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AUTONOMOUS ONBOARD RISK MITIGATION FOR SPACECRAFT
PROXIMITY OPERATIONS; A ZERO-SWAP FLIGHT SOFTWARE

ENHANCEMENT

Benjamin Sunderland*, Shota Takahashi†, Siamak Hesar‡, Axel Garcia§, Mark
Muktoyuk¶, Rachel Mamich||, Renato Zanetti**, and Moriba Jah††

Advanced rendezvous proximity operations (RPO) and docking (RPOD) capabilities are
essential for ensuring sustainable growth in the commercial space industry. These capa-
bilities open the door to performing complex operations including spacecraft-to-spacecraft
inspection, in-situ tracking, active debris removal, refueling, and on-orbit manufacturing.
Traditional operations solutions are extremely manual with ground-in-the-loop processes for
orchestrating maneuver planning, asset tracking, and performing corrective actions. Au-
tonomous processes are required to ensure efficiency, timeliness, and scalability of such
missions. In this paper, we demonstrate the development of a practical and computationally
efficient zero-SWaP flight software (FSW) enhancement to enable safe and autonomous
proximity operations (ProxOps) between a servicer spacecraft and resident space object
(RSO). This is achieved via a system-agnostic module that continuously receives information
from the orbit determination and relative navigation filters and autonomously computes
relative orbit formation reconfiguration maneuvers, optimized to minimize fuel expenditure
and evaluated for spacecraft safety. A nominal ProxOps use case is developed and simulation
results illustrate the performance of these algorithms in terms of the required ∆V, associated
risk of the transfer trajectory, and the accuracy of the relative motion dynamics model.
Recommendations are made for further improvements to the state model representation,
dynamics model fidelity, and the overall risk characterization and mitigation strategy.

INTRODUCTION

A zero-SWaP FSW enhancement is proposed that does not require costly state-of-the-art sensor suites
or ADCS hardware additions and that is compatible with systems that have low power and processing
capabilities. These are all common design limitations for commercial satellites of today that increasingly use
small form factors and standardized buses. The central focus of this effort is providing a servicer spacecraft
with the ability to perform RPO and RPOD activities autonomously. This will reduce the cost and latency
associated with ground communications and enable the servicer to respond to changes in its environment
more quickly; the safety margin required in preparation for communication loss will also be minimized.
Additionally, there are many sources of uncertainty in the state knowledge of the servicer and RSO due to
orbit determination errors which must be taken into consideration; these uncertainties evolve over time due to
unmodeled dynamics, uncertain model parameters, and maneuvers of the servicing spacecraft that introduce
noise in the state. Thus, the servicing spacecraft needs to account for these uncertainties and perform
trajectory planning to ensure operational safety. This paper demonstrates how these criteria can be achieved
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via an onboard software capability that continuously receives information from the orbit determination and
relative navigation filters and autonomously computes relative orbit formation reconfiguration maneuvers,
optimized for fuel expenditure and evaluated for spacecraft safety. Kayhan Space is developing this zero-
SWaP FSW enhancement as Kaynan Proxima in cooperation with Astroscale US and the University of Texas
at Austin. A notional GN&C system diagram including the FSW enhancement by Kayhan Proxima for
autonomous path planning is shown in Figure ??.

Figure 1: Notional System Diagram for On-Board GN&C System.

A diagram of the proposed process for the autonomous path planning algorithm is shown in Figure ??,
where the central control policy is based on the n-impulse fuel-optimal maneuver targeting algorithm de-
signed by Roscoe, et al. that formed the basis of the formation reconfiguration guidance component for
NASA’s CubeSat proximity operations demonstration (CPOD) mission.?, ? This approach was chosen for
its benefits of minimizing fuel consumption thereby enabling servicer spacecraft to potentially extend their
missions; it also exclusively employs linear systems for the formation dynamics and the solution to the
optimal control problem (OCP), making it computationally efficient and suitable for on-board FSW.

Figure 2: Notional Risk-Aware Fuel-Optimal Autonomous Path Planning Flow Chart.

2



This paper is divided into two major sections for methodology and results, where the following method-
ology sections explore different representations of the relative state between a servicer spacecraft and client
RSO; the relative formation dynamics; the proposed autonomous path planning algorithms including risk
assessment and quantification, as well as; the development of an analytical guidance law for computing
trajectory correction maneuvers (TCMs) to keep the servicer spacecraft on the nominal planned path. A
ProxOps use case is developed where the servicer spacecraft starts in an initial formation with the client RSO
and targets the necessary impulsive maneuvers to bring it to a new relative formation at a specified time.
The ability of the autonomous path-planning algorithm to achieve a fuel-optimal formation reconfiguration
while accounting for spacecraft safety is demonstrated via numerical simulation for the nominal use case.
A risk analysis and subsequent dispersion analysis are conducted to evaluate the safety of the trajectory
generated by the control policy. The cumulative error in the relative position of the servicer spacecraft due to
unmodeled perturbations in the analytical dynamics model is quantified by propagating the nominal scenario
with numerical integration of higher fidelity equations of motion. The ability of the aforementioned analytical
guidance law for TCMs to correct for such errors is then demonstrated. Finally, the control commands from
the proposed autonomous path planning policy are evaluated by Astroscale using a higher-fidelity 6-DOF
simulator.

PROBLEM STATEMENT

Formation Design

The most common parameterization for the relative motion of two spacecraft uses relative Cartesian
coordinates in the Hill frame H : {ĥ1, ĥ2, ĥ3} as shown in Figure ??. This is a rotating frame based on
the reference orbit of the RSO where ĥ1 is the unit vector pointing in the direction of the RSO’s position, ĥ3

is the orbit-normal unit vector in the direction of the RSO’s angular momentum vector, and ĥ2 = ĥ3 × ĥ1

completes the right-handed system. The relative position vector of the servicer is defined by ρ = (x, y, z)T

with the relative velocity ρ̇ , Hdρ/dt = (ẋ, ẏ, ż)T , where Hd(·)/dt denotes the time derivative taken in the
rotating reference frame and the 6-dimensional relative Cartesian state vector is δx = (ρ, ρ̇)T .

Client (RSO)

Servicer

Relative Orbit

Servicer
Inertial OrbitReference Orbit`

Figure 3: Illustration of a General Spacecraft Formation with Out-of-Plane Relative Motion.

