher D’Souza* and Renato Zanetti†

An analytical formulation of the Initial Orbit Determination (IOD) problem for
range, range-rate and angle measurements. This approach involves the use of the
Lagrange interpolating polynomials to obtain the position and velocity estimate.
In addition the covariance matrix associated with the state estimate is provided.

INTRODUCTION

The Initial Orbit Determination (IOD) problem has been tacked since Laplace, Euler and Gauss
in the service of determining the orbits of planets, asteroids, and comets. The measurements that
established the orbit characteristics were angles over long arcs.1 The Space Age brought two new
measurement types to bear: range and range-rate.2, 3 Initially these measurements were provided by
radars through skin-tracking. Soon, however, transponders allowed better measurement accuracy
and availability. To date, there are three types of IOD problems: angles only, range and angles, and
range and range-rate.

The Orion program exposed the need for an additional capability in the case of an extended
loss of communication: when the measurements included antenna angles (azimuth and elevation or
right-ascension and declination), range and range-rate. This paper contains the details of this new
methodology. We will begin with state determination with range, range-rate and angle measure-
ments.

First the state estimate, given a sequence of these four time-synchronized measurements, will
be analytically developed. Next the covariance matrix associated with this state estimate will be
analytically developed. Finally, these will be verified by Monte Carlo simulations.

THE STATE AND COVARIANCE DETERMINATION FOR RANGE, RANGE-RATE AND
STATION ANGLE MEASUREMENTS

We assume that we will have (at least) three sets of (range, range-rate and station angles (azimuth
and elevation) measurements at times ti. We further assume that over a short arc, the vehicle is
moving in Keplerian motion.

Given a set of measurement epochs, t1, t2, · · · , tn, we seek to find the state vector at ti within the
interval (ti > ti and ti < tn), given a set of Line of Sight (LOS) vectors (uLOS) from the ground
station (with position vector rGS) to the vehicle (r) as

ρuILOS = rI − rIGS (1)
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where ρ is the range to the vehicle (from the ground station) to get

rI = ρuILOS + rIGS (2)

Differentiating the above equation we get

ṙI = ρ̇uILOS + ρ u̇ILOS + ṙIGS (3)

The unknowns here are u̇ILOS and ṙI . Notice too, we haven’t made any assumptions as to the type
of motion (Keplerian or non-Keplerian).

We introduce the general concept of interpolation introduced by Lagrange in support of celestial
mechanics. Linear interpolation is a special case of the Lagrange interpolating polynomials. The
Lagrange interpolating formula, given a series of points ξi at times ti, is

ξ(t) =
n∑
i=1

ξi

∏
k 6=i (t− tk)∏
k 6=i (ti − tk)

(4)

so that for three unit line-of-sight position vectors, uLOS1 , uLOS2 , and uLOS3we get

uILOS(t) = uILOS1

(t− t2)(t− t3)
(t1 − t2)(t1 − t3)

+ uILOS2

(t− t1)(t− t3)
(t2 − t1)(t2 − t3)

+ uILOS3

(t− t1)(t− t2)
(t3 − t1)(t3 − t2)

(5)

so that u̇ILOSi
(t) and üLOSi(t)

I are

u̇ILOS(t) = uILOS1

(2t− t2 − t3)
(t1 − t2)(t1 − t3)

+ uILOS2

(2t− t1 − t3)
(t2 − t1)(t2 − t3)

+ uILOS3

(2t− t1 − t2)
(t3 − t1)(t3 − t2)

(6)

üILOS(t) = uILOS1

2

(t1 − t2)(t1 − t3)
+ uILOS2

2

(t2 − t1)(t2 − t3)
+ uILOS3

2

(t3 − t1)(t3 − t2)
(7)

Of course we are not limited to just three unit vectors but for illustrative purposes we used three
in the prior description to make the method a bit more tractable. Thus, if n points are used for
interpolation, u̇ILOSi

(t) is

u̇ILOS(t) =

n∑
i=1

uILOSi
L̇i(t) (8)

The Lagrange Interpolating Polynomials and Their Derivatives

Recall the general form for interpolating with nth-order Lagrange interpolating polynomials as

ξ(t) =

n∑
j=1

ξj

∏n
k=1,k 6=j (t− tk)∏n
k=1,k 6=j (tj − tk)

=

n∑
j=1

ξjLj(t) (9)

where the Lagrange interpolating polynomials are

Lj(t)
∆
=

∏n
k=1,k 6=j (t− tk)∏n
k=1,k 6=i (tj − tk)

(10)
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The (time) derivative of the Lagrange interpolating polynomials is

L̇j(t) = Lj(t)

 n∑
k=1,k 6=j

1

t− tk

 (11)

A note about using Lagrange interpolating polynomials. For high order polynomials, the La-
grange interpolating polynomials suffers from the Runge phenomenon so it is best to pick the inter-
polating time in the middle of the data arc.