The second most common parameterization used for formation design and modeling relative spacecraft
dynamics is that of differential orbital elements, or simply the arithmetic difference between the servicer and
reference orbital elements: δoe = oeServicer − oeRSO. This state representation is particularly useful for
spacecraft dynamics modeling in general due to the absolute orbital elements’ slow rate of change, limited
to the mean anomaly M or true anomaly f for unperturbed Keplerian motion, as compared to the relative
Cartesian representation which is composed of six so-called ”fast variables”.? This paper will use the nearly
non-singular set of orbital elements: oenns = (a, λ, i, q1, q2,Ω)T where a is the semimajor axis, λ = M +ω
is the mean argument of latitude, ω is the argument of perigee, i is the orbit inclination, q1 ≡ ex = e cosω
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and q2 ≡ ey = e sinω are the eccentricity vector components, e is the orbit eccentricity, and Ω is the right
ascension of the ascending node. Although the work presented here will be broadly applicable with any
oe-based state representation, this particular one was chosen for its benefits of avoiding the singularity for
the undefined line of apsides (when e = 0) as well as being extensively used throughout other bodies of
work in the realm of relative spacecraft dynamics (sometimes with the true argument of latitude, θ = f + ω,
instead).?, ?

Formation Dynamics

This study leveraged the analytic solution for relative formation dynamics developed by Gim and Alfriend,?

henceforth referred to as the ”GA Method”, accommodating for an eccentric reference orbit and J2 pertur-
bation effects based on Brouwer’s solution.? While Brouwer’s solution captures second-order secular and
first-order periodic perturbations about a Keplerian reference orbit due to J2 − J5, the GA Method retains
only the first-order secular J2 terms. Gim and Alfriend utilize the Lagrange planetary equations (LPEs),
defining the orbital element variations due to first-order J2 effects, and derive the analytical state transition
matrix (GA STM) for differential nearly non-singular mean orbital elements:

δōenns(t) = φ̄J2(t, t0)δōenns(t0) (1)

where δōenns = (δā, δλ̄, δī, δq̄1, δq̄2, δΩ̄)T represents the set of differential nearly-nonsingular mean orbital
elements of the servicer spacecraft with respect to the reference orbit. Note that ( ¯ ) and ( ˜ ) are used to
distinguish between mean and osculating orbital elements, respectively. In order to employ Equation (??) to
propagate the osculating relative Cartesian state in the Hill frame and the corresponding state-covariance, a
number of additional transformations are necessary. A summary of the full derivation is provided below for
reference, but the reader is referred to the original work of Gim and Alfriend for full detail.?

The non-linear transformation between mean and osculating absolute orbital elements is given by:

õenns = ōenns − (J2R
2
e){∆oe(lp)

nns + ∆oe(sp1)
nns + ∆oe(sp2)

nns } (2)

where ∆oe
(lp)
nns is a function of the long-periodic generating function, then ∆oe

(sp1)
nns and ∆oe

(sp2)
nns are

component functions of the short-periodic generating function. Similarly, the linearized mapping between
mean and osculating differential orbital elements is found by computing the Jacobian, D(ōenns(t)):

D(t) =
δõenns

δōenns
= I − (J2R

2
e)[D

(lp)(t) +D(sp1)(t) +D(sp2)(t)] (3)

The linear mapping matrix for the geometric transformation between differential osculating orbital elements
and relative Cartesian Hill frame coordinates, Σ(õenns(t)), is given by:

Σ(t) = {A(t) + αB(t)} (4)

where A(t) is the unperturbed linear mapping, B(t) captures frame rotation rate effect caused by J2, α =
3J2R

2
e , and δx(t) = Σ(t) × δõenns(t). The full GA STM for propagating the osculating relative Cartesian

state in Hill Frame coordinates is thus given by combining Equations (??), (??), and (??):

ΦJ2(t, t0) = {A(t) + αB(t)}D(t)φ̄J2(t, t0)D−1(t0){A(t0) + αB(t0)}−1 (5)

The analytical solution for Σ−1(t) is additionally included in the GA Method, and the first-order approximate
inverse of Equations (??)−(??) can be obtained by replacing J2 with−J2 and treating the osculating elements
as the inputs to the Brouwer transformation.? Finally, for the purposes of this paper, Equations (??)−(??)
were modified to use the mean argument of latitude, λ, instead of the true argument of latitude, θ.

In order to include the control influence, u, on the differential mean orbital elements it can be shown that:

δōenns(t) = φ̄J2(t, t0)δōenns(t0) +

t∫
t0

φ̄J2(t, τ)B(τ)u(τ)dτ (6)
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where B(t) represents Gauss’s variational equations (GVEs) evaluated on the reference orbit.?

It is useful to note that, while this form of the GA Method was used for the analyses throughout this
paper, there exist many alternative differential orbital elements-based formulations of the relative motion
dynamics throughout literature. Two such variations of the GA method include the small-eccentricity version
of (??)−(??) which can be used to save significant computational effort for formations in near-circular
reference orbits, given by Alfriend and Yan,? and; the GA Method using differential equinoctial elements
which avoids singularities for both the line of apsides being undefined (when e = 0) and the line of nodes
being undefined (when i = 0).? The following sections will show how Equation (??) is used to capture the
formation dynamics during the control policy portion of the autonomous path planning algorithms, and the
full GA STM from Equation (??) is used to propagate the Hill frame relative Cartesian state-covariance for
risk assessment.

Autonomous Path Planning

The aforementioned fuel-optimal maneuver targeting algorithm designed by Roscoe, et al. was developed
to iteratively solve the n-impulse maneuver targeting problem, formulated as a discrete-time OCP while using
Laweden’s primer vector theory? to improve the resulting sub-optimal set of impulses until they converge to
the optimal values using the necessary conditions of the corresponding continuous-time OCP formulation. A
flowchart of the algorithm is shown in Figure ?? where the discrete-time OCP is initially solved for a large
number of impulses (e.g. 24 per orbit period), the times corresponding to the local maxima in the resulting
impulse history are then chosen as the candidate optimal maneuver times, and the suboptimal trajectory is
then incrementally improved by moving, adding, or removing the impulses based off of the primer vector
magnitude history; the reader is referred to the original work of Roscoe et al for full detail.?

Figure 4: Flow Diagram of the Fuel-Optimal N-Impulse Transfer Design

This process uses the core GA-STM for differential mean orbital elements and the control effect is incorpo-
rated using GVEs (Equations (??) and (??)). Once the nominal fuel-optimal maneuver plan has been solved,
the relative state-covariance of the servicer is subsequently propagated using the full GA-STM from Equation
(??) for the purpose of propagating the relative Cartesian state-covariance and quantifying the risk associated
with the nominal maneuver plan (see Figure ??). If the pre-defined risk threshold criteria are satisfied, the
recommended maneuver plan is transmitted to the C&DH interface; otherwise, an intermediate passively safe
transfer orbit can be additionally targeted to reduce risk in the transfer trajectory.

The path planning algorithm is designed to take the initial states of both the client RSO and the servicer
spacecraft along with the final targeted relative orbit state for the servicer spacecraft. It is anticipated that
flight systems will have broadly varying native representations for absolute and relative states; therefore, this
interface was made to generically handle conversions of absolute states to mean orbital elements and relative
states to differential mean orbital elements through the appropriate nonlinear transformation processes.
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Risk Assessment and Quantification

For safe and autonomous spacecraft servicing, the guidance algorithm needs to be cognizant of future high-
risk events. In the following sections, the approaches taken to assess the collisional risk between the client
and servicer spacecraft are described.

Covariance Prediction The most fundamental information for the collision risk is the covariance of the
client’s and servicer’s state uncertainties. This study focuses on the relative state covariance and does not
consider individual covariances of the two objects for risk assessment purposes.

Based on the latest navigation solution, the client spacecraft must evaluate the risks associated with the
predicted future relative trajectory. When no measurements are taken, the covariance evolves according to
the dynamics. The Hill frame relative state covariance propagated by the natural dynamics is

P (t) ≡ E
[
(x(t)− x̄(t))T (x(t)− x̄(t))

]
= ΦJ2(t, t0) · P (t0) · ΦTJ2(t, t0) (7)

where E is the expectation operator, x = (ρ, ρ̇)T is the Hill frame relative state, x̄ is its mean, and ΦJ2 =
∂x(t)/∂x(t0) is the linear mapping between the relative states through GA-STM.

The Gates’ maneuver uncertainty model? is employed in this study to account for the servicer spacecraft’s
maneuver execution noise. At the time of an impulsive maneuver, the following maneuver covariance is
added.

P∆V = [σ2
s(∆V )2 + σ2

r ]v̂v̂ + [σ2
p(∆V )2 + σ2

a](I − v̂v̂) (8)

where v̂ = ∆V /|∆V |.
With the natural dynamics, the covariance grows over time, especially the in-track component. During

RPO, it is reasonable to assume that the servicer spacecraft has constant access to the navigation solutions.
Thus, it is practical to make covariance predictions assuming some measurement updates.

The relative position bearing angle measurement by optical sensors and range measurements are consid-
ered.

Yoptical =
[
arctan (y/x) , arctan

(
z/
√
x2 + y2

)]
(9)

Yrange = |ρ| (10)

where x, y, and z are Hill frame components of the relative position vector ρ. The measurement models
have corresponding noise covariance R. The contribution of the future measurements on the covariance is
incorporated by assuming that the measurements are taken at the maximum likelihood state, linearizing the
measurement models. The Joseph formulation of the Kalman filter covariance update equations is used.?

Pk = (I −Kk · H̃k) · P̄k · (I −KkH̃k)T +Kk ·Rk ·KT
k (11)

Kk = P̄k · H̃T
k · [H̃k · P̄k · H̃T

k +Rk]−1 (12)

where the subscript k indicates k-th measurement update; P̄ is the a priori covariance; H̃ is the measurement
partial.

Finally, process noise must be included for the purpose of maintaining a realistic predicted covariance.
The noise acceleration is assumed to be a piecewise constant white Gaussian sequence u(ti) rather than a
process.? The covariance propagation equation has an additional noise contribution.

P̄k+1 = ΦJ2(tk+1, tk) · Pk · ΦTJ2(tk+1, tk) + Γ(tk+1, tk) ·Qk · ΓT (tk+1, tk) (13)

where Qi is the process noise covariance

E[u(ti)u(tj)] = Qiδij (14)

and Γ is the process noise transition matrix.
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Risk Metrics For risk evaluation, the study uses three different metrics. The simplest metric is the miss
distance or the norm of the relative position ρ. Another useful distance metric is the Mahalanobis distance in

position space
√
ρ · P−1

ρρ · ρ where Pρρ is the 3 × 3 relative position covariance; the Mahalanobis distance
in position space is specifically relevant for gaining insight into the instantaneous collisional risks.

Another class of risk metrics is the probability of collision (PC). A two-dimensional (2D) PC is used
where the three-dimensional Gaussian distribution of the relative position at the time of closest approach
(TCA) is marginalized as a 2D Gaussian distribution on the encounter plane.?, ? The encounter plane is a
plane perpendicular to the relative velocity at TCA. Relative velocity in the rotating Hill frame is used to
construct the encounter plane. The 2D PC is given by

pc =

∫
Ahb

1

2π
√
|Pdd|

exp

(
−1

2
d · P−1

dd · d
)
dA (15)

where d and Pdd are the relative position vector and its covariance mapped onto the encounter plane; Ahb

is the area swept by the combined hard body radius. For the purposes of this analysis, a circular area with a
predefined hard body radius Rhb is used. The 2D PC computes a total collision probability for an isolated
encounter, assuming the relative velocity is high enough that the relative motion is rectilinear. Another
assumption is that relative covariance remains constant during an encounter. In general, 2D PC provides
accurate collision probabilities for low Earth orbit conjunctions due to their high relative velocities. For
RPO trajectories, the relative velocities are much smaller. However, assuming constant access to accurate
navigation solutions, the time the spacecraft takes to travel a 1 − σ position uncertainty could still be small,
which motivates the use of the 2D PC. Results will be shown for both an analytical 2D PC formulation by
Chan? and a numerical 2D PC implementation by Foster.?, ? By definition, 2D PC is only applicable at TCA.
However, this study computes 2D PC at any given time as it provides some insight into the risk trend. 2D PC
computed at a point different from TCA is equivalent to 2D PC where the relative motion is approximated
as a rectilinear motion with the position and velocity at that instance of time. We note that validating the
accuracy of the 2D PC for the RPO scenarios considered in this work as well as studying the application of
more accurate PC algorithms such as 3D PC? will be the focus of future studies.