As well the Lagrange interpolating polynomial is best used for a single ground station. The same
process can be performed when another ground station comes into view and the two solutions can
be combined statistically.

The Use of Lagrange Interpolating Polynomials in Initial Orbit Determination

But we need to be a bit careful because the unit vectors are computed in the station-fixed frame
of station j according to

uILOSj
(ti) = TIGSj

(ti)u
GSj

LOSi
(12)

where the azimuth and elevation of the ground station antenna are αi and δi as

u
GSj

LOSi

∆
=

 cosαi cos δi
sinαi cos δi

sin δi

 (13)

Likewise the position vectors of the ground stations are expressed as

rIGS(t) = TIECEF rECEFGS (14)

where the vector rECEFGS is the Earth fixed position of the ground station (and is expected to be
constant, except for the location error) and TIECEF is the transformation matrix from planet-fixed
(ECEF) to inertial, so that

ṙIGS(t) = ω
I
E × TIECEF rECEFGS (15)

where ωIE is the rotation vector of the Earth.

The State Determination

So now we have everything we need. If we want to get the position and velocity of the vehicle
at time ti where ti ∈ (t1, tn) and we have ρ(ti), ρ̇(ti), α(ti), and δ(ti) measurements from ground
station j at time ti, we get the following

rI(ti) = ρ(ti)TIGSj
(ti)

 cosα(ti) cos δ(ti)
sinα(ti) cos δ(ti)

sin δ(ti)

+ TIECEF (ti)r
ECEF
GSj

(16)

vI(ti) = ρ̇(ti)TIGSj
(ti)

 cosα(ti) cos δ(ti)
sinα(ti) cos δ(ti)

sin δ(ti)

+ ρ(ti) u̇
I
LOS(ti) + ω

I
E × TIECEF (ti)r

ECEF
GSj

(17)
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The Covariance Determination

In order to determine the covariance, we take variations of Eqs (16) and (17).

First for the position, we establish the following orthonormal LOS system

uLOSx(ti) =

 cosα(ti) cos δ(ti)
sinα(ti) cos δ(ti)

sin δ(ti)

 (18)

uLOSy(ti) = cos δ(ti)

 − sinα(ti)
cosα(ti)

0

 (19)

uLOSz(ti) = −

 cosα(ti) sin δ(ti)
sinα(ti) sin δ(ti)
− cos δ(ti)

 (20)

so that the variation of the position vector (as found in Eq. (16)) becomes

dr(ti) = dρ(ti)TIGSj
(ti)uLOSx(ti) + ρ(ti)TIGSj

(ti)uLOSy(ti)dα(ti)

+ρ(ti)TIGSj
(ti)uLOSz(ti)dδ(ti) + TIECEF (ti)drECEFGSj

(21)

so that if Prr(ti)
∆
= E

[
dr(ti)drT (ti)

]
and noting the orthogonality of uLOSx(ti), uLOSy(ti) and

uLOSz(ti) and the independence of the measurements and the errors in the ground station location,
we get

Prr(ti) = σ2
ρ TIGSj

(ti)uLOSx(ti)u
T
LOSx

(ti)TI
T

GSj
(ti) + σ2

αρ
2 TIGSj

(ti)uLOSy(ti)u
T
LOSy

(ti)TI
T

GSj
(ti)

+σ2
δρ

2 TIGSj
(ti)uLOSz(ti)u

T
LOSz

(ti)TI
T

GSj
(ti) + TIECEF (ti)PrECEF

GSj

TI
T

ECEF (ti) (22)

The variation of the velocity vector is much more involved. It is

dv(ti) = dρ̇(ti)TIGSj
(ti)uLOSx(ti) + ρ̇(ti)TIGSj

(ti)uLOSy(ti)dα(ti) + ρ̇(ti)TIGSj
(ti)uLOSz(ti)dδ(ti)

+ dρ(ti) u̇
I
LOS(ti) + ρ(ti) du̇

I
LOS(ti) + ω

I
E × TIECEF (ti)drECEFGSj

(23)

We also denote the cross-product in terms of the cross product matrix

SωI
E

∆
=

[
ωIE×

]
(24)

and ST
ωI

E
= −SωI

E
.