Analytical Guidance Law with QCQP

On top of the nominal maneuver plans, the servicer spacecraft may need to perform trajectory correction
maneuvers (TCMs). The spacecraft’s trajectory deviates from the planned nominal trajectory due to various
errors such as navigation errors, maneuver execution noise, and unmodeled dynamical perturbations. Without
proper trajectory control, the deviation keeps growing, which might result in a higher collisional risk or
violation of the mission constraints considered for the nominal trajectory design.

For the onboard generation of TCMs, the direct optimization of nonlinear programming (NLP) with various
non-convex cost and constraint functions by iterative NLP solvers is generally not practical due to limited
computational resources for flight systems.

Analytical computation of an impulsive TCM is considered based on quadratically constrained quadratic
programming (QCQP)? with a single constraint. The algorithm finds an impulsive maneuver to minimize
the future state deviation with the maximum ∆V magnitude constraint. The benefit of this QCQP-based
formulation is that the global solution can be obtained in a polynomial time. Furthermore, the specific
problem considered here can be solved analytically. The complete replanning of the transfer trajectory to
the target trajectory using the n-impulse fuel optimal control introduced earlier is another feasible option.
However, if the goal is to keep the spacecraft close to the nominal path, a simple impulsive control may be
sufficient. If the nominal trajectory is designed considering various mission-specific constraints, generating
a whole new nominal path may not be ideal. Besides, with the QCQP-based formulation, the maneuver
magnitude can be constrained.
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The TCM can be obtained by solving the following QCQP.

min
∆V

J =
1

∆t

∫ τ+∆t

τ

(x(t)− xn(t)) ·W · (x(t)− xn(t))dt (16)

subject to ∆V ·∆V − v2
max ≤ 0 (17)

where x = [ρ, ρ̇] is the predicted relative state after applying the TCM, xn is the nominal relative state,
W > 0 is a positive definite 6x6 weight matrix defined by a user, and vmax is the maximum allowed ∆V
magnitude. The cost function is the time average of the state deviation from t = τ through t = τ + ∆t, and
it can be discretized as

J = 1/N

N∑
i

(x(ti)− xn(ti)) ·W · (x(ti)− xn(ti)) (18)

Using the time average of the state deviation as a cost function results in a more consistent behavior than
simply targeting a single state. If a single point in the future is targeted, the resulting trajectory might have a
small cost at that epoch, but the state deviation could be much larger at other points. This is because a single
impulse cannot control the full six state elements independently; the algorithm generally results in a nonzero
cost.

With the linearized relative motion using GA-STM, the state after applying the TCM can be given as

x(ti) = x0(ti) + Ti ·∆V (19)

where Ti is a matrix that maps the velocity change to the change in the relative position and velocity. Thus,
the problem can be written in the following form.

min
∆V

J = Ao ·∆V + 2bo ·∆V + co (20)

subject to ∆V ·∆V − v2
max ≤ 0 (21)

where

Ao = 1/N

N∑
i

TTi ·W · Ti (22)

bo = 1/N

N∑
i

(x0(ti)− xn(ti)) ·W · Ti (23)

co = 1/N

N∑
i

(x0(ti)− xn(ti)) ·W · (x0(ti)− xn(ti)) (24)

Thus, denoting cc = v2
max, Lagrangian can be defined as

L(∆V , λ) = ∆V · (Ao + λI) ·∆V + 2bo ·∆V + co − λcc (25)

where λ ≥ 0 is the Lagrange multiplier. In general, the QCQP with a single constraint can be expressed
as semi-definite programming, whose solution is easily obtained by a convex optimization solver.? For the
current problem, the solution to the dual problem can be semi-analytically obtained.

When there exists λ ≥ 0 such that Ao + λI ≥ 0, which is the Slater condition, strong duality holds, and
the dual function for the above Lagrangian is given as follows.?

g(λ) = inf
∆V

L(∆V , λ) = co − λcc − bo · (Ao + λI)† · bo (26)
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where † indicates the pseudo-inverse. The solution to the primal problem is given by

∆V = −(Ao + λ∗I)† · bo (27)

where λ∗ is the solution to the dual problem.

max
λ

g(λ) (28)

subject to Ao + λI ≥ 0 and λ ≥ 0 (29)

Due to the reversibility of the dynamical system, a nonzero velocity change must result in a nonzero state
variation; namely, δv · Ao · δv > 0 for any δv 6= 0, which means Ao > 0. Thus, Ao + λI > 0 holds true if
λ ≥ 0. Therefore, the dual function can be expressed as

g(λ) = co − λcc −
3∑
i

(bo · ûi)2

λ+ λi
(30)

where λi and ûi are the i-th eigenvalue and eigenvector of Ao. We note that λi > 0 and cc > 0. Thus,
the dual function has a unique global maximum for λ ≥ 0. When dg(λ)/dλ < 0 at λ = 0, the solution to
the dual problem is λ∗ = 0. Otherwise, the solution is the root of dg(λ)/dλ = 0, which is obtained by a
root-finding algorithm.

Simulation Setup

A nominal relative spacecraft formation reconfiguration use-case was developed in order to test the au-
tonomous path planning algorithms and the method for analytical computation of impulsive TCMs. The
initial state of the client RSO forming the reference orbit was expressed in absolute Cartesian ECI coordinates,
denoted by (N ), as shown in Table ??. The corresponding initial and final (target) relative orbit states of the
servicer spacecraft were expressed in relative Cartesian coordinates in the reference Hill frame, denoted by
(H), as shown in Table ??. The subscripts correspond to the initial formation at time t0 = 0 and the targeted
formation at time tf = +35, 000, or roughly +6 orbit periods from the epoch.

Table 1: Initial Absolute State Elements for the Client RSO

Osc. Qty. Osc. Value Osc. Qty. Osc. Value Mean Qty. Mean Value
NX0, m -355,827.1151 ã0, km 6963.9834 ā0, km 6973.0583
NY0, m -1,148,917.451 λ̃0, deg 83.454 λ̄0, deg 83.443
NZ0, m 6,865,349.448 ĩ0, deg 98.016 ī0, deg 98.010
N Ẋ0, m/s -4,539.244647 q̃10 5.577× 10−3 q̄10 5.850× 10−3

N Ẏ0, m/s 5,989.806903 q̃20 −1.464× 10−3 q̄20 2.439× 10−4

N Ż0, m/s 810.8943623 Ω̃0, deg 306.285 Ω̄0, deg 306.286

The full nonlinear transformations were applied to convert the relative servicer states to absolute ECI states
and the absolute ECI states of both spacecraft to the corresponding osculating orbital elements. From there,
the osculating orbital elements for both the client and servicer spacecraft were converted to mean orbital
elements using the first-order approximate inverse of Equation (??), as described in the previous section
on formation dynamics. Finally, the differential elements of the servicer at t0 and tf were computed as
the arithmetic difference from the corresponding reference elements. The resulting absolute and differential
orbital elements are included in Tables ??−??. The initial formation is a safety ellipse (SE) with out-of-plane
motion and an in-track separation between the servicer and client of approximately −800 m; the targeted
formation is a walking safety ellipse (WSE) of smaller size that initially closes the in-track separation
by approximately 300 m, but then drifts back in the negative in-track direction. The nominal formation
reconfiguration use-case described here will be the basis for analysis throughout the remaining sections.
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Table 2: Initial and Target Relative State Elements for the Servicer Spacecraft

Osc. Qty. Osc. Value Osc. Qty. Osc. Value Mean Qty. Mean Value
Hx0, m -103.9746 δã0, m 0.131 δā0, m 0.238
Hy0, m -799.1326 δλ̃0, deg −6.489× 10−3 δλ̄0, deg −6.502× 10−3

Hz0, m 3.5919 δ̃i0, deg 1.143× 10−4 δī0, deg 1.144× 10−4

Hẋ0, m/s 0.0028341 δq̃10 1.740× 10−6 δq̄10 2.033× 10−6

Hẏ0, m/s 0.2206368 δq̃20 1.419× 10−5 δq̄20 1.415× 10−5

Hż0, m/s 0.1090468 δΩ̃0, deg 8.270× 10−4 δΩ̄0, deg 8.283× 10−4

Hxf , m -28.8750 δãf , m 24.910 δāf , m 25.417
Hyf , m -499.5620 δλ̃f , deg −3.949× 10−3 δλ̄f , deg −3.957× 10−3

Hzf , m -7.9990 δ̃if , deg −1.347× 10−4 δīf , deg −1.348× 10−4

Hẋf , m/s -0.0034510 δq̃1f −1.325× 10−6 δq̄1f −1.151× 10−6

Hẏf , m/s 0.0728719 δq̃2f 7.224× 10−6 δq̄2f 7.295× 10−6

Hżf , m/s 0.0918294 δΩ̃f , deg 6.941× 10−4 δΩ̄f , deg 6.949× 10−4

RESULTS

Autonomous Path Planning

The reconfiguration described in the previous section and parameterized by Tables ??−?? was targeted
using the risk-aware fuel-optimal path planning algorithms shown in Figure ??. The end-to-end transfer is
shown in Figure ?? where Figures ?? and ?? demonstrate the iterative refinement of the n-impulse fuel-
optimal targeting solution. Following the logic of Figure ??, the algorithm first solved a dense grid of
maneuvers to achieve the final orbit (Figure ??); the 11 impulse times were corresponding to the local
maxima of the impulse history were selected as the candidate optimal times, and; the converged solution
after the primer vector iteration process achieved the targeted formation reconfiguration with 4-maneuvers
and a total ∆V of approximately 5.5 cm/s (Figure ??).

Figure 5: Nominal Use Case: Final Trajectory in the Hill Frame with the Client RSO Fixed at (0, 0, 0).
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Figure 6: Nominal Use Case: Maneuver Magnitude History for Initial Energy Dense Solution with
Candidate Optimal Maneuver Times Identified.

Initial Candidates Near Optimal
Figure 7: Nominal Use Case: Primer Vector Magnitude History for Initial and Converged Maneuver Times.

Risk Analysis

The risk analysis is performed using the nominal trajectory and maneuver plan generated by the au-
tonomous path planning algorithm in the previous section (Figure ??). The behavior of the state uncertainties
with different measurement sets and corresponding risk metrics is studied for the nominal trajectory.

As for the measurement update, the azimuth-elevation measurements and range measurements described
earlier are used. Table ?? shows the noise parameters used for the covariance prediction for risk assessment.
For the angle measurements, the uncertainty is assumed to be given by σ = IFOV where IFOV is the pixel
field of view of the optical imager. The current analysis assumes IFOV = 60◦/500 ' 2.09 mrad. The
process noise covariance Qi in Equation (??) is set to a constant diagonal matrix whose element is σ2

snc

and its value is determined by considering SRP and drag modeling errors. Namely, σ2
snc = σ2

srp + σ2
drag,

where σsrp = 6.840 × 10−9 m/s and σdrag = 2.857 × 10−15 m/s. These acceleration errors correspond
to 20 percent of the nominal SRP and atmospheric drag, assuming the spacecraft’s area-to-mass ratio of
(0.5)2/50 m2/kg and atmospheric density of 10−13 kg/m3. The measurement cadence is set to 5 minutes,
which is a conservative assumption. Table ?? also lists the parameters for the Gates maneuver noise model in
Equation (??). The initial covariance of the relative position and velocity in the Hill frame is set to a spherical
covariance, where position and velocity uncertainties are 10 meters and 1 mm/s respectively.
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Table 3: Parameters Used for Covariance Prediction.

Parameter Value Unit

σoptical 2.09 mrad
σrange 5.0 meter
σsnc 6.84× 10−9 m/s
σs 0.01 -
σr 0.1 mm/s
σp 5.0 mrad
σa 0.1 mm/s

Figure ?? shows the predicted covariance without any measurement updates. There is notable growth in the
in-track component of the position uncertainty, while uncertainties in other state elements have an oscillatory
pattern. Figures ?? and ?? show the evolution of state covariance with only optical measurements and with
optical and range measurements, respectively. With the optical measurement only, there is a relatively large
range uncertainty as seen from the in-track position uncertainty, which is due to the scale invariance of the
optical measurements. However, the range accuracy is less than 10 meters throughout the simulated trajectory.
With the addition of direct range measurements, the uncertainty can be reduced to less than 2 meters.

Figure 8: Time History of Predicted Relative State Covariance without any Measurements.

Figure 9: Time History of Predicted Relative State Covariance with Azimuth and Elevation Measurements.
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Figure 10: Time History of Predicted Relative State Covariance with Azimuth, Elevation, and Range
Measurements.