What remains is to obtain the variation of u̇ILOS(ti). We find that

du̇ILOS(ti) =
n∑
k=1

L̇k(ti)duILOSk
=

n∑
k=1

L̇k(t)TIGSj
(tk)du

GSj

LOSk

=

n∑
k=1

L̇k(ti)TIGSj
(tk)d

 cosαjk cos δ
j
k

sinαjk cos δ
j
k

sin δjk


=

n∑
k=1

L̇k(ti)TIGSj
(tk)

{
ujLOSy

(tk)dα
j
k + ujLOSz

(tk)dδ
j
k

}
(25)
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where the notation ujLOSy
(tk) denotes the y−LOS unit vector of the jth station at time tk.

We assume that the angle errors, dαjk and dδjk, are uncorrelated with one another and uncorrelated
over time.

With this in hand, the velocity covariance is

Pvv(ti) = σ2
ρ̇ TIGSj

(ti)uLOSx(ti)u
T
LOSx

(ti)TI
T

GSj
(ti) + ρ̇2(ti)σ

2
αTIGSj

(ti)uLOSy(ti)u
T
LOSy

(ti)TI
T

GSj
(ti)

+ρ̇2(ti)σ
2
δTIGSj

(ti)uLOSz(ti)u
T
LOSz

(ti)TI
T

GSj
(ti) + σ2

ρu̇
I
LOS(ti)u̇

IT

LOS(ti)

+ρ2(ti)
n∑
k=1

L̇2
k(ti)T

I
GSj

(tk)
[
σ2
αu

j
LOSy

(tk)u
jT

LOSy
(tk) + σ2

δu
j
LOSz

(tk)u
jT

LOSz
(tk)

]
TI

T

GSj
(tk)

−SωI
E

TIECEF (ti)PrECEF
GSj

TI
T

ECEF (ti)SωI
E

(26)

The cross-covariance between position and velocity is

Prv(ti) = σ2
ρTIGSj

(ti)uLOSx(ti)u̇
IT

LOS(ti)− TIECEF (ti)PrECEF
GSj

TI
T

ECEF (ti)SωI
E

+σ2
αρ(ti)

(
ρ̇(ti) + ρ(ti)L̇k(ti)

)
TIGSj

(ti)uLOSy(ti)u
T
LOSy

(ti)TI
T

GSj
(ti)

+σ2
δρ(ti)

(
ρ̇(ti) + ρ(ti)L̇k(ti)

)
TIGSj

(ti)uLOSz(ti)u
T
LOSz

(ti)TI
T

GSj
(ti) (27)

APPLICATION TO THE ARTEMIS 1 CONTINGENCY INITIAL ORBIT DETERMINA-
TION PROBLEM

There are various data types that are used (and produced) by the DSN and are part of the TRK-2-
34 DSN Data Archival Format‡‡. These are denoted by the prefix ‘DT’ for Data Type.

For Orion, the primary data type is Doppler and range (at isolated points, but on demand in
emergencies. Angle (azimuth/elevation or RAI/DEC) is not used in the ‘usual’ OD processing.
Whereas, it is part of the DT-8 message (as part of the TRK-2-34 format), it is available. However,
it is not accurate, having a precision of 0.1 degrees. For other antennas which give more precise
angle measurements, it will be far more beneficial.

For this instance the following measurement accuracies are used:

σρ = 10m

σρ̇ = 0.005m/s

σα = 0.1◦

σδ = 0.1◦

with n = 7 and 10,000 Monte Carlo samples at each time step.

For the first ground navigation pass, with these measurement accuracies, Figure? shows the ac-
curacy of the IOD estimate in terms of its standard deviation. The Monte Carlo (sample) standard
deviation and the analytical standard deviation as expressed in Eqs.(22) and (26) are plotted to-
gether. It is seen that they match. However, with these errors for the DSN angles, for a typical
outbound Artemis 1 trajectory, the position and velocity accuracies increase as a function of the
increasing distance. A lower angle accuracy would yield much different results.

‡‡TRK-2-34 DSN Tracking System Data Archival Format, DSN No. 820-013, TRK-2-34, Rev. R, JPL D-76488, June
3, 2021, CL#21-2444.
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Figure 1. Position and Velocity standard deviation for Earth-Moon trajectory with
n = 7 for the initial portion of the trajectory

CONCLUSIONS

This paper has presented a novel analytical method for the state solution of the IOD problem with
range, range-rate and angle measurements. It also gave details about the analytical formulation of
the covariance matrix associated with the state estimate. It has been demonstrated on a trajectory
analogous to the outbound leg of the Orion Artemis 1 mission.
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