Figure 11: Time History of Miss Distance, Position Mahalanobis Distance, and 2D PC without Measurement
Updates.

Figure ?? shows the time history of the miss distance, position Mahalanobis distance, and corresponding
2D PC when the covariance prediction is performed without assuming measurement updates. The minimum
miss distance is around 240 meters at t = 5.3 periods. The minimum Mahalanobis distance is about 1.5 σ
at t = 1.5 periods. An interesting observation is that the minimum Mahalanobis distance does not coincide
with the minimum miss distance due to the highly elongated relative position covariance. The 2D PC plot
shows the results of both Chan’s and Foster’s methods, and the two are in agreement. The maxima of the 2D
PC correspond to the minima of the Mahalanobis distance. Thus, the Mahalanobis distance could be a useful
measure for evaluating future risks and designing avoidance maneuvers. The maximum PC of 10−1.5 occurs
at about t = 1.5 periods. Figure ?? shows the Mahalanobis distance history, along with miss distance history
for reference when access to the optical measurements is assumed. The covariance for this case corresponds
to Figure ??. The Mahalanobis distance takes a minimum value at the beginning of the simulation and stays
above 150 σ thereafter. The same observation regarding the minima of the miss and Mahalanobis distance
holds as the case without measurement updates. The corresponding 2D PC is zero throughout the trajectory.
The result indicates that even with a simple optical measurement, the state uncertainty becomes small enough,
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resulting in a safe trajectory.

Figure 12: Time History of Miss and Position Mahalanobis Distance with Azimuth and Elevation
Measurements. (2D PC is not shown as it is zero throughout the simulation, demonstrating the safety of
the trajectory even with the conservative observation capability).

Formation Dynamics Errors

The full nominal trajectory, defined by the initial and target conditions of Tables ??−?? and the resulting
maneuver plan was propagated using the full GA STM from Equation ?? and the effect of the impulses were
accounted for with the GVEs (see Figure ??). The corresponding ECI states were separately propagated via
numerical integration of various force models in order to evaluate the accuracy of the GA-STM and quantify
the error growth that can be expected due to the usage of a simplified dynamics model accounting only for
the first-order J2 secular perturbation.

The numerical integrator for this analysis was configured with the settings and Earth constants shown in
Table ??; the ballistic coefficients and solar radiation pressure (SRP) coefficients used for both the client and
servicer spacecraft in this analysis are shown in Table ??. The respective coefficients’ differences characterize
the differential drag and differential SRP effects and will drive the size of the discrepancy between the chosen
analytical model and the numerical integration results including drag and SRP.

Table 4: Numerical Integrator Configuration and Earth Constants for Formation Dynamics Analysis.

Description Setting Description Setting

Integrator: Dormand-Prince 853 Gravity Field Model: SGG-UGM-2
Min Step: 0.001 sec J2 ≡ −C̄20 ×

√
5: 0.0010826341979472214

Max Step: 1, 000 sec Equatorial Radius: 6, 378, 136.3 m
Rel. Tol.: 2× 10−14 Gravitational Parameter: 3.986004415× 1014 m3/s2

Abs. Tol.: 4× 10−10 m Atmosphere Model: NRLMSISE-00

Table 5: Spacecraft Model Parameters Used for Formation Dynamics Analysis

Description Setting

Client CD A
m 0.0235164 m2/kg

Client CR A
m 0.0150494 m2/kg

Servicer CD A
m 0.0227466 m2/kg

Servicer CR A
m 0.00621975 m2/kg
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While the full non-linear transformations were used to transform between absolute ECI states and cor-
responding orbital element representations for both the client and servicer spacecraft states to initialize the
respective propagation methods, the full GA-STM in Equation (??) uses linearizations for both the mean↔
osculating transformation in addition to the transformation between differential orbital elements and the
relative Hill frame Cartesian state. In order to asses the the error introduced by the latter linearization for the
nominal use case, both propagation methods were compared using purely Keplerian motion (with J2 = 0).
The linearization causes an initial value error on the scale of 50 mm, largely in the radial component (Figure
??). This is because the analytical propagation directly uses differential mean orbital elements and not the
relative Cartesian state in the Hill frame.

Figure 13: Analytical GA-STM vs Numerical Integration: Central Body (J2 = 0)

Figure ?? shows a slightly larger error in the initial conditions, caused by the additional linearization effect
of the mean to osculating transformation (with J2 6= 0). A secular growth in the in-track relative position
error is also observed; this is caused by the GA-STM only accounting for first-order J2 effects, and the in-
track secular growth is of O(J2

2 ). Finally, very small discontinuities are observed at each of the impulse
times. This is caused by evaluating the GVEs on the reference orbit using the mean instead of the osculating
orbital elements to save computational effort; the error is considered negligible for small accelerations.

Figure 14: Analytical GA-STM vs Numerical Integration: Central Body + J2

Figures ??, ??, and ?? show the cumulative relative position error when comparing the GA-STM prop-
agation to the numerical integration of the following force model configurations, respectively: a 70 ×
70 Geopotential gravity field; the central body force + J2 + atmospheric drag, and; the central body
force + J2 + SRP. These results confirm the expectation for differential drag to have the second largest
perturbative effect on relative motion dynamics after J2.
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Figure 15: Analytical GA-STM vs Numerical Integration: Geopotential: 70x70

Figure 16: Analytical GA-STM vs Numerical Integration: Central Body + J2 + Drag

Figure 17: Analytical GA-STM vs Numerical Integration: Central Body + J2 + SRP

Figure 18: Analytical GA-STM vs Numerical Integration: Geopotential: 70x70 + Drag + SRP + Sun +
Moon
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Finally, Figure ?? shows a maximum 2-norm error of approximately 9 m when comparing the analytical
GA-STM propagation to the numerical integration of a 70× 70 Geopotential gravity field, atmospheric drag,
SRP, and solar and lunar third-body effects. These results characterize the error that will be observed with
respect to the nominal trajectory produced by the path planning algorithms using the GA-STM, and the
following section demonstrates how the analytical QCQP approach can be used to efficiently compute TCMs
onboard to address these errors.

QCQP-based TCM

The performance of the QCQP-based guidance law is presented here. The analysis uses the nominal
trajectory defined earlier as a target trajectory, and the guidance law aims to minimize the future state
deviation from the nominal trajectory. The initial state of the perturbed trajectory is shifted by δρ = [1, 1, 1]
m and δρ̇ = [1, 1, 1] mm/s. The cost function of the QCQP in Equation ?? is used, and 10 target points x(ti)
are selected in 8 periods ≤ ti ≤ 9 periods. The weight matrix is chosen to be

W =

[
I3x3/σ

2
ρ 03x3

03x3 I3x3/σ
2
ρ̇

]
(31)

where σρ = 1 m, σρ̇ = 1 cm/s. Using this weight, the position deviation of σρ and velocity deviation of σρ̇
are penalized equally. The maximum permissible |∆V | is set to 1 cm/s for the analyses shown here.

Figure ?? shows the result of applying the QCQP-based TCM at t = 0. The plot at the top shows nominal,
perturbed, and corrected trajectories. The middle plot shows the time history of the state deviation from the
nominal state for the cases with and without the TCM. The plot at the bottom shows the dual function and
its first and second derivatives with respect to the Lagrange multiplier λ. The solution λ∗ is indicated as a
red marker. Without the TCM, the trajectory keeps drifting in the negative in-track direction. With the TCM,
the position deviation can be bounded within ±3 meters, and the trajectory looks identical to the nominal
trajectory in the 3D plot. The dual function for this example case is maximized at λ = 0. Thus, the TCM
does not require the maximum ∆V to minimize the cost function. Indeed, the ∆V for required this TCM is
3.49 mm/s. Figure ?? shows another example case where the maneuver is performed at t = 6 periods. The
same plots are shown as the earlier example. For this case, the dual function takes a maximum value at λ 6= 0.
Thus, the maximum ∆V constraint is active. The resulting TCM has a larger state deviation compared to the
TCM performed at t = 0.

Figure ?? shows the optimal cost J and constraint c(∆V ) = ∆V 2 − v2
max as a function of maneuver

time. We can confirm that depending on the location of the maneuver, the optimal cost varies. Also, the
cost increases as the maneuver time is delayed, which is intuitive as the trajectory keeps deviating from
the reference and requires more control efforts. The trend of the constraint function shows that when the
maneuver is performed early, maximum ∆V is not required to minimize the cost. Maneuvers performed later
require larger ∆V , and after about t = 5.5 periods, the maximum ∆V constraint of 1 cm/s is reached.

Dispersion Analysis Result

While the risk analysis presented earlier demonstrates the safety of the nominal trajectory when basic
optical measurements are available, it also shows a large covariance growth by natural dynamics. Therefore,
if the spacecraft does not perform constant TCMs, the relative trajectory could be off by a significant amount
from the nominal trajectory, which could result in higher risk. To further gain insight into the risk aspect,
a dispersion analysis is performed by randomly sampling the initial relative state and maneuver execution
errors. The analysis uses the same nominal trajectory introduced earlier.
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Trajectory (nominal, perturbed, and controlled).

Time history of state deviation from the nominal.

Dual function and its derivatives.
Figure 19: Example Result of TCM Applied at t = 0 Peroods.
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Trajectory (nominal, perturbed, and controlled).

Time history of state deviation from the nominal.

Dual function and its derivatives.
Figure 20: Example Result of TCM Applied at t = 6 Peroods.
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Figure 21: Cost and Constraint of QCQP-Based TCM as a Function of Maneuver Time.

Figure 22: 3D plots of trajectories sampled in the Monte Carlo simulation.

Figure 23: Time history of the state deviation from the nominal state generated from the Monte Carlo
simulation.
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Figure 24: Time history of the risk metrics computed for each trajectory sampled in the Monte Carlo
simulation.

Monte Carlo runs are performed 1000 times. In each run, the initial relative state in the Hill frame is
sampled from a spherical Gaussian distribution with σρ = 10 m and σρ̇ = 1 mm/s. The maneuver execution
errors are sampled using the Gates model with the same parameters shown in Table ??. The maneuver
execution error also includes a timing error of σ = 1 sec. For each sampled trajectory, the covariance
prediction is performed by incorporating the azimuth and elevation angle measurements, process noise, and
maneuver execution errors in the same way as the risk analysis shown earlier. The same parameters as shown
in Table ?? are used for the covariance prediction. The measurement cadence is set to 60 seconds, which is
reduced from the 5 minutes in the earlier analysis but is still a conservative assumption.

Figure ?? shows the 3D plot of trajectories sampled in the Monte Carlo simulation, and Fig. ?? shows the
corresponding time history of the state deviation from the nominal state. As expected, we can confirm that
there is a notable position drift in the in-track direction. Other state elements oscillate around the nominal
states. Figure ?? shows the miss distance and Mahalanobis distance for these trajectories in log scale. The
minimum miss distance of 28 meters occurs at around t = 9.7 periods. The corresponding Mahalanobis
distance, which is also the minimum value is 293 σ, and the 2D PC is zero. Thus, the result still shows safety
when basic relative measurements are available.

Astroscale 6-DOF Simulator

As a next step, we utilize the Astroscale high fidelity 6-DOF simulator to further analyze the trajectories.
The purpose of this tool is to simulate various RPO maneuvers, generating the state of both servicer/client
satellites in Semi-Non-Singular Keplerian (SNSK) or D’Amico Relative Orbital Elements, and covariance
for both servicer and client satellites. Phases of the various RPO maneuvers considered in this study include
safety ellipses towards the client; natural motion circumnavigation (NMC); and point of insertion (i.e., the
point where the last maneuver occurs prior to entering an NMC for docking or the client’s targeted pointing).
This simulator includes a list of sensors to aid the guidance, navigation, and control for the various phases of
the simulated maneuvers. Figure ?? shows the 6-DOF architecture.

The goal of this section is to analyze the RPO trajectory output of the Kayhan-provided maneuvers, both
before and after the Proxima improvements, in the high-fidelity Astroscale simulator. The initial conditions
shown in Table ?? are used for this case study as well. Based on these conditions, the IR-CAM is selected
to provide measurements during the relative navigation towards the desired target. This sensor is capable of
providing a relative position vector and attitude from 1 km to 250 m away from the client.

21



Figure 25: Architecture of the Astroscale 6-DOF Simulator

Figure 26: 3D Plot and 2D Projections of Trajecto-
ries Generated by Kayhan Proxima Algorithm.

Figure 27: 3D Plot and 2D Projections of Trajec-
tories Generated by 6-DOF Simulator with the 2x0
Gravity Model.

Given the initial condition and desired target in Tables ?? and ??, the trajectories shown in Figures ??
and ?? were generated using the Kayhan Proxima algorithms and the 6-DOF simulator, respectively. We
note that the 6-DOF simulator uses a different maneuver planning algorithm as described shortly, generating
a different transfer trajectory. Also, it is worth mentioning that 6-DOF simulator results showed a noisy
trajectory due to sensor noise. However, in terms of comparison, we only plot truth state data without the
sensor measurements. Both the Kayhan Proxima algorithms and the 6-DOF simulator calculated 4 maneuvers
to reach the point of insertion.

The 6-DOF simulator has high-fidelity capabilities. As a result, several uncertain parameters, such as the
gravity model coefficients, sensor accuracy, and actuation output can be varied, which would have an impact
in reaching a desired point in the trajectory. The perturbations due to J2 and atmospheric drag have an impact
on the total ∆V from applied fuel maneuvers. As the number of harmonic coefficients is increased in the
gravity field, the total ∆V consumed increases. Atmospheric drag also plays a key role in the total ∆V
consumption. In addition, the 6-DOF Simulator trajectories show that the servicer ends up further off target
at the insertion time. The 6-DOF simulator accounts for realistic error biases and uncertainties that prevent
the servicer controller from always reaching the target. A more detailed figure of the distance between the
servicer and the point of insertion, while varying coefficients of the gravity field and capturing atmospheric
drag, can be observed in Figure ??.
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Figure 28: Time History of the Distance from the Insertion Point, Comparing Different Scenarios Generated
from the 6-DOF Simulator and Kayhan Proxima.

Figure 29: Time History of the Distance from the Insertion Point, Comparing the Result of Running the
6-DOF Simulation with the Kayha Proxima Maneuver Recommendation and the Nominal Trajectory Kayhan
Proxima Targets.

The ∆V output of Kayhan Proxima algorithms is compared with the closest gravity model of the 6-DOF
simulator. The 6-DOF simulator shows a higher total ∆V consumption of applied burns than Kayhan’s
Proxima algorithms. The main reason for this difference is the control technique of each approach. The 6-
DOF simulator uses a control strategy from D’Amico,? which is conservative in nature and enforces the con-
straint of anti-parallelism of the eccentricity and inclination vectors of the servicer/client satellites. Kayhan’s
strategy minimizes the total ∆V maneuvers, and accounts for safety by forward-propagating the covariance
and analyzing the predicted Mahalanobis distance and 2D PC versus time in the path planning algorithm. The
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risk mitigation is also accounted for with their methods before a maneuver plan recommendation is executed.

Kayhan’s ∆V recommendations are added to the 6-DOF simulator. The results show a similar servicer’s
state output and fuel usage as the nominal trajectory that Kayhan Proxima targets. Small errors represent the
mismatch of the gravity field model and other approximation errors in computing the state transition matrix
from Alfriend? such as first order J2 approximation.

CONCLUSIONS AND FUTURE WORK

The concept of a zero-SWaP flight software enhancement that does not require a costly sensor suite or
ADCS hardware additions is proposed and studied, with the goal of enabling safe and autonomous RPO and
RPOD activities. In a conventional approach, the operations are highly manual and require intensive support
from the ground stations for navigation and guidance. With autonomous GN&C capabilities, the cost and
operational efforts can be reduced, enabling more efficient servicing. The system is under the influence of
various uncertainties due to navigation errors, maneuver execution errors, and unmodeled dynamical errors.
Therefore, autonomous servicer spacecraft needs to be cognizant of the risks that arise from such inherent
errors and to have the capabilities to efficiently assess and mitigate the risks within the limited resources of
onboard flight software.

The current work considers the analytical formulation of relative motion dynamics, using the GA-STM
that can be applied to general elliptic client’s orbits under the J2 perturbation. Different representations of
the relative state between the client and servicer spacecraft and transformations among them are explored to
allow the proposed FSW enhancement to interface with the onboard software in a flexible manner. The risk-
aware autonomous path planning algorithm is proposed that generates fuel-optimal maneuver commands
while ensuring safety. The performance of the proposed control policy is demonstrated with numerical
simulation. The risk analysis is then performed by predicting the relative covariance, and the result iden-
tifies key risk metrics such as position Mahalanobis distance. The risk analysis and subsequent dispersion
analysis also confirm that the trajectory generated by the control policy is safe when accounting for optical
bearing measurements, even with conservative measurement precision and collection cadence. The study
also proposes an adaptive feedback control scheme using QCQP with a single constraint, which is known to
be solvable in a polynomial time by converting to an equivalent convex optimization problem. In this study,
a trajectory correction maneuver is formulated as a QCQP, and its analytical solution is directly derived.
The control commands from the proposed autonomous path planning policy are also evaluated by Astroscale
using a higher-fidelity 6-DOF simulator. The result confirms the proposed solution results in a fuel-efficient
operation while achieving the required reconfiguration under the influence of unmodeled dynamical errors.

There are multiple areas that can be explored to further improve the performance and TRL of the proposed
solution. Future work will address improving the fidelity of the analytical dynamical models, including the
effects of other perturbations such as differential drag effects, differential SRP effects, higher-order gravity
field effects, and higher-order contributions of J2. Investigating accurate computation of the PC such as
Monte Carlo PC or Hall 3D PC is also future work. The current analysis does not include avoidance
maneuvers. We are planning to study an avoidance maneuver formulation in the QCQP or convex opti-
mization framework for robust and efficient autonomous maneuver planning. Constraining the maneuvers
to always ensure passive safety while still realizing fuel efficiency gains is of significant interest. As a
result, trade studies between hardware/software failures and predictive covariance between servicer/client
RSO will be performed to guarantee safety against uncertainty with our path planning algorithms. The work
presented in this paper does not consider attitude motion, which needs to be addressed in the future. Also, the
onboard relative navigation of the servicer spacecraft needs further analysis. As a path toward autonomous
RPO demonstration, coordination and interfacing with the onboard G&NC system are necessary as well.
The end-to-end simulation will be performed in the future, where the overall robustness of the system is
tested, simulating truth states, measurement processing, navigation, and guidance in a closed loop, with FSW
integration and validation and in-flight demonstration as the eventual target.

24



ACKNOWLEDGMENT

The authors extend their gratitude to AFRL and the US Space Force for their support of this research effort.

25


